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w(t)=0,—-9Q,. (3.2a)
We now write G(¢) in the form
G(t) =N(t)Ing (1) + g7 (8)], n-gr(t) =0. (3.5a)

Here N(¢) is the normal force, N ngy is the frictional moment
which is normal to the surface, and N g is the nonfrictional
moment which is tangential. We assume that g, is given by a
law of angular friction of the following form, in which
W, =wen:

g&r= —vsgn w, if w, #0, (3.6a)

lg/l=vifw,=0.

The quantity v is a coefficient of angular sliding friction with
the dimensions of length. In principle it can be determined by
analyzing the deformation of the surfaces during impact and
using the usual law of friction. It ought to be proportional to u
and should depend upon N(¢).

When we use equations (3.5a) in (2.11a), and write g, and
gr as functions of 7, we get

(1+e)rg
I'= So [ng, (1) +gr(7)ldr. (3.8a)

Then equation (3.8a) is used in equation (3.10) with the extra
term (—1YJ7'T on the right side, and equation (3.10)
becomes

S(I+e)-ro

[Qj]=(—1)’.]J~"1(Rj><{(1+e)7-0n—p. . ﬁT(T)dT}

S(l+€)10

[ngs(r) +gT('r)]dT). (3.10a)

+
Next we must add (J7'G) X R; to the summand in equa-
tion (4.1) and add ng, + gr to R X (n + f) in equations
“4.2), 4.3), 4.4), 4. 6), and (4.9). We must also add ne[J; !
§3(ng; + gr)dr'] X R; to the summands in equations (4 7
and (4.8) with 7 = 7, in “4.8). «
To determine w(7), which occurs in equation (3.6a), we dif-
ferentiate equation (3.2a) and use equation (2.6) to get

EJ 1[G+ R; X F]. (4.1a)

dt

Now we use equation (3.5) for F and equation (3.5q) for G in
equation (4.1a) and write N~1d/dt = d/dr to obtain

dw 2
= Zl.]j“[ngf+gT+Rj><(n+f)]. (4.3a)
i=
From equation (3.24) the initial value of w is
w(0)=05 Q7. (4.40)

Finally we take the inner product of » with equations (4.3q)
and (4.4aq) to get

2
= Y neJi\ngp+gr+ Ry x (n+)], (4.9a)

@, () =n (27 — Q7). (4.10a)

We have now derived equations for the determination of
w, (7) and u; (7). They are equations (4.94), (4.10a), (4.9) with
the extra term (Jj‘1 * [ng; + g71) X R; inside the braces, and
equation (4.10). In these equations the nonfrictional contact
moment g,{7) occurs. When g = 0 and » is constant these
equations can be solved as in the case without any contact mo-
ment. However, it is necessary to determine if w, vanishes dur-
ing the collision, and if so whether it remains zero. It will re-
main zero if g, satisfies the inequality in equation (3.6a). To

find g, one must solve equation (3.5a) with G determined from

equation (4.1a) with w,, = 0.
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As an example let us consider a collision in which the last
two terms in equation (4.9q) vanish. Then if w, (7) # 0, (4.9a)
reduces to

dw,
p = —pne (J71 +J5 Dnsgn w,,. 1)
The solution of equation (1) is
w, (7) =w(0)—prue (J7 1+ J5 Dnsgn w,(0). 2)
The right side of equation (2) vanishes at
= lw, (0) | [vre (JT 1+ J5Yn] 1. 3)

If 7** = (1 + e)7y, equation (2) holds throughout the colli-
sion. However, if 7** < (1 + e)7, then w,(7) = 0 for 7 =
7**. This is so because equation (4.9q) with w, (7) = 0 yields
gy = 0, and this satisfies the inequality in (3.6a). Thus w, at
the end of the collision is given by equation (2) with 7 = (1 +
e)7y, or by w, = 0 according as 7** is greater or smaller than
(1 + e)7,. Finally equation (3.84) yields

I'= —» sgn w,(0)smin[r** (1 +e)7,]. @)

This example applies in particular to the normal collision of
two spheres with g = 0, including the special case of a sphere
and a plane. Then J; = 2/5 m rZI so equations (2)-(4)

become
Svr 1
—, (0 —_( + ) 0),
w, (1) =w,(0) 2> o T sgn w,(0) (5)
* —2(1 +—-1)”1| 0)l 6
-
5o \mirt " myr3 @01, ©

= —p(1+e)7y sgn w,(0)

F_2(1

if = (1+e)7,

-1 ™
) w,(0) if **=s(+e)r,.

+_.
5 \mir? m,r3
Finally since R, = nr; and R, = -nr,, equation (3.10q)
becomes
(1+e)rg
[9]_(—1)' 3 (p.rnxs ﬁT(T)dT+F). 8)
J J
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Table1 Comparison between the perturbation solutions (13) and numerical results for plane strain crack with 7= 0
n=1 n=2 n=3 n=4 n=3 n=17 n=10
Mode from (13) 0.785 1.120 1.387 1.611 1.804 2.112 2.439
—5{:0 ae;uf from He (1983) 0.785 1.111 1.360 1.571 1.756 2.078 2.483
0 % difference * 0.8 1.95 2.48 2.65 1.61 1.83
Mode from (13) 0.929 1.327 1.650 1.932 2.181 2.603 3.068
E:O S ae;_,]aff from He (1983) 0.929 1.314 1.609 1.858 2.077 2.458 2.938
Is} ' % difference * 0.98 2.48 3.83 4,77 5.57 4.24
Mode from (13) 1.941 2.746 3.341 3.807 4.139 4.744 5.248
_I;_Izl o6 ae‘;a? from He (1983) 1.941 2.745 3.362 3.882 4.341 5.136 6.139
Q ’ % difference * 0.004 0.06 1.97 4.88 8.26 17.0
Mode from (13) 3.142 4.470 5.511 6.390 7.152 8.421 9.870
_EI_:O ae;af from He (1983) 3.142 4.443 5.441 6.283 7.025 8.312 9.935
o) % difference * 0.60 1.27 1.67 1.78 1.16 0.66
Table2 Comparison between the perturbation solution (15) and numerical results for Mode III crack (7=0)
n=1.0 n=1.5 n=2.0 n=3.0 n=>5.0 n=10
7 from Amazigo (1974) 1.571 1.939 2.271 2.864 3.865 5.788
— from (15) 1.571 1.924 2.222 2.721 3.513 4.968
eele % difference 0 0.76 2.7 4.99 9.11 14.17

considered: (1) remote uniform shear stress o;, = Q (Mode II);
(2) remote uniform tensile stress o,, =7, 05, =S and shear
stress g, =Q (mixed Mode I and II); (3) remote antiplane
shear stress g,; = R (Mode III). We consider an incompressible
solid under small strain deformation and characterized in sim-
ple tension by

ele,=a(a/o,)" )]
where ¢, and o, are a reference strain and stress, « and n are

material constants. The tensile relation is generalized to multi-
axial states by the J, deformation theory according to

() @
€ 2 T, a,
where s;; is the stress deviator and g, is the effective stress
defined by
3 172
- (o)

Following procedures developed by He and Hutchinson
(1981) and Abeyaratne (1983), we produce solutions for the
relation between the J-integral and the remote stresses. The
method is based on a perturbation about a specially selected
uniform trivial state. With that state specified by ¢ and ¢, the
increments in deviatoric stress and strain satisfy

, 1 1
Sy =2p {7(5,‘1(512 +80) — Taijakl

2 1-n 2.
+ 3 €;j€ki€e } €xe 4
where
[v3
p= 3: &)
and

€o = Qeye /32

Mode II Crack ,
The trivial state is taken as g, = T<0, 0,, =0. We consider
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the plane strain problem, so that ¢3; = 7/2 and o, = (V3/ HITI.
In this uniform trivial state the crack remains closed, J is zero
and the nonzero strain components from equation (2) are

V3

2= TE€uT ¢ ©)

Onto this trivial state we superimpose an increment of remote
inplane shear stress Q so that

T
ofi=T, 03=0, oH=— 6 =0 M

Following procedures which closely parallel those men-
tioned above, we have solved the linear incremental problem
for a crack in a body with uniform incremental moduli
specified by equation (4) where the strains in the trival state
are given by equation (6). The result is a relation between the
J-integral and Q which is exact to lowest order in Q. The result
so obtained is

J 3nvn 2
=7 (2) ®
aok; 4 o
where we have taken
3 1/2
oo {T( o 4Q2)} ©)
and
es/e, =a(c/o,)" (10)

This formula is exact for n=1, but at this point we can only
argue for its accuracy for n>1 when 1Q [ is small compared to
ITl. The accuracy at arbitrary Q will be assessed below.

Mode I-1I Crack

For the crack subjected to a general plane loading, the same
trivial state ¢, =7<0, 05, =0, and 033 =7/2 is used. Onto
this trivial state we superimpose an increment of remote tensile
stress S perpendicular to the crack and an increment of remote
inplane shear stress Q parallel to the crack, so that

o5 =T, 65=0 (11)
The incremental problem is again a linear problem. The two

035=3S,

MARCH 1987, Vol. 54/ 241

Downloaded 10 Nov 2009 to 159.226.231.70. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES

incremental problems (¢5=3S, 653=0 and 65, =0, ¢53=0Q)
therefore can be solved respectively, and the final solution is
simply given by superimposing the two incremental solutions.

From He and Hutchinson (1981), for ¢5; =S, ¢35 =0, the in-
cremental solution is

J _31n/ﬁ(s)2

— 12)
08

aedoy 4
The incremental solution for 655 =0, 673 = @ is given by equa-
tion (8). Because the two incremental solutions are purely sym-
metric and antisymmetric, respectively, with respect to the
crack, the resulting expression for J for the combined in-
crements of § and Q is obtained by the sum of equations (12)
and (8) as

J  3nVn(S*+QY)
acwe o)

(13)
where now

oo= [-s— 1 +agey (14)

Formula (13) includes equation (8) as a special case. It is ex-
act for n=1 and it is consistent with the requirement that J be
homogeneous of degree n+ 1 in 6. For Q=0 it reduces to the
result of He and Hutchinson (1981), which has been shown to
be highly accurate for arbitrary combinations of S and T ex-
cept those for which S~ T, Table 1 compares the prediction
from formula (13) with numerical results for J/ (aeZvg) based
on a lower bound modified energy principle which was
presented by He and Hutchinson (1983) and He (1983). It is
seen that the predictions from formula (13) are in close agree-
ment with the numerical results for pure Mode II (S=T=0)
and in pure Mode I. The greatest discrepancy is for the mixed-
mode case with S/Q=1.96 where for n=10 the result from
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formula (13) is 17 percent above the numerical lower bound. It
is very possible that part of this discrepancy may stem from
the difference between the bound and the actual result.

Mode III Crack

The same procedures can be applied to the Mode III
problem. In this case the trivial reference state is ¢;; =7 and an
increment of remote stress 653 = R is applied. The resulting
relation between J and R which is exact to the lowest order in
Ris

_.i.: 3min (5_)2 (15)
aeoy 4 Lol

where
02=[3(r2+ RH)]\/2 (16)

This result agrees with that of Abeyaratne (1983) with 7=0.
As noted by that author, the result with 7=0 is in excellent
agreement with the exact results computed by Amazigo (1974),
as can be seen in Table 2.
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