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ABSTRACT

The development of thermoplastic shear bands in coupling-rate- and
temperature-dependent material under simple shear is examined, using a
simplified model together with Fourier transformation and a maiching
technique at the moving boundary of a shear band. The analysis reveals
that the development of a shear band is dominated by the coupling rate
and temperature effect of material. The strength of the material acts as a
destabilizer, whilst heat diffusion makes the band expand. In addition,
shear bands are susceptible to long-wave disturbances and this coincides
with instability analysis. A few computational examples are presented.

INTRODUCTION

Thermoplastic shear bands are closely related to failure and cracking in
structural materials. (This subject, particularly its phenomenological
aspects, has been reviewed by Rogers.') Theoretical investigations are
based on either the criterion of maximum shear stress® or perturbation
analysis.>* In both approaches it is assumed that there is a critical state,
beyond which instability may develop, and this is usually taken to be
the condition for the emergence of thermoplastic shear bands. How-
ever, the two approaches give only a condition for instability, and no
indication of the emergence of narrow shear bands.

In an analysis of quasi-steady thermoplastic shear bands,” it was
found that the observed width of shear bands is governed by the
balance of plastic work rate and thermal conduction and an approxima-
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tion is obtained as 6 ~ V(A8./t.74), where & is the half-width of the
band, A is the thermal conductivity, and 7., 8. and ¥. are the
characteristic stress, temperature and strain rate within the band. A fajr
agreement between this estimate and observed values was shown in
Ref. 6; in addition, some computational work’*® has been carried out to
show the process of shear banding.

It is desirable to know the dynamics of shear banding and the factors
governing the process. In this paper an analytical model is developed to
achieve this aim.

APPROXIMATION AND GOVERNING EQUATIONS

It is assumed that the deformation mode is simple shear. The equations
of motion and energy are’

Fy &7
P 512 - ayz (1)
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where 7 and y are the shear stress and strain respectively, p is the
density, c, is the specific heat at constant volume, A is the thermal
conductivity, t and y are the time and space coordinates respectively.
The y-axis is normal to the direction of shear, and the origin is located
on the centre-line of the testpiece.

For a developed shear band (6 =107 mm) the characteristic times
for mechanical equilibrium, and heat diffusion are, from egns. (1) and
(2), respectively

ta~ PY0%/Tx, fh ~ PC,O% /A 3)

where the asterisk subscript denotes a value characteristic of the shear
band. Hence one can obtain the ratio

which is independent of the shear zone width. Since A and ¢, are
material constants and 7. should be of the same order as the flow
stress, then the higher the strain rate, the greater the value of fu.
However, even under a severe shear, say .~ 10757, the ratio is not
greater than 1072 for a typical steel, for which A~10PWm K™,
¢, ~10°Tkg K™, and the flow stress is about 10° Pa. However, for a
transient process the ratio of the characteristic length scales f,/t, is the
reciprocal of eqn. (4), and it would be appropriate to assume that the
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process was approximately adiabatic. Therefore, in order to discuss
developed thermoplastic shear bands, and to compare the theory with
observations of shear bands in failed testpieces one can reasonably take
the former estimation. Hence eqn. (1) reduces to
't
ay*
Since the deformation is bilaterally symmetric with respect to the
y-axis, eqn. (5) has the solution

7= 1(t) ®)
The foregoing argument becomes even more clear from the following
dimensionless equations:

(5)
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where ¥ =9/%, T=1/1,, 6=0/6,, 7=y/8, and F=1/t; 8, is the
meiting temperature, ¥, and t, are the characteristic strain rate and
stress, both material constants, and 0, and ¢, are taken to be A8,./21, 74
and pc,0i/A, the latter quantity being related to #,. The smaliness of
€ = Ay /e, T reduces eqn. (7) to eqn. (5). From now on the over-bar
used to indicate a dimensionless quantity will be omitted.

Therefore the approximate model for shear bands is as follows:

7= 1{t) {9a)
17,88 36
2 8t 8yt (%)
36
= —= 9
E y=0, % 0 (9¢)
y = 68(1), 85 =05, (9d)
56 36
—| =— S¢
3y ls. Oyls. Oe)
vls_=RV(t) (96)

where R =v,/8.7y, and 8y(y) and v, are the initial disturbances of
temperature and velocity respectively and V(¢) is dimensionless bound-
ary velocity at V =1 and ¢ = 0. As instability is characterized by a very
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large plastic strain (>1%) and a high strain rate (>10°s™%), the
constitutive equation is assumed to be the one for temperature.
dependent viscoplastic conditions:*’

’ =17, 6) (10)

Outside the band, the material is assumed to remain rigid, no matter
how high the temperature is. The governing equation here is the one
for homogeneous diffusion with

60, y)=B (11)
where B is the assumed uniform initial temperature.

ANALYTICAL SOLUTION

Since the aim of the paper is to understand the mechanics of shear band

formation, and its relation to instability analysis and the factors |

controlling the process, an analytical solution is more preferable,
although in order to obtain one some approximations need to be made.
One of the simplifications is a linear version of the constitutive
equation (10):
T=9+1-8 (12)
The linear relation of 7 and ¥ is consistent with observations made by
Campbell® of specimens under high strain rate loading (>10°s™7).
Moreover, linear softening approximates the behaviour of a variety of
metals between room temperature and their melting points.™

Substitution of eqn. (12) into eqn. (9) leads to an inhomogeneous
equation in 8. The solution to it then can be expressed as

06,9) ={ 06 1) = [ 252 ctn) exp (~HOn) dnfexp () (13)

where ()
H() = L Wl ay

and 7 is a variable m integration, in which
t(t) =1~ 65(¢) (14)

The temperature 0, satisfies the equation
36,26, ()

3 Iy* 2
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To deal with the moving boundary 6(f), we consider the initial
boundary conditions

a6,
y=0, 3_y ={)

a8,
y =6, "53}” = §(t) exp (—H (1)) (16)
i= 0, 1 - Qo(y)

where &, is an imaginary fixed boundary chosen to be greater than 8(¢),
and S(¢) is an arbitrary function determined by matching the condition
at y = 6(¢), i.e. eqns. (9d) and (9e).

The solution 8 to the problem, but with initial boundary values (16),
can be expressed as Fourier cosine series:

006, v) = exp (HO) 5-{eo + [ Sn) exp (~HG) @

2 exp (H(#) — a3t)

snl

=6, [P at exp (~HOY an ) + 5

x{e.+ (<0 [ St exp (ain - HOY anfeos2 ()

where a, = (nmt/8,), 0<y<d,; ¢, are constants determined by the
initial condition (9g) as

" 0y(&) cos M g (18)

0 53

where & is a variable in integration; eqn. (9f) requires that

Cp =

&
RV(t) =v)s. = j 7 dy

=23 exp () - @20 2= {4 (=17 [ S(r) exp (@in ~ HOp) dn

sn =]
. nad(r) B nnd(t) nmd (t)}
X {sm 5. s, COS 5. (19)

The solution for the rigid material outside the band can be easily
obtained as

06,3)= [ Out=m) - B gy

EXP( y*4n)dn+B  (20)
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if 1t is assumed that B =constant and the edge effect of testpiece ig
neglected; 6.(¢) here is the temperature at an imaginary boundary
y=0

In all there are four unknown functions: 8.{r), S(z), 6(f) and z(r),
They can be determined by solving eqns. (9d), (9¢), (14) and (19)
simultaneously.

MECHANICS OF SHEAR BANDING

Equation {17) shows that three factors control a non-uniform shear
field, namely S(¢), H(¢) and a?r. The first one is related to the heat flux
flowing out of the shear band, the second represents a cumulative effect
of the strength of the material, and the third concerns the decaying
mode of heat diffusion within the band. The second and third factors
are both exponential, and so are much more important than the first,
Even at the early stage of shear band development, the heat flow
(accounted for by $(¢)) to surrounding material appears to be negligibly
small, because 96/38y|s, =0, where d,= 6(0). Therefore H(t) and o2t
are bound to be the governing factors in shear band formation.

With the two assumptions that of S(¢) =0 and ¢, =0 (n # 1), which
represent the most influential part of heat diffusion and the simplest
case, eqn. (19) becomes

sin (@,8(1)) ~ Z = a,6(¢) cos (a;6(1))
Z = exp (ait — H(t))
provided 8,= J, and a constant-velocity boundary condition is intro-

duced. It is clear from eqn. (21) that shrinkage of the shear deforma-
tion field requires a decreasing value of Z, i.e.

(21)

d (H(t) — ait) >0 (22)
dt
and

©(1)/2> (x/6(0)y a (23)

Therefore this shrinkage is due to the material strength 7, whereas heat
diffusion tends to smooth shearing.

For a material governed by the temperature-independent, viscous
constitutive relation v = 7(¥), the solution to eqn. (9) is
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Fig. 1. The expansion and contraction of shear band fields, shown as diagrams of (a)
stress ©/T, versus initial band width §,/8,, and (b) amplitude of disturbance A versus
velocity R, with t/1, as a parameter,

Unlike the solution (13}, this solution indicates that the strength t will
not be incorporated into a non-uniform shear field. This case cor-
responds to simple heat diffusion, whereas 7= 7(6) would lead to a
trivial solution. Therefore, one can conclude that only in a material
governed by a coupling-rate- and temperature-dependent constitutive
relation can the shearing zone shrink, with the strength of the material
acting as a destabilizer.

With decreasing t(¢), which usually happens in thermal shearing in
accord with thermal softening, a narrowing shear band will be
transformed into an expanding one at a certain moment, because the
right-hand side of the inequality (23) is constant. This implies that
there is a stable phase of deformation dominated by heat diffusion.

Figure 1(a), based on the inequality (23), shows that long-wave
disturbances are more liable to cause shrinkage than short-wave ones.
The effect of the amplitude A of the disturbance and boundary velocity
R (A = R/&,) on shear band formation is shown in Fig. 1b). Obviously
the higher the velocity R, the narrower the shear band that will form.

It is interesting to compare the inequality (23) with the instability
criterion based on perturbation analysis,”

TPy > AR K2 (25)

where Py=—(371/360) and R,= (31/9y) are the thermal softening and
the strain rate hardening respectively, and k is the wavenumber. After
transforming it into dimensionless form and using eqn. (12), (25)
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becomes

(8 ) = (k) </2 (26)
Comparison of the disturbances predicted by the two approaches leads
to k= m/d,, therefore (26) is identical to (23). This illustrates that
instability criterion {25) does define the localization of the shearing field
in this particular case.

We can arrive at the above conclusion in a different way. By
introducing eqn. (12) and the condition 7 =10 at y = into eqn. (19),
eqn. (11) becomes
0

RV(f) = L

Differentiation of (27) with respect to time ¢ under the constant velocity
boundary condition leads to

EL dé(t) TOR 36
 ls

(¢, y) dy — 85(1)6(t) @7

L

2 8y 8

For 36/3y # 0 and &(t) # 0, eqn. (28) becomes an expression for shear
band development:

} /28

51/ Oy ls

0 _(=01, 75_2
de 2 3y* ot
When >0, within the shear band 86/3}7]5 must be negative.
Moreover, 860/3t|, = 8*0/3y¥s at 8(t). Then eqn. (29) becomes
dé(e) _ {r(r)?(r)+(a_;5m &6 )} 30
dt 2 3y y?*is 3y 1s

The most significant term is 7¢/2, the plastic work rate within the shear
band, which is always positive and therefore governs shear band
contraction. However, there is usually a simple monotonic decreasing
temperature distribution,

29)

(30)

8 59

ay*  y?

from which it is seen that heat diffusion in the shear band tends to
expand the band.

For a cosine temperature distribution one can obtain a criterion,
identical to (26) or (23), to the distinction of expansion and shrinkage
of the thermoplastic shear band.
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COMPUTATIONAL EXAMPLES

Calculations are carried out for several typical situations. The initial
disturbance is supposed to be a thermal one. For simplicity, 8, is
assumed to consist only of the basic mode
JU
8,(y) mA(cosa—y%— 1) + B, (31)
0
We have seen that the terms H(#) and @it play a more significant role
than others; two additional assumptions are therefore introduced:

y <&

a6
9*295_—68_)2 N (32)
S(t) = (05, — 65)/ (6o — 8) (33

in their corresponding extension region, instead of accurate calculation
of 30/3y|s. and S(t) = 56/8y|s,-

With B =0-167 three cases, corresponding to boundary velocities of
R=0-0422, 0-211 and 1-054, are considered. The initial disturbances
are found to expand only if the amplitude of the disturbance exceeds
some limit. The evolution of shear bands is shown in two ways; as the
variation of temperature at y =0 with shear band width (Fig. 2) and
with time (Fig. 3). Although the evolution shows a marked time
dependence with different disturbances, the variations with shear band
width have less scatter in the same phase, say shrinkage. In both Fig.

E=1 i=1

- . A=0.005 -
5.035
9.0425
£ =
< a
P I
kS 2
= =
L R=0 21L R=1.054
& )
e s [ ic
DELTA DELTA
() (b

Fig. 2. Variation of temperature at ceatre of shear band with shear band width.
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Fig. 3. Varation of temperature at centre of shear band with time for different
velocities R and disturbance amplitudes A,

(2a) and (2b) the amplitudes span about one order, but the curves
remain quite close. This indicates that the thermoplastic shear band has
a strong intrinsic structure.

For the highest boundary velocity considered R =1-054, the tem-
perature increases with narrowing band, and the higher the amplitude

M

BELYA
RATE

(=%
Tus
Bz0. 167
R=0.21¢
A~0. 04
x=
a
=
w -
b=
=
=
<t
—
WD
I oI
— =
L= . . N . A ! L <
o 3o 60

TIHE

Fig. 4. Variation of some characteristic parameters of shear band formation with time,

where T™M and TD denote the maximum (at centre) and minimum (at bounfiary)
temperature in the shear band. Also Rate M represents the highest rate of strain.
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Anal;,ﬁcal
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Fig. 5, Comparison of approximate solution and numerical computation.

of the disturbance, the shorter the time to reach melting point (Fig. 3).
For the lowest velocity, R = 0-0422, the reverse is true, although the
band continues to narrow.

At the intermediate velocity (R =0-211) there are some transitional
phenomena; from shrinkage to expansion, whether melting or not, and
so on. The variations of temperature at y =0 with time in the range
A=0-005 to 0-01 are similar to those for R =1-054. This is the
reflection of the remains of disturbance, since a shorter-wave (i.e.
greater amplitude) disturbance should have less of a tendency to
narrow the band. For a very short-wave disturbance (4 =0-035 to
0-0425) the variations are reversed and appear to be similar to those for
R =0-0422. In this phase the longer waves show stronger ability to
shrink and then to reach higher temperature, whilst the shortest wave
(A = 0-0425) shows expansion and decreasing temperature after limited
shrinkage, since its capacity for localization dies out.

Figure 4 shows the variations of several parameters of shear
formation band with time. The general trend is of increasing strain rate
and temperature, but decreasing stress with time for narrowing bands.
This is obviously reasonable.

Finally, in Fig. 5 there is a comparison between the approximate
solutions and the numerical computation, in which a routine difference
scheme has been used to solve eqns. (9), (11) and (12). There is fair
agreement between the two sets of results. This shows that the model
assumptions (32) and (33), which greatly simplified the computation,
are reasonable.
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