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A simple theoretical model is proposed to determine the 

spectral line profile of a turbulent gas. It is shown that the 
spectral line profile of a turbulent gas is still a Voigt profile 
which is a convolution of Lorentzian and Gaussian profiles. 
Its Lorentzian component is hardly influenced by the turbu­
lent motion. The linewidth of its Gaussian component is Δv 
= Δυ0[l + 2γM2]1/2. Here Δυ0 is the linewidth of ordinary 
Doppler broadening due to the thermal motion of molecules, 
M is the Mach number corresponding to the fluctuation 
velocity of turbulence, and γ is the ratio of specific heats of 
the gas. When M is not small, turbulence Doppler broaden­
ing is significant. 

For the case when the gas has no macroscopic motion, the 
topic of its spectral line profile has been the content of many 
textbooks, for example, Refs. 1 and 2. One of the authors has 
studied the influence of the macroscopic motion of gas on the 
spectral line profile,3,4 and it is assumed that the macroscopic 
motion is laminar. However in practical applications, from 
the gaseous flows obtained in laboratories to the motion of 
stellar atmospheres, the turbulent motion is more typical 
than the laminar motion.5,6 In this Letter a simple theoreti­
cal model is proposed to determine the influence of the 
turbulent motion on the spectral line profile of a gas. For a 
turbulent gas the major types of spectral line broadening are 
still natural line broadening, collision broadening, and 
Doppler broadening. Ordinary Doppler broadening is due 
to the microscopic thermal motion of molecules. In the case 
of a turbulent gas, it is necessary to consider the contribution 
of macroscopic turbulent motion as well as microscopic ther­
mal motion to Doppler broadening. 

In a turbulent gas the total molecular velocity is 



Here V and V are the average velocity and the fluctuation 
velocity of the turbulent gas, respectively, and υt is the veloci­
ty of microscopic thermal motion. Since Dopper broadening 
depends on the velocity component along the direction of the 
light beam, in this Letter all the velocities in Eq. (1) are 
understood to be the corresponding velocity components 
along the direction of the light beam, i.e., the projections of 
the velocity vectors on the direction of the light beam. Of 
course, the velocity vectors of turbulent motion and thermal 
motion are not necessarily in the direction of the light beam. 
Both V and υt are random variables. Following the argu­
ment which led to the Voigt profile,2,4 it is easy to show that 
the spectral line profile of a turbulent gas is the following 
convolution: 

Here V0 is the central frequency of the spectral line profile, v 
is the frequency of light, v' is the Doppler apparent frequen­
cy, and 

Here a is the sonic speed of the gas, M is the Mach number 
corresponding to the fluctuation velocity, and γ is the ratio of 
the specific heats of the gas. In other words, F(V + υt) is a 
Maxwell distribution with the equivalent temperature 

Here T is the actual temperature of the gas. As a conse­
quence, it is not difficult to prove that the function gD(v,v0) in 
Eq. (2) now becomes a Gaussian profile and 

Here C = 2.77259 and 

is the Lorentzian profile related to natural line broadening 
and collision broadening, with ΔvH being the Lorentzian 
linewidth. The function gD(v',v0) in Eq. (2) corresponds to 
Doppler broadening and depends on the distribution func-
tion F(V) of the total molecular velocity VinEq. (1). Gener­
ally speaking, gD(v,v0) is not necessarily a Gaussian profile. 
Only when there is no macroscopic motion, i.e., V = V = 0, 
does the distribution function F(V) become the Maxwell 
distribution of molecular thermal motion, and the gD(v,v0) 
becomes the well-known Gaussian profile: 

Here C = 4 ln2 = 2.77259, and Δυ0 is the ordinary Doppler 
linewidth due to the microscopic thermal motion of mole­
cules. When there is macroscopic laminar motion, i.e., V ≠ 
0 and V = 0, the distribution function F(V) and the corre­
sponding function g(v,v0) have been discussed in Ref. 4 for 
several typical laminar flows. 

In the case of turbulent flows, for simplicity it is assumed 
that V ≠ 0 but V = 0, i.e., the direction of the light beam is 
normal to the direction of the average motion of turbulence. 
Later we discuss the more general case when both V and V 
are not zero. Then the central problem is how to determine 
the distribution function F(V+ υt) of the random velocity V 
+ υt. The distribution function for the velocity υt of.micro-
scopic thermal motion is a Gaussian distribution or a Max­
well distribution. According to the behavior of various two-
point correlation functions,7 - 9 s tr ict ly speaking, the 
turbulent motion cannot be described as a Gaussian stochas­
tic process. However, most experiments demonstrate that 
for a fully developed turbulence the distribution function of 
the fluctuation velocity V itself can be approximately de­
scribed by a Gaussian distribution.6-8 There is no correla­
tion between the macroscopic turbulent motion and the mi­
croscopic thermal motion; the random variables V and υt are 
independent. In the probability theory it is proved that the 
sum of two independent Gaussian random variables is still a 
Gaussian random variable. 10 Therefore the distribution 
function F(V+υ t )o f the random velocity V+υt is a Gaussian 
distribution, and moreover 

Here ( . . . ) means the statistical average. By using a rele­
vant formula of gas dynamics,11 from Eq. (5) we have 
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where ΔΥ0 is the ordinary Doppler linewidth defined in Eq. 
(4). 

When the Mach number M is not small, for example, in the 
turbulent wake of a supersonic aircraft or in turbulent stellar 
atmospheres, the influence of turbulence on the spectral line 
profile cannot be neglected. The typical value of 7 is 1.4 (see 
Ref. 11) according to Eqs. (7) and (9). Fo rM = 1 we have Te/ 
T = 3.8 and Δv/Δv0 = 1.95; for M = 0.5 we have Te/T = 1.7 and 
ΔΥ/ΔΥ0 = 1.3. The spectral line profile is given by Eqs. (2), 
(3), (8), and (9). When the spectral line profile is applied to 
the measurement of the tempei-ature of a turbulent gas, the 
equivalent temperature Te given by Eq. (7) is obtained in­
stead of the actual temperature T of the gas, so the interpre­
tation of the measurement results should be carefully made. 
If the actual temperature T can be independently deter­
mined by some other methods, the spectral line profile can be 
applied to the measurement of characteristics of the fluctua­
tion velocity of turbulence. 

For the more general case of both V amd V being other 
than zero, the spectral line profile of a turbulent gas can be 
easily obtained by using the results presented in this Letter 
together with the method proposed in Ref. 4, substituting 
V,V + υt, and the turbulence Doppler-broadening profile 
[Eq. (8)] of this Letter for the macroscopic laminar velocity u, 
the thermal velocity ΥT, and the ordinary Gaussian profile 
[Eq. (2.4)] of Ref. 4, respectively. The key point is that the 
combined effect of macroscopic fluctuating motion and the 
molecular thermal motion can be described by the equiva­
lent tempera ture [Eq. (7)] or the combined Doppler 
linewidth [Eq. (9)]. The more delicate problem of the influ­
ence of temperature or density fluctuation on the spectral 
line profile of a turbulent gas as well as the non-Gaussian 
correction are topics for further study. 
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