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Comparison of Methane and Propane
Rockets

James A. Martin*
NASA Langley Research Center, Hampton, Virginia

Introduction

T HE potential benefits of hydrocarbon fuels and dual-fuel
propulsion for future Earth-to-orbit vehicles have been

shown in a number of studies.1"6 Of the several hydrocarbon
fuels considered, methane and propane are the favored can-
didates. In a previous study,5 methane and propane were com-
pared for use in a single-stage, Earth-to-orbit vehicle with
dual-fuel rocket propulsion. The results indicated a significant
advantage for propane, and further optimizations were con-
ducted using this fuel. The purpose of this Note is to show
how the comparison changes when both methane and propane
vehicles are optimized. The analysis is the same as that
described in Ref. 5.

Results
The results are shown in Figs. 1 and 2. In Fig. 1, the dry

mass characteristics of vehicles with both fuels are shown. The
flagged symbols at a hydrocarbon thrust fraction of 0.8 and a
hydrocarbon propellant fraction of 0.79 are the same results
shown in preliminary screening.5 As the vehicles are optim-
ized, the difference is reduced slightly, but the conclusions do
not change. Propane is still the preferred hydrocarbon fuel to
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Fig. 2 Effect of fuel on vehicle gross-mass optimization.

minimize dry mass. Figure 2 shows the corresponding results
for vehicle gross mass. In this figure, the difference between
propane and methane decreases noticably when moving from
the flagged symbols to the points with minimum gross mass.
Propane is the fuel which minimizes gross mass. The results
with methane indicate that a vehicle with only hydrogen fuel (a
hydrocarbon fuel fraction of 0.0) has a gross mass as low as
any dual-fuel vehicle.

Conclusion
When single-stage-to-orbit vehicles with methane and pro-

pane fueled rockets are optimized, the preferred fuel for
minimum dry or gross mass is propane.
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Second-Order Roll Damping
of Rolling Wings at Supersonic Speeds
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Nomenclature
b
B

= wing span
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C = chord length of the midspan section of the wing
Clp =roll moment derivative due to rolling velocity
Cp = pressure coefficient
k = tangent of sweep-back angle
K = reduced frequency
M =freestream Mach number
n = total number of fins and/or wings
TV = parameter (7 + l)(Af/2B2)
S =area of fin or wing panel
U = velocity of undisturbed flow
x,y,z = nondimensional coordinates referred to C
a. = angle of attack
7 = ratio of specific heat
co = rolling velocity, rad/s
$ = nondimensional velocity perturbation potential

referred to CU
</>0 = linear part of $
</>! = second-order part of <f>
Subscripts

x,y,z = partial derivatives with x,y,z

Introduction

T HE lifting pressure distribution and damping in roll are
calculated on the basis of a second-order theory similar to

the one developed by Van Dyke1'2 and Martin and Gerber.3

But the airfoils treated in Ref. 3 are two-dimensional swept-
back wings with an arbitrary symmetrical cross section. The
estimate of the effect of thickness was made by increasing the
Clp of the linearized theory by the same percentage as the
thickness increases the Clp for an infinite wing.

The work by Van Dyke1'2 indicates that second-order solu-
tions of the partial differential equation of steady and
unsteady supersonic flow can be obtained by the use of par-
ticular solutions. The partial differential equation considered
in this Note is not the equation of steady supersonic flow,
but it is similar, and we shall give the particular solution of
the rolling term. Then, we get a real three-dimensional
method to calculate the unsteady supersonic flow of a rolling
wing by means of the second-order theory. Hence, the series
of results from the unsteady second-order theory can be used
for rolling wings.4'5

For engineering practice, we apply strip theory to study
the problem of stability of a rolling wing of arbitrary plan-
form and cross-sectional shape at a certain angle of attack in
a supersonic stream. Calculating the roll damping of a
wingbodytail rocket, this method can give a second-order
correction to the calculation of the linearized theory, which
is systematically summarized in Ref. 6. The results shown
agree well with available experimental data.

Theory
The partial differential equation to be used is a special case

of the three-dimensional time-dependent equation for the
potential function of a nonviscous compressible fluid. Using a
method of analysis applied to the three-dimensional problem,7

it is found that in the sufficient condition: (Mb)2 < 1, /z2<^a2 ,
and Kol\i< or = O(<5) , where the dimensionles parameter d
is the thickness ratio of wing, a is a measure of the lateral ex-
tent of the boundaries, and \L is another one to define the ver-
tical extent of this neighborhood, the potential equation [Ref.
3, Eq.(4)] reduces to

[(N-

(1)

To solve the nonlinear equation for $, we use an iteration
procedure.1'3'4 The first-order equation is

The second-order partial differential equation is

<t>lzz-B2<t>lxx=-2KM2y<t>0xy

(3)

The equation of the surface of the body may be expressed by
z = H(x,y). The boundary conditions for the first-order solu-
tion [Ref. 6, Eqs. (9) and (10)] are <j>0(x,y,z) = 0 upstream of
the wing and

(4)

Similarly, the boundary conditions for the second-order
solution are 4>l(xty)z) = 0 upstream of the wing and

(5)-<i>Qzz(x,y,Q)H(x,y)

The coordinate axes are chosen as indicated in Fig. 1. The
first-order solution is

<t>Q=-Ky(z-x/B)-(\/B)H(x-Bz,y) (6)

The second-order potential function <t>l must satisfy the
nonhomogeneous equation (3). The particular integral of Eq.

Fig. 1 Coordinates for rolling wing.
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Fig. 2 Comparison of the second-order damping in roll coefficient
with experimental values.8
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Fig. 3 Another comparison of the second-order damping moment
with experimental values.9
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(3) was found to be

(7)

Now we can consider the solution <t>l as the sum of the par-
ticular solution Eq. (7) and the complementary solution 4>°\
that satisfies Eq. (2) and subjects to the boundary condition

(8)

The damping in roll coefficient Clp can be written as

Dynamic Stability Tests on Finned
Bodies at Hypersonic Mach Number

G. R. Hutt* and R. A. Eastf
University of Southampton, Hants, England

Clp=(2C*/Sb2) (9)
wing
area

Calculations and Discussion
We have calculated the roll damping moments of two

rocket models using the linearized and second-order theories.
The effects of wingbody interference are estimated by the
linearized theory.6

Figure 2 is a study of the effect of freestream Mach
number on the damping moment of the basic finner in roll.
The cross section of its fins is an 8% thick wedge. It presents
the values of the Clp estimated in this manner as compared
to the experimental values presented in Ref. 8. Figure 2 in-
dicates that the agreement between theory and experiment
has been improved considerably.

Figure 3 shows the roll damping moment of a rocket
model. The calculated results of the linearized and second-
order theories were compared with the experimental values
presented in Ref. 9. Because of the small thickness of the
wings (only about 3%), the use of the second-order theory
did not result in much improvement.

Conclusions
Because an exact particular solution Eq. (7) has been

found in this Note, a real three-dimensional second-order
theory may be used to study the problem of stability of a
rolling wing of an arbitrary planform and cross-sectional
shape in a supersonic stream. The results show that the
second-order theory can give a slight improvement in the roll
damping of a wingbody rocket based on the results of the
linearized theory.

Nomenclature
Cm = pitching moment coefficient = Maero/1/2pF2Sd
Cma = pitching aerodynamic stiffness derivative =

dCm/da
Cmfx = pitching moment derivative due to rate of change

of angle of attack = dCm/d(ad/2V)
Cmq = pitching moment derivative due to rate of pitch-

ing - d Cm /d (qd/2 V)
d = model centerbody diameter
L — total model length, nose to cylinder base
M = freestream Mach number
A^aero = aerodynamic moment
q = pitch rate of oscillating model
Red = Reynolds number based on cylinder body

diameter
S = cylinder area = (ird2/4)
V = flow speed
Xcg = axial distance from the nose tip to the oscillation

axis
a = angle of attack, deg
a =rate of change of a. w.r.t. time
p = flow density
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