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The closure method developed in earlier papers [J. Qian, Phys. Fluids 26, 2098 (1983); 27,
2412 (1984) ] is applied to the study of the inverse energy cascade in two-dimensional
turbulence. The resultant inertial-range energy spectrum is E(k) = 2.58g%2**€*/3k —5/3, Here g
is a localization factor and € is the rate of energy cascade. This result is compatible with the
numerical experiments by Lilly [D. K. Lilly, Phys. Fluids Suppl. I 12, 24 (1969)], Siggia and
Aref [E. D. Siggia and H. Aref, Phys. Fluids 24, 171 (1981) ], and Frisch and Sulem

[U. Frisch and P. L. Sulem, Phys. Fluids 27, 1921 (1984)].

I. INTRODUCTION

A two-dimensional (2-D) inviscid flow has the proper-
ty that the vorticity of each fluid element is unchanged.
Hence in addition to kinetic energy, enstrophy is another
inviscid constant of motion for 2-D turbulence. The presence
of this additional constant of motion has profound effects on
nonequilibrium as well as equilibrium statistics of 2-D tur-
bulence. In contrast to the three-dimensional (3-D) case, in
2-D turbulence the energy dissipation rate approaches zero
as the Reynolds number approaches infinity, so the inertial-
range cascade transfer of energy to higher wavenumbers is
excluded.! Instead of energy, the enstrophy is cascaded to
higher wavenumbers through an inertial range of the form’~*

E(k) = Cy**k 3. (1)

Here E(k) is the energy spectrum, y is the dissipation rate of
enstrophy, and C is a dimensionless constant and depends
upon a localization factor.* As Kraichnan>® pointed out,
besides the & ~* enstrophy-cascade inertial range, there is
another inverse energy-cascade inertial range through which
energy is cascaded to lower wavenumbers and it has the en-
ergy spectrum

E(k) = Aé**k —3/3, (2)

Here € is the rate of energy cascade, and 4 is Kolmogorov’s
constant. The existence of the inverse energy-cascade iner-
tial range has been confirmed by Lilly,® Siggia and Aref,” and
Frisch and Sulem® in their numerical experiments.

A new statistical-mechanics theory of 2-D turbulence
has been developed in Ref. 4, and it was applied to the study
of the enstrophy-cascade inertial-range spectrum Eq. (1) as
well as the inviscid equilibrium spectrum.® In the present
paper this theory is to be applied to the derivation of the
inverse energy-cascade inertial-range spectrum Eq. (2); and
it will be shown that the Kolmogorov constant A4 is not uni-
versal, but depends upon a localization factor, because of the
nonlocalness of the cascade process in 2-D turbulence. This
theoretical result could explain why the values of Kolmogor-
ov’s constant 4 determined by Frisch and Sulem® as well as
Siggia and Aref 7 is much larger than the value obtained by
Lilly.®

* Mailing address: P. O. Box 142, Branch Box 207, Beijing, People’s Re-
public of China.
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Il. ENERGY EQUATION AND 1 EQUATION
Let  and v be, respectively, the vorticity and the norm
of velocity vector of 2-D turbulence. We have*

2 oo
<—v2—>—=fo E(k)dk, (3

2 @
<—“;—)— = £ S(k)dk. (4)

Here {--) means the statistical average, k is the wavenum-
ber, and E(k) and S(k) are, respectively, the energy spec-
trum and the enstrophy spectrum. The relationship between
E(k) and S(k) is

S(k) = k2E(k). (5)
Often it is more convenient to introduce the quantity

G(k) = E(k)/(2mk) (6)
to replace E(k). Hence

E(k) =2mkg(k), §(k) =q(k)/k?, (7N

where g(k) is the average modal intensity introduced in

Ref. 4.
In Ref. 4 a complete set of independent real modal pa-

rameters and its dynamic equation are worked out to de-
scribe the vorticity dynamics of 2-D turbulence. The closure
problem was solved by the variation-perturbation method
developed originally for the 3-D case.® Thereby two integral
equations, the enstrophy equation and the 77 equation, were
obtained for two unknown functions: the enstrophy spec-
trum and the dynamic damping coefficient. For the study of
the inverse energy cascade, the enstrophy equation has to be
replaced by a proper energy equation, and the 77 equation is
still valid. By using Eqs. (5)-(7) and the enstrophy equa-
tion of Ref. 4, after a boring manipulation we obtain the
following energy equation:

(d, + vk *)E(k) = U(k), (8a)

where v is the kinematic viscosity, d, means differentiation
with respect to time ¢, and

A
Uk) =%f f V(k |p,r)dp dr (8b)
is the energy transfer spectrum function, and
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V(k |p,r) = (87/k)( p* — P)d(k,p,r)

Xq(k, p,r)/n(k, p,r). (8¢c)
Here
d(k, p,r) = 2[s(s — k) (s —p) (s — ) ]'*/ ( pr),
s=(k+p+n/2 (8d
q(k, p,r) = (k* — p»)g(k)a( p) + (p* —)§(p)
Xg(r) + (¥ —k*)g(rgk), (8e)
and
n(k, p,r) = (k) +7(p) + n(r). (8f)

Here 77(k) is the dynamic damping coefficient.* The A in Eq.
(8b) indicates that the integration is restricted to the follow-
ing infinite slot in the first quarter of the p-r plane:

A: (r>0, |k —r|<p<k +71)
or
(p>0, |k —p|<r<k +p). 9)

The energy equation (8) contains two independent un-
known functions, §(k) and n(k); E(k) is related to g(k) by
Eq. (7). Another equation of §(k) and 7 (k) is needed to
solve the closure problem; it is the 7 equation derived in Ref.
4. By using §(k) to replace g(k), it becomes

k2g(k)n(k)

A
= J.J dp drp2r2 d(k,p,r)q(k,P,r)

X{(k =2 =r2)[29(p) + 7(r)]
—(k72=p™ ) [9(p) + 29N}/ [n(k, pr) |2
(10)

Here d(k, p,r), q(k, p,r), and 5 (k, p,r) are defined in Eq.
(8).

lil. ENERGY TRANSFER FUNCTION IN ENERGY-
CASCADE INERTIAL RANGE

The energy equation (8) and the 7 equation (10) con-
stitute a closed set of equations for (k) [or E(X)] and
7 (k). From them it will be proved that in the energy-cascade
range the direction of energy transfer is backward, from
higher to lower wavenumbers. Moreover they allow us to
derive the inertial-range spectrum Eq. (2) and calculate the
Kolmogorov constant A. First of all we introduce the energy
transfer function

H(k)=fw U(k")dk’, (11)
k

which represents the rate of energy flow across the spectrum.
Here U(k) is the energy transfer spectrum function defined
in the energy equation (8). As in the 3-D case,’ from Egs.
(8b) and (11), after some manipulation we obtain

) k c
n(k)=f dk'f dpf dr V(k'|p,r),
k (o] b

b=max[pk' —p], c=k'+p.
In the energy-cascade inertial range the energy transfer

(12)
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function II(k) is a constant, independent of k. Hence Eq.
(12) becomes ,

o0 k
f dk'f dpJ-‘dr V(k'|p,r) = ee,
k 0 b
b=max[pk' —pl, c=k'+p,

which can be considered the special case of the energy equa-
tion (8) while it is applied to the energy-cascade inertial
range. In Eq. (13) eis the absolute value of the rate of energy
cascade, and e is its sign. When e = + 1 the energy transfer
is forward, from lower to higher wavenumbers; when
e = — 1, the energy transfer is backward, from higher to
lower wavenumbers. It will be shown that e = — 1, so the
energy transfer is backward.

(13)

IV. LOCALIZATION FACTOR

In order to derive the energy-cascade inertial-range
spectrum [Eq. (2)], suppose that (k) and (k) are of the
type of power function

g(k) =Ck™ and n(k)=Ck".
Substitute Eq. (14) into Egs. (10) and (13). We have
m—-—2n+4=0 and 2m—n+46=0. (15)

Thereforem = —§andn =3 LetC, = [4/(27) 1€%/? and
C, = Be'’?, Eq. (14) becomes

g(k) = [4/Q2m)]1ek —85, (16a)
7(k) = Be'*k 3, (16b)

From Egs. (7) and (16a), we obtain the energy-cascade in-
ertial-range spectrum [Eq. (2)].

When substituting the simple power-function solution
[Eq. (16) ] into the 77 equation (10), the integral on its right-
hand side is divergent. This related to the nonlocalness of the
energy transfer in 2-D turbulence. As a consequence, the
Kolmogorov constant is not a universal constant. As dis-
cussed in Ref. 4, in the enstrophy-cascade process the nonlo-
calness of the enstrophy transfer leads to the divergence of
the enstrophy equation while the 7 equation is convergent,
we call it a strong form of the nonlocalness of the cascade
process in 2-D turbulence. Now in the energy-cascade pro-
cess the nonlocalness of the energy transfer leads to the di-
vergence of the 7 equation while the energy equation is con-
vergent. We call it a weak form of the nonlocalness of the
cascade process in 2-D turbulence, since the energy (or en-
strophy) equation is more essential than the % equation. If
the solutions of Eqs. (10) and (13) are not restricted to the
simple power-function solution Eq. (16), there might be no
divergence. But it is a difficult task to solve Egs. (10) and
(13) to get solutions that are expressed by more complicated
functions, because Egs. (10) and (13) are nonlinear integral
equations. As proposed in Ref. 4, in order to overcome this
difficulty, a localization procedure is introduced to trans-
form the energy equation (13) and the 5 equation (10) into
corresponding localized forms. This localization procedure
is to omit the contribution of any triad interaction of (%, p,7)
for which the ratio of the maximum wavenumber of (k, p,r)
to the minimum wavenumber is greater than g, which is
called the localization factor.* The actual spectrum of 2-D

(14)
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turbulence in numerical experiments is cut off or bounded at
both low and high wavenumbers.®® This cutoff or bound is
roughly corresponding to the localization procedure, al-
though not exactly.

V. NUMERICAL SOLUTION OF LOCALIZED ENERGY
AND 1 EQUATIONS

It can be proved that the simple power-function solution
Eq. (16) does satisfy the localized energy and n equations
when the localization factor g is not too small and there is no
divergence. Substitute Eq. (16) into the localized form of
energy equation (13) and let k’'=k/u,p=vk’,and
r = wk'. After some manipulation we obtain

1 c
-e£=—g— dvln(—l—)f dw F(v,w),
AZ m Jg! v b
b=max[v,l —v], c=1+y, (17a)
Fw) =d(lLow)(v? —w?)[(1 —w Hw™ 23
X (1 _ v—-2/3) _ (1 _v—Z)U—2/3
X (1 =w=2)1/[14+v*? +w??]. (17b)

Here d(1,v0,w) is defined in Eq. (8d). Substitute Eq. (16)
into the localized form of the 77 equation (10) and letp = vk
and r = wk. After some manipulation we obtain

2 1 g (4
————=-——f dvf dw G(v,w),
A T Jg~! b

b=max[y,] —v], ¢c=1+y,
G(v,w) = F(o,w) [Vw?/ (v* — w?)]
X [(v2/3 - w2/3) + (v—-4/3 _ w—4/3)
+ 2w — v Pw ) 1/[1 + 07 + w?).
(18b)

(18a)

The integrals in Egs. (17) and (18) are numerically
evaluated for many different values of the localization factor
g; then Egs. (17) and (18) are solved to get e, A4, and B. The
values obtained in this way depend upon g. For all values of g
theintegralin Eq. (17) is negative,soe = — 1, i.e., theener-
gy transfer is backward, from higher to lower wavenumbers.
The resultant Kolmogorov constant A is given in Fig. 1. The
numerical results can be approximately fitted by a power
function

A =2.58g%%, (19)

From Eqgs. (2) and (19), the inverse energy-cascade inertial-
range spectrum is

E(k) =2.58g%2%¢*/3k —5/3 , (20)

VI. DISCUSSION

It is interesting to compare the present theoretical result
with numerical experiments. The Kolmogorov constant A
determined by numerical experiments is given in Table L. In
Lilly’s numerical experiment, the wavenumber range is nar-
row and the corresponding localization factor g is small;
hence according to the present theory A is also small. As for
the numerical experiment by Frisch and Sulem, the wave-
number range is wider, so the corresponding g and A4 are
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FIG. 1. Kolmogorov constant A versus localization factor g: eee numeri-
cal solution;—Eq. (19).

larger. The large value of 4 obtained by Siggia and Aref may
be as a result of their numerical experiment made “on a con-
siderably larger scale than Lilly was able to run” (see Ref.
7), i.e., corresponding to a large g, and partly because of
using a different model. Here we only make a qualitative
comparison. A quantitative comparison needs evaluation of
the equivalent localization factor g for each numerical exper-
iment in Table I. That is equivalent to solving the nonlinear
integral equations (10) and (13) for the complicated forms
of real spectrum used in the numerical experiments. It is a
very difficult problem.

The nonlocalness of the cascade process is a characteris-
tic feature of 2-D turbulence. It assumes a strong form for
the enstrophy transfer and leads to divergence of the en-
strophy equation while the 7 equation is convergent. It as-
sumes a weak form for the energy transfer and leads to the
divergence of the 7 equation while the energy equation is
convergent. As a consequence, the dimensionless constants
Cand 4 in Eqgs. (1) and (2) are not universal. Physically the
nonlocalness of the cascade process in 2-D turbulence means
that the long-range correlation of velocity field or the orga-
nized motion is much more important in 2-D turbulence
than in real 3-D turbulence. As Fornberg'® pointed out, in
2-D turbulence some well-organized structure develops with
time. Strictly speaking, the energy or enstrophy transfer in
2-D turbulence is not a cascade process.

It is interesting to compare the divergence of the re-
sponse equation in Kraichnan’s DIA theory with the diver-
gence studied here. In 3-D turbulence the cascade process
can be approximately considered to be local, i.e., the contri-
bution of the triad interaction of (k,p,r) can be neglected
when the ratio max{k,p,r}/min{k,p,r} is quite large. In

TABLE 1. Results of numerical experiments.

Authors A Model

D. K. Lilly* (1969) 4  2.D Navier-Stokes equation
U. Frisch and P. L. Sulem® (1984) 9  2-D Navier—Stokes equation
E. D. Siggia and H. Aref© (1981) 14 Point-vortex model

*D. K. Lilly, Phys. Fluids Suppl. II 12, 240 (1969).
YU. Frisch and P. L. Sulem, Phys. Fluids 27, 1921 (1984).
°E. D. Siggia and H. Aref, Phys. Fluids 24, 171 (1981).
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Kraichnan’s DIA theory the divergence of the closure equa-
tion (the response equation) is a result of improper treat-
ment of the effect of large scales on small scales,'’ and not
due to the real nonlocalness of the cascade process in 3-D
turbulence. For this case the divergence of the closure equa-
tion is said to be spurious, and is a deficiency of the closure
method. In 2-D turbulence the divergence of the closure
equation (the enstrophy equation or the 7 equation) is “gen-
uine,” because it is a consequence of the real nonlocalness of
cascade processes in 2-D turbulence. Of course, at the pres-
ent time there is no direct experimental verification of the
nonlocalness of cascade processes in 2-D turbulence. If it
should turn out that the cascade processes in 2-D turbulence
could be considered local as in the 3-D case, then the diver-
gence of the closure equations for 2-D turbulence is also
spurious, and should be regarded as a deficiency of the pres-

3611 Phys. Fluids, Vol. 29, No. 11, November 1986

ent theory. In the author’s opinion, as mentioned before, in
2-D turbulence the cascade processes cannot be considered
to be local and the divergence of the closure equations is
genuine.
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