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The compressible laminar boundary-layer flows of a dilute gas-particle mixture over 
a semi-infinite flat plate are investigated analytically. The governing equations are 
presented in a general form where more reasonable relations for the two-phase 
interaction and the gas viscosity are included. The detailed flow structures of the gas 
and particle phases are given in three distinct regions : the large-slip region near the 
leading edge, the moderate-slip region and the small-slip region far downstream. The 
asymptotic solutions for the two limiting regions are obtained by using a series- 
expansion method. The finite-difference solutions along the whole length of the plate 
are obtained by using implicit four-point and six-point schemes. The results from 
these two methods are compared and very good agreement is achieved. The 
characteristic quantities of the boundary layer are calculated and the effects on the 
flow produced by the particles are discussed. It is found that in the case of laminar 
boundary-layer flows, the skin friction and wall heat-transfer are higher and the 
displacement thickness is lower than in the pure-gas case alone. The results indicate 
that the Stokes-interaction relation is reasonable qualitatively but not correct 
quantitatively and a relevant non-Stokes relation of the interaction between the two 
phases should be specified when the particle Reynolds number is higher than 
unity. 

1. Introduction 
Boundary-layer flows of a gas-particle mixture have practical applications in 

many scientific and technical fields, such as in solid rocket exhaust nozzles, nuclear 
reactors with gas-solid feeds, ablation cooling, blast waves moving over the Earth’s 
surface, conveying of powdered materials, fluidized beds and environmental 
pollutants (Rudinger 1980). Incompressible laminar boundary-layer flows of a dilute 
gas-particle suspension were studied using several analytical methods : a series 
method (Marble 1963 ; Liu 1967 ; So0 1968 ; Otterman & Lee 1970 ; DiGiovanni & Lee 
1974), an integral method (So0 1967; Tabakoff & Hamed 1972; Jain & Ghosh 1979) 
and a finite-difference method (Hamed & Tabakoff 1973; Osiptsov 1980; Prabha & 
Jain 1982). Singleton (1965) extended Marble’s analysis (1963) to the compressible 
case where the density of the gas phase as well as the particle phase may change. He 
obtained the asymptotic solutions for the large- and small-slip regions. However, he 
developed the governing boundary-layer equations assuming that the viscos- 
ity-temperature relation has the special form ,u*/,uz = (T*/Tz)i and that the 
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FIGURE 1. Geometry of the problem. Region I : large slip ; region I1 : moderate slip ; 
region 111: small slip. 

interaction between the two phases takes place through the Stokes relation. 
Moreover, no detailed information was available until the present analysis on the 
boundary-layer development in the non-equilibrium transition region, where the slip 
between the gas and particles is moderate. 

In this paper, the behaviour of compressible laminar boundary-layer flows of a 
dilute dusty gas over a semi-infinite flat plate along the entire length of the plate is 
studied (see figure 1). The basic equations for the two phases are derived in a more 
general form. A series-expansion method, similar to Singleton’s (1965), is employed 
to give the asymptotic solutions. The asymptotic results obtained in this research, 
however, are presented for the more realistic situation by using a power law for the 
variation of the gas viscosity with temperature and a non-Stokes relation for the two- 
phase interaction. In  order to study the boundary-layer flow over the whole length 
along the plate, an implicit finite-difference scheme, which combines a six-point 
scheme with four-point schemes, is constructed. The profiles of flow variables for the 
two phases are given at different distances from the leading edge to far downstream. 
The asymptotic large-slip solution provides the initial profiles of flow properties 
necessary to start the finite-difference procedure. In addition, the asymptotic 
solutions can be used to verify the correctness of the finite-difference method. Some 
characteristic quantities of the boundary layer including the skin friction coefficient, 
the heat-transfer rate at the wall and the displacement thickness, are calculated as 
functions of the distance along the plate. The alterations of the flow properties owing 
to the presence of particles and the non-Stokes relation are discussed in detail. 

2. Governing boundary-layer equations 
In  this analysis, the gas-particle mixture is assumed as a dilute two-phase system 

where the volume fraction of the particles is neglected. Besides, there are no radiative 
heat transfer, chemical reactions, coagulation, phase change and deposition in this 
system. The gas phase is a perfect gas. The particle phase is treated as a continuum 
consisting of small solid spheres of uniform size. The particles have no individual 
random motion, mutual collisions and other interactions among them. Only the 
process of drag and heat transfer couple the particles with the gas. The drag 
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coefficient and the Nusselt number for a single sphere in a viscous flow are assumed 
valid for the particle cloud. 

With the above assumptions, the basic equations for steady, compressible, 
laminar, two-dimensional boundary-layer flows of dusty gases over a flat plate are 
given by the equations of mass, momentum, energy and state for the gas and 

a a -p*u*+- * * - 0 ax* a y * P  ' - 
particles, 

p* = p*R*T*, (4) 

where p ,  p, T ,  u, v represent the pressure, density, temperature, tangential velocity 
and normal velocity, respectively. The superscript * refers to dimensional parameters 
and the subscript p to the particle phase. Also, R* is the gas constant; c; and c,* are 
the specific heats for the gas and particles : 7: = p,* d*'/18,u* and 7; = p,* d*'c,*/12k* 
are the velocity and temperature equilibrium times for the particles (p,* is the density 
of the particle material and d* is the particle diameter). In  order to close the basic 
equations, it is necessary to specify the dependence of p*, k*,  D and N u  on the flow 
variables. In the present paper, a power relation for the gas viscosity p* is 
employed : 

where w is the power index and the subscript 00 refers to  the free-stream value. As 
usual, the heat conductivity k* can be expressed as E* = c,*p*/Pr,  where Pr is the gas 
Prandtl number. D and N u  are the normalized drag coefficient based on Stokes drag 
coefficient and the Nusselt number based on the particle diameter. They depend 
on the interaction mechanism between the two phases. In  the Stokes case, D = 1.0 
and Nu = 2.0. In  the non-Stokes case, the following relations are chosen here 
according to Gilbert, Davis & Altman (1955) and Knudsen & Katz (1958), 

D = $Res+iRe0.'5 s >  

N u  = 2.0+0.6PriElei, 
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where Re, is the slip Reynolds number of the particles : 

Re, = 

B. Y .  Wang and I .  I .  Class 

p*[(up*-u*)z+ (vp*-v*)2]$i* 

P* 
The boundary conditions for the problem under consideration are : 

(i) At the wall of the flat plate, 

u*(x*, 0 )  = 0,  v*(z*, 0)  = 0, T*(x*, 0) = TZ, vp*(x*, 0 )  = 0. (13) 

(ii) At the outer edge of the boundary layer, 

For the flat-plate problem, i t  may be assumed that the particle phase is in 
equilibrium with the gas phase in the external free stream, since there is no pressure 
gradient. Thus, 

where P is the mass loading ratio of the particles. 

characteristic scale in two-phase flow problems : 
Sometimes it is convenient to introduce the velocity equilibrium length as a 

According to the order of magnitude of the slip parameter x*/hz ,  the flow field of a 
dusty-gas boundary layer can be divided into three distinct regions: (i) The near 
leading-edge region (x*/hZ 4 1) .  The particles have no time to adjust to the local gas 
motion and then there exists a large velocity slip and a temperature jump between 
the two phases. The flow properties deviate very little from their frozen values. (ii) 
The transition region (x* /hz  N I). Owing to  the gas-particle interaction, significant 
changes in the flow properties take place. Slip is moderate and the flow is 
characterized by non-equilibrium. (iii) The far-downstream region (x*/h*, $ 1) .  The 
particles have enough time to alter their state appreciably and achieve quasi- 
equilibrium with the gas. Then the slip is small. 

3. Asymptotic series-expansion solutions 
Physically, the two-phase boundary-layer flows in the two limiting regions are 

characterized by quasi-frozen and quasi-equilibrium flows, respectively. Math- 
ematically perturbation solutions in powers of the slip parameter x*/hz (for the 
large-slip limit) or A:/%* (for the small-slip limit) are suggested. Then the boundary- 
layer partial differential equations reduce to a system of ordinary differential 
equations which can be solved by many numerical methods. The following is a brief 
description of the asymptotic analysis used by Wang & Glass (1986a). 
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3.1. The large-slip solution (.*/A2 < 1) 

In this region, the dimensionless variable,s and transformation functions are defined 
as 

The following expansion in terms of x*/A: is used: 

W(x, 7) = W(O)(q) + xW(l)(y) + . . . , (18) 

where the function W ( X , ~ )  stands for the flow variables f ,  u, T ,  fp, Tp, pp and the 
superscripts (0) and ( 1 )  refer to the zeroth- and first-order approximations, 
respectively. 

Substituting (17)-(18) into the basic equations (1)-(8), the zeroth-, first- or any 
higher-order equations can be obtained by equating coefficients of xn (n = 0 , 1 , .  . .). 
In this way, the zeroth-order equations become 

f :) = 7, (22) 

TIP) = 1, (23) 

p?’ = 1, (24) 

where a prime denotes a/a7 and Ec = uz2/cp*T: is the gas Eckert number based on 
the free-stream temperature. The boundary conditions for the zeroth-order problem 
are 

f ( ’ ) ( O )  = 0, ~ ( ” ( 0 )  = 0, T(O)(O) = T,, u(’)(co) = 1, T‘”(CO) = 1.  (25) 

The zeroth-order solution represents the frozen flow limit. Equations (19)-(21) 
indicate that the zeroth-order gas-phase solution is identical with the similarity 
solution for the pure-gas cases. Equations (22)-(24) imply that the particle motion 
is uniform across the boundary layer as if in the free stream. In other words, there 
is no interaction between the gas and particles and they move independently in the 
frozen limit. 

The first-order equations are : 
T(0)’ T(0)‘ T(1) f (0) 

f ( 1 ) L m  f (1) -3u(i)+ ( 2u(0)+-- T(O)f (0) ) T(O) ---p)’ T(O) = 0 (26) 
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(29) 

(30) 

(31) 

~ ” f ) ”  - 3Vfk1)’ + 3f F) = - 2T(0)o(7u(O) - f ( 0 ) )  D, 

2a 
3Pr 

T T F ) ’ - ~ T ( ~ )  = --T(0)w(T(O)- 1 ) N u  
P 

2 (1)’- 2Vp;’ = rf ;I,- 3fF’ - 2T‘o’”(V -f‘O’) D, 
P P  

where a = c,*/c: is the ratio of specific heats of the two phases. In  the interaction 
terms of (27)-(31), D and Nu are replaced by their zeroth-order approximations. The 
corresponding boundary conditions are : 

f“’(0) = 0,  U y o )  = 0 ,  T(I’(0) = 0, f;’(o) = 0, 

&)(Go)  = 0. 

u(’)( CQ) = 0, T@)( 00) = 0, f ;)‘( 00) = 0, T f ) (  00) = 0, 1 (32) 

As shown above, the gas-particle interaction terms do not appear in the zeroth-order 
equations but just in the first-order equations. It means that the influence of 
particles is prevalent only in the first- or higher-order terms. This is a major feature 
of two-phase boundary-layer flows in the large-slip region. Equations (19)-(21) 
consist of a two-point boundary-value problem, as well as (26)-(28). They are solved 
numerically by Gear’s method (Gear 1971). The solution to (29)-(31) is obtained by 
numerical integration (Wang & Glass 1 9 8 6 ~ ) .  

3.2. The small-slip solution (hZ/x* 4 1) 

In this region, it is of great advantage to introduce the following slip quantities: 

u,* = u~*-u*, v,* = v*-v*, P T,* = T,*-T*. (33) 
The dimensionless variables and transformation functions are defined as 

X* x=- 

T* ) v*, f = r u - v ,  T = -  

A: ’ 2p: x* 

U* 2( l+P)pZx* t 
u; ’ PZ u: 

u=- v=( 

The expansion in terms of h:/x* is 
1 

W ( z ,  7)  = W(”(q) +- W(1)(T/) + . . . 
X 

(35) 
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Similarly, the function W ( x ,  7) denotes the flow variables f ,  u, T, us, us, T, and pp. In 
the expansion expression for us, v, and T,, the zeroth-order terms disappear since the 
slip quantities are small parameters of first order. 

Using (34)-(35) in the basic equations (1) - (8) ,  the zeroth-order problem reduces 
to T(0)' 

T(O) (36)  f ( o ) ' - _ _ f ( o ) - U ( 0 )  = 0 

1 g) = - 
T(O) ' 

with the boundary conditions 
(39) 

f " ) ( O )  = 0, d 0 ) ( O )  = 0, T""(0) = T,, u '~ ) (co )  = 1,  T("(co) = 1. (40) 

The zeroth-order solution represents the equilibrium-flow limit. Equations (36)-(38) 
show that the gas-particle mixture behaves like a perfect gas with the following 
modified properties : 

where the upper bar denotes the modified quantities. The solution to (36)-(38) is 
identical to that of (19)-(21) provided the parameters Pr and Ec in (21) are replaced 
by E and E. In  addition, (39)  indicates that in the zeroth-order approximation, the 
dimensionless density of the particle phase is equal to that of the gas in the boundary 
layer. This means that a constant loading ratio of the particles holds a t  all points of 
the boundary layer. Physically, it implies that the particles are 'fixed' to the mass 
of the gas in which they were originally located and move together with the gas. 

For the first-order problem, the slip quantities are given by 

They are readily calculated from the zeroth-order solution. 

4. Finite-difference solution 
The nonlinear partial differential equations (1)-( 8), with the boundary conditions 

of a Dirichlet type (13)-(14) ,  can be solved numerically by a finite-difference 
procedure. Finite-difference methods of solution for pure-gas boundary-layer 
equations have been studied for many years (Blottner 1970). In  the dusty-gas case, 
however, some difficulties arise when the finite-difference procedure is applied. First, 
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the gas-particle interaction terms are involved in the conservation equations for the 
gas phase. They appear in the basic equations as a source term. If the treatment of 
these source terms is not proper, instabilities and physically unrealistic solutions 
may arise (Patankar 1980). Secondly, an extra set of conservation equations for the 
particle phase is included. The partial differential equations for the gas are of second 
order with two boundary conditions at  the wall and the outer edge, while the partial 
differential equations for the particles are of first order with one boundary condition 
at  the wall or the outer edge. Thus a new difference scheme should be constructed for 
the particle phase. Thirdly, there is no corresponding state equation for the particle 
phase since the particle phase has no analogue of static pressure. In  order to close the 
system of the governing equations, the y-momentum equation for the particles 
cannot be omitted as for the gas. Thus, it  is impossible to take advantage of applying 
some useful transformation, such as the Howarth-Dorodnitsyn relation, to stretch 
the normal coordinate y (Flugge-Lotz & Blottner 1962). Finally, the flow properties 
of the two-phase boundary layer show quite different features in the three flow 
regimes. The frozen, non-equilibrium and equilibrium conditions are all encountered 
when the computation proceeds downstream. Each of these three flow regimes 
presents its own peculiar problems as far as the calculations are concerned. 
Therefore, great care must be taken to ensure that a stable and convergent difference 
solution can be obtained. 

The following non-dimensional variables are introduced in order to bring all 
quantities to the same order of magnitude: 

where Re, = pz uz hz/,uz is the flow Reynolds number based on A;. Then, the 
governing equations (1)-(8) reduce to non-dimensional form as 

1 
P = T '  

-p a u +-p a 2) = o ,  
a x p p  a y p p  

(47) 
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av av 
p a x  9+v p a y  = - ( vp -v )pD,  

The non-dimensional form of the boundary conditions (13)-( 14) are 

and 
U ( X ,  0) = 0, V(X, 0) = 0, T(x,O) = T,, v,(x,O) = 0, (52)  

(53) 
u(x, co) = 1, T(x ,  00) = 1,  

up(%, 00) = 1, Tp(x, a) = 1, pP(x, ~ 0 )  = P. J 
In differencing the above partial differential equations (44)-(51), the derivatives in 

the x-direction are replaced by a backward difference and then the difference scheme 
is implicit. For the x-momentum and energy equations of the gas, (45)-(46), a six- 
point scheme is used and the finite-difference equations become simultaneous linear 
algebraic equations with a tridiagonal coefficient matrix : 

where W = u and T ,  and A,, B,, Cn and Dn are the matrix elements while rn, n are 
the indices of the grid point considered (figure 2). This tridiagonal-matrix system can 
be solved by the well-known Thomas algorithm (Anderson, Tannehill & Pletcher 
1984). A four-point scheme with a central-difference formula in the y-direction is 
used for the gas continuity equation and another four-point scheme with a 
backward-difference formula in the y-direction is used for all the equations of the 
particles. The resulting difference equations are 

where W =up ,  vp, T,,, pp and pv (pv is employed as the dependent variable when 
solving the gas continuity equation). It is clear that the system of algebraic equations 
(55) is readily solved provided the boundary conditions are specified. 

It should be pointed out that along the plate there is a critical point where the 
particle velocity a t  the wall becomes zero and reaches equilibrium with the gas a t  the 
wall. As the particle velocity vanishes, the particles tend to accumulate a t  the wall 
and the density of the particles near the wall may become very large. The discussion 
of a dense gas-particle system, however, is beyond the subject of this paper. Then it 
is assumed that Brownian diffusion process in the near-wall region prevents the 
formation of a dense bed of particles (So0 1967, 1968). When the particles are small, 
it is a reasonable assumption and can be verified by the small-slip asymptotic 
solution. After the critical point, quite simple compatibility conditions are derived as - 

follows : 

for x >, xcri where xcri is the x-coordinate for the critical point. The value of xCri can 
be determined by the compatibility equation 

k w  = - (pD),, 
ax (57) 

and the condition upw = 0. The compatibility conditions (56) provide supplemental 
boundary conditions for the particle velocity and temperature so that the six-point 
scheme can also be used for the x-momentum and energy equations of the particles. 
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FIGURE 2. Grid points for the finite-difference schemes. 

Thus, the corresponding difference equations have the form of (54). The six-point 
scheme is more accurate than the four-point scheme. 

In order to start the computation, the initial profiles of the flow variables are 
required at  some given point xo. In most studies of pure-gas boundary-layer flows, 
the initial profiles are obtained from the similarity solution. For the dusty-gas case, 
however, no analogous solutions exist. In  this analysis, three different types of initial 
profiles are employed for comparison : the zeroth-order large-slip solution, the first- 
order large-slip solution and the extended Wu-type profiles. The first two solutions 
can be obtained from the asymptotic analysis. The third one is a modification of the 
Wu-type initial profiles for the pure-gas case (Wu 1960) and it is given by 

I u(0, y) = 0 (for y = 0) or 1 (for y > 0), 

T(0, y) = Tw (for y = 0) or 1 (for y > 0), 

v(0, y) = 0, 

1 
p ( 0 , ~ )  = - (for y = 0) or 1 (for y > o) ,  

T W  

The details of the finite-difference procedure used in this paper are described by 
Wang & Glass (19866). 

5. Results and discussions 
Both the asymptotic and finite-difference solutions were obtained numerically. In 

the computation, the values of some parameters were chosen as Pr = 1.0, Ec = 1.0, 
CL = 1.0, p = 1.0 and T, = 0.5, for example. 

The numerical results for the Stokes case are presented first. To illustrate the effect 
of the gas-viscosity index on the flow structure, figure 3 shows the zeroth- and first- 
order velocities for the gas in the large-slip region and the first-order slip velocities 
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7 

FIGURE 3. Zeroth-order and first-order velocities in the limiting regions, -. do); ---, u(l)//3; 
> ,  , i l l .  _. ._ , v:'). 1, w = 0.50; 2, w = 0.67; 3, w = 0.77; 4, w = 1.00. 

in the small-slip region, which are the asymptotic solutions. The finite-difference 
solution is introduced in figures 4 to 6, where the profiles of the velocity components 
and temperature for the two phases a t  three typical distances, x = 0.105, 1.05 and 
10.05, are given, respectively. In  the finite-difference procedure, the grid parameters 
are Ax  = 0.001, Ay,  = 0.03, K = 1.05 and 8 = 0.75 while the initial profiles are the 
first-order asymptotic solution. It is noted that, a t  x = 0.105 of the large-slip region 
(see figure 4), there are very large differences between the flow profiles for the two 
phases. The gas adjusts its velocity and temperature a t  the wall to meet the 
conditions of no slip in velocity and no jump in temperature as in the case of a pure- 
gas boundary-layer flow. The particles, however, cannot respond to the abrupt 
changes and tend to  keep their values in the original uniform motion. Then the flow 
is quasi-frozen. With the variable transformation y = (2x)$, the asymptotic large- 
slip solution a t  the position x = 0.105 is shown in figure 4, for comparison. The 
agreement between the two solutions is excellent and it indicates that the asymptotic 
solution for the large-slip limit is valid until x = 0.1. With increasing x, the 
interaction between the gas and particles causes the particles to be decelerated and 
cooled in the cold-wall case while the gas is accelerated and heated. In  the transition 
region (x - l) ,  the changes in the two-phase flow properties to  the frozen limit are 
considerable although the velocity slip and temperature defect between the gas and 
particles are still fairly large. It can be seen in figure 5 ,  where the distribution of flow 
variables a t  x = 1.05 is given. The two-phase boundary-layer flow is characterized by 
non-equilibrium in this region. In figure 6, the flow structure in the small-slip region 
(x = 10.05) indicates that all the flow variables are almost the same for the two 
phases. I n  this far-downstream region, the particles have enough time to approach 
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FIGURE 4. Flow profiles u,  v and T vs. y in the large-slip region (z = 0.105). 
___-  , asymptotic solution. 

gt 1 
@ I  

D l  

Y 

6 D l  

c .  
0 8  

0 .  
C 8  

3 

0 
0 0.2 0.4 0.6 0.8 1.0 u 

0 0.2 0.4 0.6 0.8 1.0 v 
I I I I I I 

0.5 0.6 0.7 0.8 0.9 1.0 T 

FIQURE 5. Flow profiles u, v and T 0s. y in the transition region (z = 1.05). 
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FIGURE 6. Flow profiles u, v and T ws. y in the small slip region (z = 10.05). 
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FIGURE 7 .  Slip velocities us and wp ws. y in the small-slip region. -----, asymptotic solution. 
0 0.006 0.012 US 

the state of the gas motion and then a quasi-equilibrium flow is achieved. The 
asymptotic and finite-difference results for the velocities in the small-slip region are 
compared at  three positions (x = 10.05, 15.05 and 20.05) in figure 7. For increased 
clarity, the slip quantities are employed. The variable transformation here is y = 
(2x/(1 +p))$. Similarly, the agreement is very good and it indicates that, in practice, 
the asymptotic solution for the small-slip limit can be applied with adequate 
accuracy when x >, 10. 
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I I I I I I 
0 0.6 1.2 1.8 2.4 3.0 u 

FIGTJRE 8. Comparison of velocity profiles with different initial profiles at  r = 1.05. 
A, extended Wu-type; 0, zeroth order; ---, first order. 

Finite-difference calculations were done with the three types of initial profiles as 
mentioned before. The extended Wu-type profiles apply a t  the leading edge and the 
computation can be started at xo = 0. With the two asymptotic-solution profiles, 
the computation began a t  xo = 0.05 in this analysis, since there is a singularity a t  the 
leading edge. The numerical results for the three types of initial profiles were 
obtained along the entire length of the flat plate. It is shown from the comparison 
that, for the gas phase, the resulting flow profiles with these three initial profiles are 
very similar to each other. For the particle phase the same conclusion can be reached 
for the first-order and extended Wu-type profiles. By contrast, some differences in 
the particle flow properties can be found between the cases of the zeroth-order 
asymptotic profiles and the other two profiles, especially in the large-slip region (see 
figure 8). This phenomenon can be explained as follows. The zeroth-order profiles 
assume that, a t  some distance after the leading edge, the particles still possess their 
original uniform state of motion. It is not true physically since only a t  the leading 
edge are the particle flow profiles really uniform as assumed in the extended Wu-type 
profiles. But the influence of the initial profiles is gradually damped out with 
increasing x and the same flow structure can be obtained from the three initial 
profiles in the far-downstream region. It is very useful to point out that the finite- 
difference computation with the extended Wu-type of initial profiles yields a 
reasonable solution compared with the first-order asymptotic profiles. It leads to a 
great simplification since it is not necessary to solve the asymptotic solution in the 
large-slip region and the finite-difference computation can be readily started at the 
leading edge. This way of presenting the initial conditions is advantageous for some 
other problems, for example, in the study of the sidewall boundary layer induced by 
a moving shock wave in a dusty-gas shock tube (Wang & Glass 1 9 8 6 ~ ) .  

For the first time, the numerical results in the case of a non-Stokes relation for the 
interaction terms are presented, which are very important for high-velocity flows. I n  
this computation, the particle Reynolds number Re, = p: uz d*/p: is assumed to be 
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0 0.4 0.8 I .2 1.6 2.0 t' 

FIGURE 9. Flow velocities u, v vs. y in the non-Stokes case at  x = 0.1, -----, Stokes case. 

6 c 
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FIGURE 10. Flow velocities in the non-Stokes case a t  z = 1.0, -----, Stokes case. 

equal to 100. The velocity profiles for the two phases in the three flow regimes (at 
x = 0.1, 1.0 and 5.0) are shown in figures 9-11, where corresponding results in the 
Stokes case are given for comparison. It is seen that in the large-slip and transition 
regions, quite large differences in the particle flow properties appear between the two 
cases, especially in the region near the wall. In  the non-Stokes case, the particles 
change their velocity and temperature more quickly and the relaxation process takes 
place over a distance shorter than A z ,  which is the characteristic length for the 
relaxation process in the Stokes case. The Stokes relation underestimates the 
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L I I I I I 
0 0.1 0.2 0.3 0.4 0.5 u 

FIGURE 1 1 .  Flow velocities in the non-Stokes case at 5 = 5.0, ----, Stokes case. 

interaction terms when the slip Reynolds number or the particle Reynolds number 
is large. When approaching the wall across the boundary layer, the slip Reynolds 
number increases from zero at the outer edge to its maximum value a t  the wall so 
that the largest changes between the two interaction relations appear a t  the wall. In 
addition, it is known that the interaction with the gas is the only controlling 
mechanism for the particle motion but the interaction with the particles is just a 
secondary mechanism (compared with the viscous effect) for the gas motion. As a 
result, the changes in the particle flow properties are much greater than those in the 
gas flow properties. However, in the far-downstream region, the flow profiles 
obtained from the two interaction relations reduce to the same results, since the slip 
Reynolds numbers there become so small that the two relations give interaction 
terms of the same magnitude. This fact can be seen in figure 11. 

Finally, the characteristic boundary-layer quantities are calculated from the flow 
profiles of the gas phase. The characteristics of practical interest include the wall 
shear stress 7: = (,u* au*/ay*),, the wall heat-transfer rate = - (k* aT*/ay*), and 
the displacement thickness, 

6" = J: (1 -p*u*/pz u:) dy*. 

The non-dimensional characteristics are defined : 

7: 1 az 1 
7, = ___ * 2  Re&, q,  = =Re&, 6 = 

P z  u m  P m  u m  

Then they can be expressed in terms of the non-dimensional parameters as 

pw F),, 6 = Jam (1 -pu) dy. 
W EcPr ay 

(59) 
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FIGURE 12. Characteristic boundary-layer quantities along the plate. -, non-Stokes case ; 
-___ , Stokes case; -.-, pure-gas case. 

Sometimes, another conventional parameter is employed : 

cf Rei = 2drW, (61) 
where cf = 2r:/pz uz2 is the local skin-friction coefficient and Re, = p z  uz x*/,uz is 
the local Reynolds number. The skin friction, heat-transfer and displacement 
thickness as a function of the coordinate x are shown in figure 12. For comparison, 
the non-Stokes solution, the Stokes solution and the pure-gas solution are presented 
together. It is noted that, owing to the presence of particles, the skin friction 
coefficient and the wall heat-transfer increase while the displacement thickness 
decreases. Here the gas gains some kinetic and thermal energy from the particles 
through the interaction and the gas velocity and temperature increase above the 
pure-gas case. Consequently, the velocity and temperature gradients for the gas 
increase a t  the wall so that the skin friction and heat transfer increase while the 
velocity reaches its free-stream value more quickly and the boundary-layer thickness 
is reduced. Concerning the differences between the non-Stokes and Stokes solutions, 
a similar argument holds. In  the near leading-edge region, the interaction in the non- 
Stokes case is usually much greater than that in the Stokes case so that the skin 
friction and heat transfer for the non-Stokes relation are greater than those for the 
Stokes relation. On the other hand, the relaxation process in the non-Stokes case 
takes place much more quickly than that in the Stokes case so that the critical point 
is reached earlier for the non-Stokes case. In  other words, there may be a region 
where the flow for the non-Stokes case has already become near-equilibrium while 
the flow in the Stokes case is still in non-equilibrium. In this region the skin friction 
and wall heat-transfer in the Stokes case are greater than those in the non-Stokes 
case. As expected, the non-Stokes and Stokes solutions approach the same 
asymptotic value far downstream. At the critical point, the two-phase system 
transits from a non-equilibrium flow to an equilibrium flow. Due to this significant 
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change in the flow properties, there is an inflexion point along the curve of the 
characteristic quantities a t  the position of the critical point. 

6. Concluding remarks 
The properties of a compressible laminar boundary-layer flow of a dusty gas over 

a semi-infinite flat plate were analysed numerically. The series-expansion method 
provided the asymptotic solutions in the two limiting regions. The finite-difference 
method gave the complete description of the flow structure along the whole length 
of the plate. The agreement between the asymptotic and finite-difference solutions is 
excellent. The numerical results for the dilute two-phase system show the effects of 
the gas-particle interactions on the flow properties. These include alterations in the 
flow profiles, an increase in the skin friction and wall heat-transfer rate and a 
decrease in the displacement thickness. The comprative studies on the different 
initial profiles indicate that the finite-difference computation can be started a t  the 
leading edge using the extended Wu-type of initial profiles. The comparative studies 
on the different interaction relations show that the relevant non-Stokes interaction 
relation should be included in the case of large-particle Reynolds numbers. 
Undoubtedly, some improvement can be made in the future by taking into account 
some other effects such as extra forces (for example, gravity, buoyancy, lift or even 
electrostatic forces), distribution of particle size and non-spherical shapes. 
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