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STUDY ON CRACKED PLATES, SHELLS AND 
THREE DIMENSIONAL BODIES 

LIU CHUNTU and LI YINGZHI 
Institute of Mechanics, Chinese Academy of Sciences, China 

Abstract-This paper presents a summary of the authors’ recent work in following areas: (1) The 
stress-strain fields at crack tip in Reissner’s plate. (2) The calculations of the stress intensity 
factors in finite size plates. (3) The stress-strain fields at crack tip in Reissner’s shell. (4) The 
calculations of the stress intensity factors and bulging coefficients in finite size spherical shells. 
(5) The stress-strain fields along crack tip in three dimensional body with surface crack. (6) The 
calculation of stress intensity factors in a plate with surface crack. 

1. INTRODUCTION 

THE STUDY of cracked bending plates, shells and three dimensional bodies is one of the 
fundamental problems in engineering. The problem is of considerable importance in many areas, 
such as aerospace industry, chemical industry, etc. Having reviewed the recent research work in 
this subject, the authors proposed following research line: (1) In order to avoid the defect of 
classical theory, the Reissner’s theory, taking into account the transversal shear deformation, is 
used to deal with cracked plate and shell problem. (2) So-called “Local-Global Analysis” is used 
to deal with cracked plate, shell and three dimensional body problem. As local analysis, we 
search for the stress-strain fields at crack tip, which provide a better foundation for global 
numerical analysis. 

2. STUDY ON CRACKED PLATE BENDING FRACTURE PROBLEM 

In earlier literature the classical theory was used to deal with a cracked bending plate 
problem[l, 21. In recent years more investigators began to study the problem with Reissner’s 
theory. In refs [3,4], the singularity of Reissner’s plate was studied. In ref. [5] the expansion of 
stress-strain fields at crack tip for symmetric case were obtained. In refs [6,7] the stress intensity 
factors Kn and Km in an infinite plate were calculated using an integral transformation method. 
For a finite size plate in bending, in refs [3-111 the stress intensity factors for mode I were 
calculated using Reissner’s theory. Recently, authors proposed a general solution of stress-strain 
fields at a crack tip including mode I, mode II and mode III, calculated the stress intensity factors 
for mixed mode in a finite size plate[12-141 as well. 

(a) The stress-strain fields at crack tip 
Based on Reissner’s theory, the governing equations could be expressed in terms of three 

generalized displacements I,!J~, I,!J~ and w as follows: 

where 
Eh3 

D = 12(1 _ v2) is bending stiffness, 

(2.1) 

(2.2) 

(2.3) 

C=;Gh is shearing stiffness. 
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Fig. 2.1. A plate with semi-infinite crack. 

The boundary conditions are (Fig. 2.1). When 

8=*7r 

We introduced two displacement functions F and f: 

Substituting eq. (2.5) into (2.1) (2.2) we have 

This is the Cauchy-Riemann equation, from which it follows that 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.9) 

(2.10) 

Separating the real part and imaginary part in eq. (2.8), we have 

V2f-4k2f=4k2Re@, 

W= F-sV2F+Im@, 

where 

4k2= 
2c 10 =- 

D(l-v) h2’ 

Substituting eqs (2.5), (2.10) into eq. (2.3), we have 

DV2V2F= P. (2.11) 

For a cracked plate, the bending fracture problems are reduced to two equations, (2.9), (2.11) 
in terms of F and f with the boundary conditions. 
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The function @(n + iy) could be expanded in series 

743 

@(x + iy) = C (pp + icrp)@* = C (j3~ + icyp)@‘(cos @3 + i sin ~0). (2.12) 
CI P 

The solution of eqs (2.9), (2.11) could be expressed in the sum of a particular solution and 
the general solution of the corresponding homogeneous equations. 

The particular solution could be chosen as follows 

fl = -Re a, FI =O. 

The homogeneous equation corresponding to eq. (2.9) is 

V’f0 - 4k2f” = 0. 

When p = 0, from eq. (2.11), we have 

DV2V2F = 0. (2.15) 

(2.13) 

(2.14) 

Equation (2.15) is a biharmonic equation, we have 

F(r, 8) = c r”+‘F(8) 
.i 

=c r*“[K,cos(h-1)8+L,sin(h-1)8+M~cos(h+1)8+N~sin(A+1)8). 
A 

(2.16) 

Equation (2.14) is a Helmholtz equation, function f0 could be expressed in modified Bessel 
functions. From the condition of finite strain energy, we should drop out the modified Bessel 
function of second kind and f0 could be expressed in modified Bessel functions of first kind 
1,(2/v) only. 

For symmetric case 

fA = sin AtII,,(2kr) = sin A8 c 
k2mrh+h 

m=o,l, _. m!4& m)’ 

For anti-symmetric case 

f? = cos AeI,(2kr) = cos A0 c 
k2mr~+2m 

m=O,l,. m!4(A, m)’ 

(2.17) 

(2.18) 

where 

+(A,m)=(A+l)(A+2)...(A+m) (for m 3 l), 

4(A, m) = 1 (for m = 0). 

To determine the coefficients of expansion, it is convenient that the general solution of eq. 
(2.14) is expressed in the following linear combination. 

fo = c c (AA-l+znfcl+2n + h-l+znf:--1+2n). (2.19) 
* n=O,l,. 

Substituting eqs (2.16), (2.19) into eqs (2.14), (2.15), the linear equations whose unknowns 
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are the coefficients of the expansions could be obtained. In order to satisfy these equations, we let 

A=*;, n=0,1,2,... (2.20) 

With the condition of finite strain energy, A should be positive. By using the boundary 
conditions, the relations between coefficients in eigenfunction expansion could be found. With 
the expression of F and f known, the expressions of I&~, I,& and w as well as M,, Me, M,e, Q,, 0, 
could be obtained. 

(b) Numerical examples 

Example 1. Infinite plate with uniform bending moment. This problem was studied by 
Hartranft and Sih[2]. The stress intensity factor is 

Ki(g) = 9 +(l)M&. 

The maximum value takes place at z = h/2. 

(2.21) 

(2.21’) 

In order to simulate the infinite plate, the plate semilength L should be larger than 20a. The 
graph and results are shown in Figs 2.2 and 2.3, respectively. 

Fig. 2.2. A cracked plate with uniform bending moment. 

z 06 o (Barsoum, 1976) 
-0. A (Li and Liu, 1981) 
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Fig. 2.3. Comparison of authors’ solution with others. 
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Fig. 2.4. (a) Variation of stress intensity factors with plate width. (b) Variationof stress intensity factors 
with plate thickness. 
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Fig. 2.5. Finite size coefficient. 

Example 2. Finite plate with uniform bending moment[ll]. In order to investigate the 
variation of stress intensity factors of finite plate with different thickness and width, the stress 
intensity factors for a/L = 0.1, 0.2, 0.4 and 0.5 are calculated. The results are shown in Fig. 
2.4(a, b) respectively. The finite size coefficient Kt/KT are shown in Fig. 2.5, where Kr denotes 
Ki for infinite case. 

Example 3. The effect of boundary conditions on the stress intensity factors [ 111. In order to 
compare the effects of different boundary conditions on the stress intensity factors, the 
calculations of the simple supported plate and free plate are carried out. The results are shown in 
Fig. 2.6. In the calculation the bending moment is taken as 1 kg-cm/cm and h/a = 1. 

Example 4. Cracked plate with uniform twist moment[l3, 141. This is a mixed mode (Fig. 
2.7). For infinite case, this problem was studied by Delale[7J using an integral transformation 
method. The dimensionless stress intensity factors kz, k3 are 

Kdh /2) 
” = (6M/ h*)&’ 

(2.22) 

Km(O) 
k3 = (6M/ h*)&’ 

(i.23) 
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Fig. 2.6. Effect of boundary conditions. 

Fig. 2.7. A cracked plate with uniform twist moment. 
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Fig. 2.8. Comparison of authors’ solution with others (a/L+@. 

where Kn(h/2), Km(O) are stress intensity factors for mode II and mode III, respectively. The 
maximum stress intensity factor for mode II takes place at the plate surface, for mode III at the 
middle of the section. In order to simulate the infinite plate, we let 2L = lOOa, the solution 
compares favourably with that in ref. [7] (see Fig. 2.8). 

For a finite size plate, the variation of stress intensity factors with width and thickness is shown 
in Fig. 2.9. The finite size coefficients k2/k F, ks/kT are shown in Figs 2.10, 2.11, where k;, k’? 
denote kz, k3 for infinite-case. 
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Fig. 2.9. Variation of stress intensity factors with width and thickness. 
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Fig. 2.10. The finite size coefficient k2/k:. 

(c) J-integral in Reissner’s plate 
Similar to J-integral in plane fracture problem, a JR integral in Reissner’s plate was 

proposed [ 151. 

(2.24) 

where U denotes the unit strain energy, M,, & denote boundary moments, 0, denotes 
boundary shear. 

The relation between JR and stress intensity factors is 

h 
JR=-(K:+K&)+ 

8E 
4hK2 
15G I”’ 

(2.25) 
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Fig. 2.11. The finite size coefficient k,/ky. 

JR can be used in approximate analysis of stress intensity factors. It also can be used as a 
parameter in elastic-plastic fracture analysis. 

3. STUDY ON CRACKED SPHERICAL SHELL FRACTURE PROBLEM 

Since curvature exists in shells, extension and bending are coupled, which makes the 
problem very difficult. In the earlier literature the classical theory was used[16-181. In recent 
years, the Reissner’s shell theory was used and a ten order differential equation was’derived[l9]. 
Since the problem is complicated, only the first term of the expansion was given[20-221. In order 
to calculate stress intensity factors (especially for mixed mode), the authors proposed an expansion 
of the stress-strain fields at the crack tip including mode I, mode II and mode III, we also got some 
significant results in bulging coelhcients[23-251. 

(a) The stress-strain fields at crack tip in a spherical shell 
A spherical shell containing a through crack is shown in Fig. 3.1 with the crack tip at the 

origin of the coordinates. The shallow shell theory, taking into account of shear deformation, 

e Y 

r e 

@ 

-iH 
0'0 X 

Fig. 3.1. A cracked spherical shell. 
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could be expressed as follows. 

D a21kX+l-ua21kX+l+V a’& 

(- ax* -- ~T&yJ+c(f$*x)=o. 2 ay2 

D l+va2+ 
( 
-- Ts+~)+c(~-*y)=o, 

2 axay 
+1-va21G; 

where k is the curvature, cp is the stress function 

The compatibility equation is 

+Q2Q2+kQ2W=0, 

where B is the in-plate stiffness. 
Introducing displacement functions F and f, let 

Substituting eq. (3.5) into eqs (3.1), (3.2), we have 

Equation (3.6) is a Cauchy-Riemann equation, from which it follows that 

Separating the real part and imaginary part in eq. (3.7), we have 

DQ2F+C(W-F)= CIm@, 

s (1 - u)Q'f - Cf = C Re a. 

From eq. (3.8), we have 

W = F-~Q*F+ImO. 

Substituting eqs (3.5), (3.10) into eq. (3.3), we have 

DQ2Q2F - kQ2cp = q. 

749 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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Substituting eq. (3.10) into eq. (3.4), we have 

(3.12) 

The governing equations could be reduced to three eqs (3.9), (3.11) and (3.12) in terms of 
F, f and cp. The function f, which is similar to that in the bending plate case, is uncoupled. The 
functions F and 9 should satisfy two four-order differential equations. 

If 9 = 0, from eq. (3.1 l), (3.12) we have 

V37372F _ k2B k2B 
FV~V’F+~V~F = 0. (3.13) 

It can be proved that, function F in eq. (3.13) is the sum of three functions Fo, F, and F2. 
which should satisfy the following equations respectively. 

F=Fo+Fl+F2, 

V2F0 = 0, 

V2F, -4h:Ft = 0, 

V2F, - 4A;F2 = 0, 

where 

k2B 
4h?=z+ J 

k4B2 k2B k2B --- --- 4c2 D 9 4G- 2c 
/kTB2 k*B 

v4c2--jy. 

With the F known, from eq. (3.11) the cp could be obtained. 

cp = cpo + y (A:Fl + A;F2), 

where cpo is an harmonic function, which should satisfy V2qo = 0. 
From eq. (3.9), function f could be found as 

f=fo-Re<P. (3.19) 

f. should satisfy the following equation 

where 

4/.L2 = 
2c 

D(l- v)’ 

The boundary conditions are when 0 = f or, 

The analytic function @ could be expanded in series 

Q(x + iy) = C (& + iar,)g@ = C (/3, + ia,)P(cos ~0 + 1 sin ~0). 
CL Ir. 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.20) 

(3.21) 

(3.22) 
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Harmonic function F0 could also be expanded in series 

F0 = c r*+’ [K!O!, cos (A + 1)8+ Lpi1 sin (A + l)e]. (3.23) 
A 

Functions fo, FI and Fz should satisfy the eq. (3.20), (3.16), (3.17) respectively. These equations 
are Helmholtz’s equations. Their solutions could be expressed in modified Bessel functions. With 
the condition of finite energy, we must drop out the modified Bessel functions of second kind. The 
functions fo, FI and FZ could then be expressed in modified Bessel functions of the first kind only. 

Similar to the bending cracked plate problem, substituting the expansion f, F and Q into the 
boundary conditions eq. (3.21) the linear equations whose unknowns are the coefficients of the 
expansions could be established. From these equations, the relations between the coefficients in 
the eigenfunction expansion could be found. With the functions f, F and Q known, the 
generalized displacements and stress could be obtained. 

(b) Numerical examples 

Example 1. Cracked spherical shell under bending. For infinite shell case this roblem was 
studied by Sih and Hagendorf. For finite size shell case, we introduce A = 4 12( 1 - V) a /JRh as a 
curvature parameter. 

The variation of stress intensity factors with a/L in a finite spherical shell is shown in Fig. 
3.2. 

When A = 0, that is the case of flat plate, the numerical results approach theoretical values in 
ref. [4] with an error less than 1% as a/L ---, 0, and also agree very well with the results for finite 
plate obtained in ref. [l 11. When A > 0, that is the case of shell, as a/L+ 0 the value of our 
results drops by almost 30% compared with the theoretical value. This can be explained in the 
following way. As we know, the spherical surface can not geometrically extend to infinity, when A 
or a/R was given, the shell goes deeper and deeper as a/L decreases, and the assumptions for 
shallow shell theory are no longer valid. This indicates that the results obtained in ref. [20] are 
invalid for some ranges. 

Example 2. Pressurized spherical shell under different boundary conditions. Considering a 
spherical cap of L/R = r/4 under uniform pressure 90, stress intensity factors for different 
boundary conditions are given in Fig. 3.3. Compared with the value of stress intensity factors for 
free edge shell case, the value of stress intensity factors reduced by 16% for simple support shell 
case, and by 20% for fixed support shell case. 

(c) Bulging factor of spherical shell 
A formula of stress intensity factor of pressurized spherical shell was obtained by Folias[ 161 

I a/h=1 

w 0 0.1 

a/L 

Fig. 3.2. The effect of finite size. 
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Fig. 3.3. The effect of boundary conditions. 

using the Kirchoff classical thin shell theory, which can be expressed as follows: 

I& = h&d-z, (3.24) 

where CT = qoR/2h is the shell stress with q. as uniform pressure; M is bulging factor. Its 
approximate formula has the form: 

M* = (1 + 0.59A2)“? (3.25) 

In classical theory, jw depends on the curvature parameter A only. In Reissner’s theory, a 
new parameter K = I)fca2 is introduced, taking into account shear stiffness. The numerical 
results of bulging factor are shown in Fig. 3.4. It is shown that for small values of K, the values of 
our results agree well with the classical values, but depart from the classical values as K 

increases. 
Based on the results of calculation, an approximate formula is given as follows: 

M(A, K) = M,(l + 1.2K1’3h e-A), A < 2.2. (3.26) 

4. STUDY ON THREE DIMENSIONAL BODY WITH SURFACE CRACK 

Since Irwin[26] first proposed an approximate solution of surface crack problem in 1962, 
many investigators have proposed miscellaneous methods to improve Irwin’s solution. Smith et 
af.[27-301 used an alternating method, Rice-Levy[31] proposed a line spring model concept, 
Cruse used the boundary integral equation method, Nisitani eta1.[32,33]put forward a body force 
method and so on. The results of research work before 1972 were included in ref. (343. 

In 1979 Newman and Raju[35] collected the results of thirteen investigators’ research work 
and published their results of three dimensional finite element analysis by using near ten 
thousand freedoms[36,37]. Their formulas have been adopted by ASTM E740-HO 
Standard[38]. 

Fig. 3.4. Bulging factor of spherical shell. 
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A-A 

Fig. 4.1. Coordinate transformation. 

In engineering practice, three dimensional finite method is one of efficient methods. 
However, it needs large computer storage and consumes long computer time. Furthermore, 
above research work almost deals with the mode I symmetrical case, because numerical 
calculation for mixed mode needs more accurate stress-strain modes. But so far, the research in 
stress-strain fields at surface crack is insufficient. Only the first term of stress strain fields was 
found, the whole fields are unclear. Therefore, it is important to search for the stress-strain fields 
along surface crack tip. It can provide a better foundation for numerical analysis. 

(a) Stress-strain fields at crack tip in three dimensional body with surface crack 
Consider a three dimensional body with a surface crack. Take the Cartesian coordinates as 

shown in Fig. 4.1 and denote the plane xOy as the front surface. 
Let’s introduce a special coordinate transformation with parameters y, 8, cp. The new 

coordinate system can simplify the boundary condition, so that it can be represented as 8 = f 7r. 
New coordinate system can be established in this way: 
Let axis y’ parallel to axis y, plane x’OZ’ move on plane XOZ and the new original point 0’ 

move along the crack tip front. Axis 0’~’ and 0’~’ are the normal and tangent of the ellipse 
respectively. Denote the angle between axes 0’~’ and Ox as cp, introduce polar coordinate y, 0 in 
plane x’o’z’. The new coordinate system with parameters y, 8, cp could be established. 

The relations between new and old coordinate systems are: 

x=(1__ 
acosrp 

e2 sin2 Q)‘j2 
+ rcos @cos cp, 

y = rsin 8, (4.1) 

b2 sin cp 
z= 

a(1 - e2 sin’ ~)l’~ 
+ r cos 0 sin JI. 

From eq. (4.1) the gauge coefficients and Christoffel coefficients could be calculated, from 
which the three dimensional governing equations in curvilinear coordinate could be established. 

2(1-~)~~+~-~)+(1-2~)~+~- (3-4~)~ 

+’ 3% 
f 
-+2(1- .)$cos B-$sin @--(I -2v) 2-T sin 8 

@ aracp ()I 

+-$ -(3-4u)%cos e-2(1 - v)(u,cos 8-&sin 8)cos 0+(1-2u)$ 
[ 1 

1 (1 -2V)3b2ezsin QCOS Q au, -- 
aJ3 a( 1 - e2 sin2 ~1)~‘~ ( 

~-“cose =o, 
) 

(4.2) 
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*+(,-4u)-&+(l-2u) 
rara6 ( $+Z-F ) +*(l- u)-g$ 

+I a2uv 
[ 

---+ayc~s e-2(1 - V) au,+41r sin t9-uBcos 8+(1-2v)$cos 8 @ ratlacp rat9 (ra0 r> r 1 
+-& (l-2V) 

I 

8% au, -+(3-4v)--sin8+2(1-Y)(u,cos0-ugsin8)sin8 
aq* acp I 

1 (l-2u)3b2e2sincpcoscp -- 
(D3 a( 1 - e2 sin’ q)5’2 

aUBfu sin8 =O 

acp ’ 
, 

a2u 'p+c%+'p+-- a2t4 i i ah a% a4 ___ - 
ar2 rar r2M2 @ 1-2~ G$++aaeacp+rap [ ( > 

+%cos fI-%sin 8 
I 

+-I_ 2(i-u)a2~,,3-4~a~,cos 8_3-4vah . 

[ 
~- -- 

a2 1-2V a(p* i-+a~ 
--sin 8- pP 
i-2v acp I 

1 6e2b2(1 - V) sin cp cos cp au, -- 
Q3 (l -2v)a(l- e2 sin’ q)5’2 

-+urcos8--uesin8 =O. 
acp > 

(4.3) 

(4.4) 

The boundary conditions are: when 8 = f rr 

ue = 0, ure - - 0, u,=o. (4.5) 

(b) Eigenfunction expansion 
The governing eqs (4.2)-(4.4) are partial differential equations with variable coefficients. It is 

very difficult to solve them directly. As we are only interested in the stress-strain fields at crack 
tip, we can use the asymptotic technique. 

Define the following dimensionless parameters: 

r 
P=b2/o” 

U, 
v’=b21a’ 

Expand dimensionless displacements u,. vO,, v, in double eigenexpansion series. 

43 
%3=b2/a. Vq=&. 

V, = c c ph+“b,(8, 1(1; A) = c p*[bo(B, cp; A) + pbl(6, cp; A) + + . .] 
A ” A 

V,=CCp ‘+“c,(& cp; A) = c Ph(8, ~0; A) + pcr(8, cp; A) + - . -1. 
* n A 

(4.6) 

Substituting eq. (4.6) into governing eqs (4.2)-(4.4) and boundary conditions eq. (4.5), 
compare the terms which have the same order of p. The asymptotic governing equations and 
boundary conditions could be found. From the governing equations and boundary conditions of 
zero order, the eigenfunction could be found. 

A =*n/2 (n = 0, 1,2,. . .). (4.7) 

From the condition of finite strain energy, the negative value should be neglected. From eq. 
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Fig. 4.2. A plate with surface crack. 

(4.7), the double eigenexpansion series can be reduced to a single eigenexpansion series. 

v, = i P”‘2&(& CPL 
?I=0 

V, = i p”‘2b,(8, cp), 
n=O 

(4.8) 

v, = i p”‘2cn(e, cp). 
n=O 

Substituting eq. (4.8) into eqs (4.2)-(4.4) and eq. (4.5), the asymptotic governing equations 
and boundary conditions could be found. With the asymptotic solution of displacements u,., ue 
and u, known, the stress-strain fields at crack tip could be obtained[40]. 

(c) The calculation of stress intensity factors in a plate with surface crack 
In ref. [40], based on the stress-strain fields at crack tip obtained, a three dimensional high 

order special element is established to calculate the stress intensity factors in a plate with surface 
crack. 

Comparison of authors’ solution with Newman and Raju’s. In ref. [40] Newman and Raju 
proposed the expression of stress intensity factor in a plate with surface crack. 

(4.9) 

where a, b denote the major semi-axis and minor semi-axis of the ellipse, respectively. 2L denotes 
length of plate, 2w denotes width of plate and h denotes plate thickness. F,(b/h, b/a, a/L, 4) 
denotes dimensionless stress intensity factor. Q denotes the shape factor for an ellipse. A useful 
approximation for Q is 

(4.10) 

In ref. [40], the values for Fi(b/h, b/a, a/L, $), the dimensionless stress intensity factors, 
were calculated for a/b = 0.6, b/h = 0.6, a/L = 0.2, a/w = 0.2, v = 0.3 case. The mesh is shown 
in Fig. 4.3. The number of freedoms we adopted is equal to 838, and almost equals to & of that 
Newman and Raju adopted. The results are shown in Fig. 4.4(a, b) and compares with that in ref. 

em 28:5/6-3 
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Fig. 4.3. The finite element mesh. 
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Fig. 4.4. (a) Comparison of authors’ solution with others (Tension). (b) Comparison of authors’ solution 
with others (Bending). 
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Fig. 4.5. (a) Comparison of authors’ solution with experimental data (Tension). (b) Comparison of 
authors’ solution with experimental data (Bending). 

[37]. It is shown that, at the point A, the end of minor axis, the difference between authors’ 
results and Newman and Raju’s, for tension is 0.37%, for bending is 1.81%. 

According to the author’s results, the stress intensity factor dropped dramatically near the 
plane surface. Meanwhile, in ref. [39] photo-elastic experimental data show that there is a thin 
boundary layer near plate surface, the stress intensity factor drops off rapidly but is not equal to 
zero. The author’s results compare favourably with the experimental data (Fig. 4Sa, b). 

Variation of stress intensity factors with width of plate. In ref. [403, the dimensionless stress 
intensity factors were cafculated for b/a = 0.6 case with a/L = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 
0.4. The results are shown in Fig. 4.6(a, b). 

Variation of stress intensity factors with plate thickness. In ref. [40], the dimensionless stress 
intensity factors were calculated for b/a = 0.6, a/L = 0.2, a/w = 0.2 case with b/h = 0.2, 0.4, 
0.6,0.75. The results are shown in Fig. 4.7(a, b). Meanwhile, the results of 14 investigators’ work 
were collected, the authors’ results are included as well (See Fig. 4.8). 
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Fig. 4.6. (a) Variation of stress intensity factors with plate width (Tension). (b) Variation of 
intensity factors with plate width (3ending). 
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5. CONCLUSION 

(1) In this paper so-called “local-global analysis” is used systematically for fracture analysis 
in cracked plates, shells and three dimensional bodies with surface crack. The general solutions 
of stress-strain fields at crack tip including mode I, mode II and mode III in Reissner’s plate, shell 
and three dimensional bodies were proposed for the first time. Similar to the Williams expan- 
sion in plane fracture problem, they reveal the mechanical behavior near the crack tip and pro- 

vide a better foundation for numerical fracture analysis. The analytical method for plane fracture 
problem, such as variational method, asymptotic method and finite element method, could be 
adopted for cracked plate, shell and three dimensional body fracture analysis. 

(2) Based on the stress-strain fields obtained, several kinds of high-order special elements 
were proposed to substitute the dense mesh near the crack. Meanwhile, since more accurate 
displacement modes are used, the calculation accuracy could be improved. 

(3) For cracked plate and shell fracture analysis, the Reissner’s theory was used to avoid the 
defect of classical theory. There is obvious difference between the calculation results by using 
different theories. 

(4) The stress intensity factors in finite size plate and shell for symmetric and anti-symmetric 
cases are calculated with higher accuracy. The variation of stress intensity factors with 
geometrical parameters was investigated. 

(5) A special coordinate transformation is proposed to search for the stress-strain fields at 
crack tip in three dimensional body with surface crack. This method is not only suitable for 
semi-elliptical crack, but also suitable for arbitrary crack. 

(6) The stress ,intensity factors in a finite size plate with surface crack were calculated. 
Compared with Newman and Raju’s results, the error is less than 5% except in the region near 
plate surface. The number of freedoms we adopted is only b of that Newman and Raju adopted. 
On a Univac 1100 computer, it takes only 18 minutes to finish a three dimensional finite element 
fracture analysis. 
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