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A b s t r a c t  

b7 this paper, based on the three-dimensional J7ow theory of  plastieiO', the./undametal 

equations for plane strain problem of elastie-perfectly plastic solids are presented. By using 

these equations the elastic-plastic fields near the crack tip growing step-by-step in an elastic 

incompressible-perfectly plastic solid are analysed. 

The first order asymptotic solutions .for the stress .field and velocity fields near the 

crack tip are obtained. The solutions show the evolution process c~f elastie unloading domain 

and the development process of central fan domain and reveal the possibility ~?/'the presence 

o.f the secondary plastic domain. The second order asymptotic solution fi~r stress field is also 

presented. 

I. I n t r o d u c t i o n  

Exact analysis of stress and strain fields near the crack tip is a leading subject all along. For 

linear elastic crack problem, the earlier work given by lrwinm william I-~] revealed that the stress- 

strain field near the crack tip has a r -~2 singularity 

K "6 "0" 

where K is called stress intensity factor, which chracterizes the intensity of stress singular field. 

For ductile fracture, the fracture process zone is surrounded by plastic zone. The crack tip fields 

of stress and strain are dominated by the plastic singular field. Hence the analysis of the plastic 

singular field is an essential problem. 
For a stationary crack, the HRR singularity field offers a clear description and the J integral is 

a useful critical parameter under some restrictions. 
For a growing crack, the problem becomes complex and the progress in this field is very slow. 

up to now, only for a few-subjects the correct solution has been worked out. The topic extracted 

from -this kind of problem seems quite simple but the solution to the topic is quite difficult. 
For a Mode I crack with steady growth in an incompressible perfectly plastic solid, the 

asymptotic solution near the crack tip was developed by Ricel-~l in the case of plane strain. 

Cherepanovl~l gave the similar analysis for the case of non-steady crack growth. But they did not 

consider the existence of unloading zone behind the crack tip. The complete solution for this 

problem was worked out by~SlelJjan I-~ Using the Tresca yield criterion and associated flow rule, he 

obtained the exact asy~nptotic solutions for the cFack tip fields of pure Mode I and Pure Mode lI. Six 
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years later. Rice. l)rugan and Shaml~] GaoH got the same result using the Mises yield criterion. It is 

not a surprise that their restllt is coincident with Slepjan's result, because the Tresca criterion is 

coincident with the Mises criterion in the case of plane strain and v =0.5. 

If we take compressibility into account the problem becomes much more complex Drugan, 

Rice and ShamlSi: Gaol~l Proposed their results respectively. But their results were different. There 

were some hot debates.. Drugan, Rice and ShamlSl pointed out that the result given by 

Gao p,l contains some errors, On the other hand GaolLU contends that the proof  of non-singularity 

of strain field ahead ofcrack tip given by Drugan, Rice and Sharon is incorrect. However the work 

given by the auther ~m shows that their solutions i~."l can not meet the requirement of the high order 

asymptotic equation in the central fan sector, therefore, their results can not be the suitable solution 

in near tip region. 

In the case of plane stress, there is no correct solution, although many scientists have attempted 

to solve this problem but without ~ccess.  

On the other hand, the ductile fracture processes are always related to the nucleation, growth 

and coalescence of micro voids. 

Experimental results show that the macro crack grows usually step-by-step. Before crack 

growth the micro voids will be formed ahead of crack tip. The coalesence between the main crack 

and the nearst.void will result in the crack growth by one step. Fig. 1 shows a typical example of the 

presence of micor void ahead of crack tip in the aluminum thin plate. 

For , the  plane strain problem, the micro voids can not become the thorough thickness 

cylindrical voids. This results in great difficulty for experimental observation. But the Zig-Zag path 

of crack growth also implies that the crack grows step-by-step. Hence it is worth while using the 

step-by-step growth model to investigate the stress and strain fields near the tip of growing crack. 

II. Basic Equat ions  for Plane Strain Problem 

Let (.v.y.z) denote the fixed cartesian coordinate system and (x/, x,. -E~) are tensors for (x,y.z). 

<r,, and ~',, are respectively stress and strain tensors. The corresponding physical components 

are a~, cry, ,r:, r~v" ryz, rz.~ and e=, ~'~, <., e,y, eyz, e':= 

1. Yield condit ion 

( ~ , - ~ , . ) 7 ~  + r :., ,-- 3s~ /a  =/., ~ {2.  , )  

2. C o n s t i t u t i v e  relat ion 
Three-dimensional PrandtI-Reuss flow rule can be expressed as 

D ,~=  ( l + v )  . v E cru--"F c3t~a**+)'Su 2.2) 

where S,, is the stress deviatoric tensor and D,/is the strain rate tensor. 

.We have 

D o =  (Ov,/Oxj+Ov~/Ox~) /2 ( 2 . 3 )  

3. Governing  equat ion  of  plane strain 
For plane strata problem, the relevant physical quantities are only of the function of 

coordinates x/, x,, and independent of xj. We have, 

D ~ =  ( l + v )  . v . 
E a ~ -  E---7 ~ t + 2 S ~ = 0  
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From the above equation, it follows, 

. 

S ~ +  --2E3 - a S~= ---g-eo,,,, (2. ,l) 

where e = - - v +  1/2 and Greek indices represent only the numbers 1,2. The repeated index is 

summed up. Eq. (2.4) is the governing equation of the plane strain. 

Let 
�9 / 

p.p =(~op- 3.~c~pp/2) 

By using Eq.(2.4) constitutive relation (2.2) becomes 

D~p = { ~ e  -- vc~oB~ ~p }/2/ ,+  ,a.P~e-- ekS3ac3~p (2.5) 

4. S t r e s s  f u n c t i o n  and  s t r e s s  c o m p o n e n t s  

Introducing stress function r and putting the following expression for stress components 

02r 02r 0~'r 
a,=OyZ, c~u:'Ox~' r ' u =  OxOy (2 .6)  

the equation of equilibrium will be automatically satisfied. Eqs. (2.1), (2.3)-(2.6) are the basic 

equations for the plane strain problem of elastic perfectly-plastic solid. 

Eq. (2.5) can be rewritten as 

, 3e ~. . 

For the elastic incompressible perfectly plastic solids, we have 

Eq.(2.4), we find So = 0. The basic equaitons become 

(c~v--o',) z/4 + r~,v=k 2 

Do~ = 21--45 op + 2P~ 

Doe= ( &,o/Ox~+ Ove /Oxo ) /2 

~.=r ~,=r ~. ,=-r  

III .  

(2.7)  

v = l / 2 ,  e = 0  . By using 

(2.8)  

(2 .9)  

(2.10) 

(2.11) 

A s y m p t o t i c  F i e ld  for  t h e  C a s e  o f  F irs t  S t e p  C r a c k  G r o w t h  

Consider plane strain problem of an incompressible perfectly plastic solid. The elastic-plastic 

field near the stationary crack tip is 

ty,=s~k, r  r , l = 0  in domain A 

~,=Go=(l++z--20)k, r,o=k in domain B 

~ , = 2 k ,  ~g=0 ,  r , ~ = 0 ,  in domain C 

After crack first step growth, the crack tip will remove to point o. Set up the polar coordinate 

system (~, 0) with the center at point o. 
Because the crack growth step is quite small, circumstantial stress cT0 alone line element 

O~O is uniform (strictly speaking, the stress field near point o differ a little with the asymptotic field 
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in dora ainA. But the asymptotic sense, the stress field near point o can be taken to be uniform). The 

new crack faces will be formed by cutting line element O*O . The new crack faces are subjected 

to the traction of normal stress or0 .The crack growth 

traction ,70 to zero. 

The we have the following boundary condition, 

c7o(r ' rr, t ) = ( 1 - - t ) c I o ( r ,  st, 

fro(r ,  ~, t ) = 0  

process can be simulated by releasing 

( u . 1 )  

The generalized time t = 0  corresponds the initial instance of release process. The t=  l 

corresponds the terminal instance of release process. 
Now consider the stress-strain field near tip o of the crack during the release process. We need 

only consider the upper half plane due to symmetry. 
Assume the near tip field is assembled by three sectors (as shown in Fig.3. Domain A is a 

uniform stress zone, B is a centered fan sector and C is an unloading zone. 
Before traction relase, the asymptotic field near point o is a uniform stress field and there is no 

centered fan sector. 
The corresponding stress function q~ is, 

** k z " 
r y r  [ A l ( O ) + e o s 2 0 3 + O {  r3) 

where 

A t ( O ) - - l + s t  

During release process, the centered fan sector B extends. At time t stress function 

expressed as 

[ kr2E A ,  ( t ) + cos20J/2 ( 0 ~ . ~ 0 ~ / 4 )  

kr z st ~t 0 ~ - - f l )  
{ f : I T [ A 1  (t) 1 2 ( 0 _  T )  ] ( I ~ {  

kr EC,(t) +C~(t)O+C~(t)cos20+C~(t}sin20-I/2+~{r,O) 

~b Can be 

(3,2) 
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It is obvious that all of the stress components are continuously across boundary 
From the continuity of all stress components on r ~  we obtain, 

[r = [ r  =Er =o 

Substituting (3.2) into (3.1) and (3.2), we find, 

Cl + Cz ( n -  fl) = A,~-- 2(@ ~-- fl) ) 
I 

Cz+ 2Casin2fl+ 2C4cos2/3:= -- 2[ 1 + sin2fl] I 

C3cos2 fl- C,sin2fl= -- cos2fi { 
C,+Czz+Co=- - ( I  + Ax(O) )t ] 

C2+ +2C4=0,  A,~-=A,(t)--A~(O) 

Solving the above equations, we obtain, 

C~= - { (1 + A, (0) ) t+  C ~ +  C~} 

2cos2fl cos2fl-- 1 -- sin2fl 
Cz-- (1--cos2fl) ' Ca= (1--cos2fl) 

- os2,  + 
C,--  ( l_cos2f i )  ' 

-CA �9 

(3.a) 

t3.4) 

(3.5) 

Consider equivalent stress re in domain C. Stress function ~p 
in domain C are 

and the stress components 

k a 2cos2fl s in2(0+fl)  ] 
r  { A, (0 )+C,~  (1--cos2fl) 0 (l--cos2#) }+O(ra)  I 

ksin2(0+fl) j 
s ' = l ( a ' - - a ~  (1--cos2fl) +O(r) 

r,o=--kEcos2fl--cos2(O+fl) ]/(1--cos2fl)+O(r) 

(3.6) 

Hence we have 

r2~----- (1-- cos2fl) zgl+c~176176 (3 .7) 

If cos2fl~<O , it follows 

and 

l+cosZ2f l - -2cos2 f l cos2 (0+f l )= ( l+cos2 f l )Z - -2cos2 f l ( l+cos2 (0+f l ) )~0  (3.8) 

(1-- cos2fl) z_ { 1 + cosZ2fl - 2cos2flcos2 (0 + fl) } 

=--2cos2fl{ 1--cos2(0+fl )  }90  

From Eqs. (3.8), (3.9), we find, 

(3.9) 

0 ~  l+cosZ2fl--2cos2flcos2(0+fl) ~ 1  (1-eos2fl) ~ 
It means that the following inequality will be satisfied 

r~Z <~ k z When ~ / 4 ~ f l ~  3n / 4 

(3.1o) 

(3.11~ 
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ie.e. the yield constraint could be met in the elastic unloading sector. 

On the other hand, from Eq. (3.7), we obtain, 

4k%os2fl d/3 
(r,z) " = 2 r e §  ( l _ c o s 2 f l ) ~ s i n 2 ( 0 + f l )  dt 

Therefore the following unloading condition on / ~  has been satisfied, 

[+e]i- = 0  at O=~--fl 

It can be seen that the asymptotic field defined by Eqs. (3.2), (3.5) satisfies the basic equations, 

the continuity of stresses between neighboring sectors, boundary condition and unloading 

condition. The continuity conditions of velocities will be discussed in the next section. 

In brief, the asymptotic field defined by (3.2) (3.5) is really a solution of our problem. This 

solution contains a free parameter /3 which can be determined by taking the solution of the whole 

field. 
When fl=s~/4 or fl=3~c/4, the yield condition will be met anywhere on sector C. 

/3=3s~/4 corresponds to the initial instance of release process, i.e. t = 0. In this instance, there is no 

sector B and domain C is a uniform stress sector just like domain A. fl=s~/4 may be 

corresponding to time t,,, at which the centered fan sector B will become the biggest one 

(rc/4~O~3:r/4) and the whole sector C will be translated into a secondary plastic zone. We have in 

domain C, 
C z = C 4 = 0 ,  C 3 = - - 2  / 

C~=2--(l+Al(O))te [! (3 .12)  

A';=(l + At(O) )(1--te) 
(o=krZ{Ax*(t) + 1--cos20}/2 (3 .13)  

After that time the further releasing traction will not change the deveatoric stresses. It will only 

change the average stress in the three sectors. The plastic strain will continuously increase until 

t =  1, A~*= 0 at which time the whole stress field will coincide with that of stationary crack but 

the crack tip will remove to point o. Whether or not the centered fan sector will be extended to 

0 =  3~/4 is a problem that needs further investigation. 

IV.  Asymptot i c  Analys i s  of  Veloc i ty  Field 

Consider the velocity field in the elastic unloading sector. The stress rate function ~ is 

6=krZEOl(t)+C,(t)O+('a(t)cos20+(?,(t)sin20~/2 +O(r 3) (=t.1) 

From Eqs. (2.ILL (2.12), we find 

Ov" -- ~ P ' =  --'~J r 3c~ + ('4sin20] + O( r i 
I 

10vo +v,=k2_~d3cos20+d,sin20]+O(r ) ] 
r 0--0- r 

1 Or, Ore vo --hC2+O(r) 
r O0 4 Or ~ =  2~ 

Integrating the first two formulas of Eq. (4.2) leads to 

v, = ---~-iar[ C3cos2O + C, ,s in203--  f '  (0, t) + O(r  2) 

(4.2) 
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= 2k---#rE ~sin20--(~,cos20 ~ + f ( O, t ) + g( r,t ) + O ( r ~) Ue 

Substituting E Q  (4.3) into the third formula of Eq. (4.2), we obtain 

f"(O,t)+f(O,t)=O 

Og (r,t) 1 k_ --rg ( r , t ) = - - 2 # C ' z ( t )  Or 

(4.3) 

(4.4) 

(4.5) 

Hence we have 

g(r, t)=---~-#Cz(t)rlnr+Cv(t)r 

f(O,t) =4~(t)cosO+r 
The opening displacement rate ~ will be, 

~=2vo(r, ~, t )=--  krEC,+C2(t)Inr~+ 2(7"7(t)r--2C~( t) +O(r') 
# 

(4.6) 

(4.7) 

Noting that c~ is equal to zero at the initial instance of release process therefore we have 

8=-- k rEC~ + Czlnr]+ 2C~( t ) r -  2cs( t) +0(r2) (,I .8) 
# 

Hence we take the covention in the form 

ca(0) =c~(0) = o  

Coefficient C 5 must be equal to zero, because the opening displacement at the crack tip should be 

equal to zero. In the centered fan sector B, we have 

k/it(t)r2+O(r 3) (4 .9 )  4;=-~ 

Eqs. (2.11), (2.12) give rise to the following equations 

1 Ovo 4-v" I Po [ or, P ,+aP, ,  7 - - ~  7 = ~  +~P0 Or = (4.1o) 

1 Or, 8vo vo__ ip ,o+2p ,  e 
-7 0--s ~ 0--7 �9 u 

Taking into account the continuity of velocities on _F'n , we can assume that 

2=, 2-t(O't) +2o(O,t)+rAt(O,t)+...  (4.11) 
r 

r ~ r"+ZF,(O,t) (4 .12)  
n = O  

It is easily shown that 
P,= S,= (~,--o'8)/2=rS,1(0, t) + O(r 3) (4 .13)  
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Substituting Eqs. (4.1 I), (4.12) into (4.10), we arrive at 

v ,=f ' (O , t )+O(r )  } 

vo= f ( O, t) + 9(r,t) + O(r) 

Substituting Eq. (4.14)into the third formula of Eq. (4.10), we obtain, 

f" + f =--G~._,(O,t) 

O9(r,t) 1 g(r,t)=kao(O,t) Or r 

Eq.(4.16) gives 

o(r't)=kl~2(t)rlnr+l~6(t)r } 
Zo(O,t) =B~(t) 

The continuity conditions of velocities v~, vo on F s  become 

(4.14)  

(4.15)  

(4 .16)  

(4 .17)  

S.,~=(c~..,-c~o.,) /2 

and or,,,, C~o,,, r,o,, are respectively the stress co~.ponents given by stress function Cm . 

For the case of m = 0, we have 

S~,o + ~,oo=k ~ (5.4) 

The first order asymptotic solution is based on Eq. (5.4). 

For the case of m-- 1, we obtain, 

S~o S,a+ r, oor, ol=O (5 .5)  

Eq.(5.5) can be represented in the cartisian coordinate system, 

S,o S,l+r,vo r,v,=O (5.6) 

The yield condition can be expressed as 

S 2, + r 2 0 = k  2 

Substituting (5.1) into (5.2) and comparing the m-th power of r, we get 

where 

S,o+r,eo- (re=O) 

{S, ,S , j+ r,o,r, oj}=O 
i - O , l  ( m = 1 , 2 ,  . '-) 

(5 .1)  

(5.2) 

(5.3a) 

(5.3b) 

~ o o  

~= Z r~+"F.(e, t) = ~ r 
n = O ' ~ l  n - O ~ l  

V. S e c o n d  Order  A s y m p t o t i c  Fie ld o f  S t r e s s e s  

Assume that stress function ~ can be expanded into the following series near crack tip, 

[-f JF =[-f' (O, t) JF, =O (4 .18)  
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Using the first order asymptotic stress field and the stress boundary, Eqs. (5.5), (5.6) give 

I .dllr3[ (cos0 + sin0) ~ + (eos0--sin0) 3 ] (in domain A) 

c}1= ~ Bltr a (in domain B) (5.7) 
/ 

[ r3{C.cos30+Clzsin30+ClacosO+Cl,sinO}+c~'~(r,O) (in domain C) 

Coefficients C~, satisfy the initial condition 

C , , ( 0 ) = 0  ( i = 1 ,  .'., 4) (5 .8)  

From the continuity of stress components c~0, r,e , it follows 

Bt, = 8A,, 

Considering the stress fields near crack tip 0 before traction releasing, we find, 

C,* ( r , O) = A,, ( O )r3E ( cosO + sinO ) 3 + (cos0-- sin0)3] 

= A ,  ( O )r3E 2--eos20]2cosO (5.9)  

The continuity of all stress components on FB result in. 

[ r  

Substituting Eq.(5.1) into the above formulas, we obtain, 

r2{EF~ } 
r~{[Fo ' ( 0 , t ) ] + r [ F , ' ( 0 , t ) ] + r 2 [ F z  ' ( 0 , t ) ] + . . . } = 0  - (5.10) 

rZ{[Fo"(O,t)+r[F,"(O,t)]+r2[F2"(O,t)]+'"}=O l 

Dividing Eq.(5.10) by r-' and let r approach to zero, we find, 

[Fo(~- f l , t )  ] = [ F 0 '  (z-- f l , t )  ]=[Fo"(z-- f l ,  t) ] = 0  (5.11) 

Condition (5.11) is equal to Eq. (3.3). As shown in Fig.3, the curve equation of _F~ is 

r = ~,p,(O--02)" (02----~--fl) (5.12) 
n = l  

Dividing Eq.(5. I0) by r 2 and taking the drivative of (5.10) with respect to 

arrive at, 

0 and using (5.10), we 

dr 
dO { [F ,  (O,t)]+2r[F2 ( 0 , t ) ] + . . . } = 0  (5.13) 

dr {[F , (O, t ) ]+2r[F2,(O,t ) ]+. . . }= 0 
dO 

(5.14) 

dr {[Fl , (O,t)]+2rEFz,(O,t)]  +. . . }+ {Fo,H(O t)]+rEF~"'(O,t)]+. . .}=O 
dO 

(5.15) 

Let r approach to zero, we obtain, 

[F,(~-- f l , t )3=O, [F , ' (~ - - f l , t ) l=O } 

I-F," ( ~-- f l ,  t) ] + pl f  Fo ' "  ( ~r-f l ,  t) ]---- 0 
(5.16) 
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Substituting Eq. (5.7) into Eq. (5.16), we get, 

-- Cllcos3fl + Clzs in3/3-  CI ~eos/3 + C14si n/3 

+ A H (0) [ ( sin/3-- co s/3) 3 -- ( s in f l+  cosfl)s ] = Bll (5 .17)  

3 ( Cllsin3fl + Clzeos3fl) + C13sinfl + C14eosfl=6Al~ ( O )cos2/3sin/3 (5 .18)  

9( - Cllcos3/3+ C12sin3fl) - C13eosfl+ Cl.,si nfl + 6An ( 0 ) (cosfleos2fl + eos3fl--cosfl)  

= p l E F o ' " ( ~ - f l , t )  ] 

The boundary conditions on crack faces lead to 

3C1z+Ci4=0 

C 1 1 + C I ~ = - - 2 A l l ( O ) t  

(5.19) 

(5 .20)  

(5 .21)  

Eqs. (5.17)-(5.12) consist of five equations. But there are six unknown coefficients (besides 

coefficient /3 ). O, chosen as a free coefficient, the remaining coefficients can be easily 

obtained. Due to limitation of space, the detailed results are not listed here. It is easily shown from 

Eq. (5.7), 

St1 = (O ' r l -  O'0!)/2-=-B11 (t) 3r/2 (5 .22)  

VI. Asymptotic Field Near Crack Tip Growing Step-by-Step 

We have considered the asymptotic field for the case of the first step crack growth in the 

previous sections. Now we consider the asymptotic field for the next step crack growth. It is worth 

while noting that after first step crack growth the stress field ahead of the new crack tip is also a 

uniform stress field. 

If the centered fan sector B could be extended to 0 = 3~/4 , then coefficient A ~(0) will be equal 

to that for stationary crack. Therefore the analysis of asymptotic field for the next step crack growth 

will be the same procedure as in the previous sections. 

It the centered fan sector B can not extend to 0 =  3~/4 , coefficient AI(0) will differ with that 

for the stationary crack. It does not matter for the analysis of asymptotic field for the next step crack 

growth. 

In brief, the asymptotic field for the next step crack growth can be obtained with the same 

procedure as the first step crack growth. 
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