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Fig. 2. Softened zone length Az: experimental data vs empirical
model: ®, Az from experimental data; «—s—s, curve of fitted empiri-
cal model for Az.
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Fig.3. Tapershape (solid curves), obtained using the empirical Eq.
(4) for the softened zone length Az, Experimental points, with error
bars, are superimposed.

~ Hence the above model is adequate for simulating the
evolution of the real taper as the elongation increases. One
problem remains, however. As our purpose has been to
predict the taper dimensions during the fabrication of the
coupler, it would be more convenient to calculate D(z), as
given in Eq. (1), as a function of / alone. This implies that v
would be dependent only on [, but Eq. (2) shows that v is also
dependent on Az. The softened zone length Az has been
found to decrease with increasing [, as can be observed from
Table I, since as the molten region is being pulled the reduc-
tion in fiber diameter increases the separation between the
softened zone and the flame. This in turn leads to a reduced
length of the softened zone. Hence an explicit relation be-
tween Az and [ is needed. Although in ptinciple the Navier-
Stokes equation applies to the formation of the tapered
region, the existence of the conical boundaries and of this
decreasing softened zone length makes any attempt at such a
solution prohibitively difficult. Consequently for the cou-
pler used in this experiment the following equation has been
derived, with ! and Az being expressed in millimeters:

Az = 0.179 + 1.08[1 + 2(1/5.3)] exp[~2(1/5.3)?). (4)

Figure 2 is a graph of Eq. (4) with the experimental values of
Az being superimposed for comparison. It is seen that this
equation gives a close fit to the experimental data over the

coupling region of interest, i.e., for elongation lengths >4
mim.

The corresponding computed curves for the diameter of
the fused coupler, plotted against z measured from the waist
position, are shown in Fig. 3 together with the experimental
points obtained from the microphotographs. The good fit
obtained thus justifies quantitatively the use of the above
procedure to model the shape of the taper during the coupler
fabrication. This modeling procedure consists of assuming a
parabolic shape for the taper, and additionally using an
empirical equation to model the reduction of the softened
zone length during the fabrication.
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A simple theoretical model is proposed to determine the
spectral line profile of a turbulent gas. It is shown that the
spectral line profile of a turbulent gas is still a Voigt profile
which is a convolution of Lorentzian and Gaussian profiles.
Its Lorentzian component is hardly influenced by the turbu-
lent motion. The linewidth of its Gaussian component is Av
= Apy[l + 2yM2]V2, Here Ay is the linewidth of ordinary
Doppler broadening due to the thermal motion of molecules,
M is the Mach numbeér corresponding to the fluctuation
velocity of turbulence, and v is the ratio of specific heats of
the gas. When M is not small, turbulence Doppler broaden-
ing is significant. »

For the case when the gas has no macroscopic motion, the
topic of its spectral line profile has been the content of many
textbooks, for example, Refs. 1and 2. One of the authors has
studied the influence of the macroscopic motion of gas on the
spectral line profile,34 and it is assumed that the macroscopic
motion is laminar. However in practical applications, from
the gaseous flows obtained in laboratories to the motion of
stellar atmospheres, the turbulent motion is more typical
than the laminar motion.5¢ In this Létter a simple theoreti-
cal model is proposed to determine the influence of the
turbulent motion on the spectral line profile of a gas. Fora
turbulent gas the major types of spectral line broadening are
still natural line broadening, collision broadening, and
Doppler broadening. Ordinary Doppler broadening is due
to the microscopic thermal motion of molecules. In the case
of a turbulent gas, it is necessary to consider the contribution
of macroscopic turbulent motion as well as microscopic ther-
mal motion to Doppler broadening.

In a turbulent gas the total molecular velocity is

V=V+V+u,. (1)
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Here V and V are the average velocity and the fluctuation
velocity of the turbulent gas, respectively, and v, is the veloci-
ty of microscopic thermal motion. Since Dopper broadening
depends on the velocity component along the direction of the
light beam, in this Letter all the velocities in Eq. (1) are
understood to be the corresponding velocity components
along the direction of the light beam, i.e., the projections of
the velocity vectors on the direction of the light beam. Of
course, the velocity vectors of turbulent motion and thermal
motion are not necessarily in the direction of the light beam.
Both V and v, are random variables. Following the argu-
ment which led to the Voigt profile,2* it is easy to show that
the spectral line profile of a turbulent gas is the following
convolution:

£ = j p( wo)zu(v.)dv. @

Here vy is the central frequency of the spectral line profile, »
is the frequency of light, +’ is the Doppler apparent frequen-
cy, and

gulv) = Avg/2r[(v — v)? + (Avg/2)3)) (3)

is the Lorentzian profile related to natural line broadening
and collision broadening, with Avy being the Lorentzian
linewidth. The function gp(v’,v0) in Eq. (2) corresponds to
Doppler broadening and depends on the distribution func-
tion F(V) of the total molecular velocity Vin Eq. (1). Gener-
ally speaking, gD(v vg) is not necessanly a Gaussian profile.
Only when there is no macroscopic motion, i.e., V= V = 0,
does the distribution function F(V) become the Maxwell
distribution of molecular thermal motion, and the gp(v,»o)
becomes the well-known Gaussian profile:

g6(g) = (1/Aug) (C/w)"% expl=C[(v = vg)/Avg]?. @)

Here C = 4 In2 = 2.77259, and Auo is the ordinary Doppler
linewidth due to the mlcroscoplc thermal motion of mole-
cules. When there is macroscopic laminar motion, i.e., V
0 and V = 0, the distribution function F(V) and the corre-
sponding function g(v,vp) have been discussed in Ref. 4 for
several typical laminar flows.

In the case of turbulent flows, for simplicity it is assumed
that V s 0 but V = 0, i.e., the direction of the light beam is
normal to the direction of the average motion of turbulénce.
Later we discuss the more general case when both V and V
are not zero. Then the central problem is how to determme
the distribution function F(V + v,) of the random ve1001ty 1%
+ v;. The distribution function for the velocity v, of.micro-
scopic thermal motion is a Gaussian distribution_or a Max-
well distribution. According to the behavior of various two-
point correlation functions,”? strictly spedking, the
turbulent motion cannot be described as a Gaussian stochas-
tic process. However, most experiments demonstrate that
for a fully developed turbulence the distribution function of
the fluctuation velocity V itself can be approx1mately de-
scribed by a Gaussian distribution.®8 There is no correla-
tion between the macroscopic turbulent motion and the mi-
croscopic thermal motion; the random variables V and v, are
independent. Inthe probability theory it is proved that the
sum of two independent Gaussian random variables is still a
Gaussian_random variable.l® Therefore the distribution
function F(V + v;) of the random velocity V + v, is a Gaussian
distribution, and moreover

((V+0)%) = (V) + (v}). (5)

Here (...) means the statistical average. By using a rele-
vant formula of gas dynamics,!! from Eq. (5) we have
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(V+0)?) = (1 +2yM?), M=)  (8)

Here a is the sonic speed of the gas, M is the Mach number
corresponding to the fluctuation velocity, and v is the ratio of
the specific heats of the gas. In other words, F(V + v;) is a
Maxwell distribution with the equivalent temperature

T, = T(1 + 2yM?). (7
Here T is the actual temperature of the gas. As a conse-

quence, it is not difficult to prove that the function gp(v,v) in
Eq. (2) now becomes a Gaussian profile and

gp0) = (1/A0)(C/m)Y expl—=Cl (v = vg)/Ao]?) @)
Here C = 2.77259 and
Av = Ayl + 2yMY12, (9)

where A is the ordinary Doppler linewidth defined in Eq.

-(4).

When the Mach number M is not small, for example, in the
turbulent wake of a supersonic aircraft or in turbulent stellar
atmospheres, the influence of turbulence on the spectral linie
profile cannot be neglected. The typical value of v is 1.4 (see
Ref. 11) according to Eqgs. (7) and (9). For M = 1 we have T,/
T = 3.8 and Av/Avy = 1.95; for M = 0.5 we have T,/T = 1.7 and
Av/Avy = 1.3. The spectral line profile is given by Eqgs. (2),
(3), (8),and (9). When the spectral line profile is applied to
the measurement of the temperature of a turbulent gas, the
equivalent temperature 7T, given by Eq. (7) is obtained in-
stead of the actual temperature T of the gas, so the interpre-
tation of the measurement results should be carefully made.
If the actual temperature T can be independently deter-
mined by some other methods, the spectral line profile can be
applied to the measurement of characteristics of the fluctua-
tion velocity of turbulence. ~ .

For the more general case of both V amd V being other
than zero, the spectral line profile of a turbulent gas can be
easily obtained by using the results presented in this Letter
together with the method proposed in Ref. 4, substituting
V,V + v,, and the turbulence Doppler broademng profile
[Eq (8)] of this Letter for the macroscopic laminar velocity u,
the thermal velocity vr, and the ordinary Gaussian profile
[Eq. (2.4)] of Ref. 4, respecmvely The key point is that the
combined effect of macroscopic fluctuating motion and the
molecular thermal motion can be described by the equiva-
lent temperature [Eq. (7)] or the combined Doppler
linewidth [Eq. (9)]. The more delicate problem of the influ-
ence of temperature or density fluctuation on the spectral
line profile of a turbulent gas as well as the non-Gaussian
correction are topics for further study.
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Optical materials which exhibit a large Faraday effect can
be used as optical isolators, modulators, and high speed
switches. The large Faraday effect is commonly obtained by
use of magnetic materials! or by doping with magnetic ions.?
In a recent paper?® it was pointed out that the frequency
response of the Faraday effect in such materials depends on
the ability of the induced magnetization to follow the rapidly
varying applied magnetic field. Thus the Faraday effect is
limited by the relaxation of the magnetization of the Faraday
material. In this Letter measurement of the Faraday effect
in FR-5 glass® up to 5 GHz is reported, and factors limiting
the response of this material are discussed.

FR-5 glass is a terbium-doped borosilicate glass which has
a Verdet constant ~20 times larger than quartz? (0.35
min/Oe-cm at 531 nm).# The active ion is thought to be
Tb3*, and magnetic susceptibility measurements indicate a
Tb3* density of 2,5 X 102! ¢cm—3, assuming all Th3* ions are in
the same magnetic ground state. The temperature depen-
dence of the susceptibility follows a C/T (Curie) curve from 5
to 300 K, suggesting the Th3* ions are not strongly coupled
by dipolar or exchange interactions. The magnetic field
dependence of the glass moment at 5 and 7 K follows a
Brillouin function from 5 to 50 kOe with a spectroscopic
splitting g factor of 2.3 and an angular momentum ¢/ of 6.
These values were used to calculate the Th3* concentration
quoted above.

Faraday rotation as a function of the frequency of the
applied magnetic field was measured using the apparatus®
shown in Fig. 1. Briefly, the time varying magnetic field is
produced at the sample by incorporation of the sample in a
microstripline. The sample is a cube, 3.5 mm on each side,
whose dimensions match the width of the microstripline.
Calculations show that the magnetic field, typically 0.1 G
rms, is uniform along the light beam in the sample. The 531-
nm line of a krypton laser is passed through the sample
collinear with the applied field, and the polarization modula-
tion is converted to amplitude modulation by the analyzer.
The signal is detected by a fast photodiode and spectrum
analyzer.

The frequency dependence of the Faraday effect in FR-5
glassisshownin Fig. 2. The observed effect corresponds toa
modulation of the polarization direction of three micro-
radians. It has been shown? that Faraday rotation in a
paramagnetic material will have a frequency dependence
given by

8(w) = (o)1 + w72, (1)

FR-5 GLASS

Fig. 1. Experimental apparatus for measuring the frequency de-
pendence of the optical Faraday effect.

Units)
wn
o

o
o

w
o
[ ]

| ]
an
u

[ ]
|

nJ
(=]

(o]

I I I I 1

Faraday Rotation (RArb.

o

i 1 1 Illlrl2 1
10 10 ; 10
Frequency (MHz)

N T B S L 1

le

Fig. 2. Frequency dependence of the Faraday effect in FR-5 glass.
The magnitude of the effect corresponds to modulation of the polar-
ization direction by three microradians.

where 7 is a relaxation time which describes the response of
the magnetization to the applied magnetic field. Since the
observed Faraday rotation is independent of frequency up to
at least 5 GHz, this relaxation time must be <8 X 10711 s,

Two mechanisms can contribute to the relaxation process:
transfer of energy between terbium magnetic moments via
the dipolar interaction and transfer of energy from the ter-
bium moments to the lattice via spin-lattice interactions.
The size of the dipolar interactions can be estimated from the
magnetic susceptibility measurements, and they do not ap-
pear to be large enough to explain the observed relaxation
time. The most likely explanation is a rapid spin-lattice
relaxation process.

The Th?3* ion has a J = 6 ground state with a large orbital
component. EPR measurements of the relaxation time for
Tb3+ ions in CaWO, (Ref. 5) show an exponential depen-
dence on temperature given by

Ty (s) = 8.3 X 107" exp(14.3/7), (2)

where the data were taken between 5 and 30 K. Extrapola-
tion of these data to room temperature suggests a spin-
lattice relaxation time of the order of 3.5 X 10135 or a roll-off
frequency for the Faraday effect measurements of several
hundred gigahertz. We expect a similar rapid spin-lattice
relaxationin FR-5 glass. Such averyrapid relaxation timeis

1May 1987 / Vol. 26, No. 9 / APPLIED OPTICS 1581



