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The variational approach to the closure problem of turbulence theory, proposed in an earlier
article [ Phys. Fluids 26, 2098 (1983); 27, 2229 (1984) ], is extended to evaluate the flatness
factor, which indicates the degree of intermittency of turbulence. Since the flatness factor is
related to the fourth moment of a turbulent velocity field, the corresponding higher-order terms in
the perturbation solution of the Liouville equation have to be considered. Most closure methods
discard these higher-order terms and fail to explain the intermittency phenomenon. The
computed flatness factor of the idealized model of infinite isotropic turbulence ranges from 9 to 15
and has the same order of magnitude as the experimental data of real turbulent flows. The

intermittency phenomenon does not necessarily negate the Kolmogorov &

~5/3 inertial range

spectrum. The Kolmogorov k ~3/3 law and the high degree of intermittency can coexist as two
consistent consequences of the closure theory of turbulence. The Kolmogorov 1941 theory
{J. Fluid Mech. 62, 305 (1974) ] cannot be disqualified merely because the energy dissipation rate

fluctuates.

I. INTRODUCTION

The intermittency of turbulence was first inferred by
Batchelor and Townsend."? Since then many theoretical and
experimental works have been done on this subject. A quan-
titative measure of the intermittency is the amount by which
the flatness factor of the derivative of the turbulent velocity
field,

F= ((axlul)4>/<(axlul)2)2’ (n
exceeds the value 3.0, which corresponds to Gaussian prob-
ability distribution. Here #, is the velocity component along
the x, direction, d,, denotes the partial differentiation with
respect to x;, and (---) means the statistical average. Experi-
ments** show that the flatness factor F depends on the
Reynolds number

R A= uml / V. (2)
Here u_,,, is the rms velocity of one component of the turbu-
lent velocity field, v is the kinematic viscosity, and

A= Uy /{3,y u) )2 (3)

is Taylor’s microscale.

Small Reynolds number grid turbulence experiments
give F~4 at R, ~50."~ Kuo and Corrsin® present laborato-
ry data that show F increasing to 10 at R, ~1000, which is
about the limit for laboratory flows. The atmospheric turbu-
lence measurements give widely scattering values of F at
much higher R ;. Wyngaard and Tennekes® present data of F
from 18 to 40 for R; from 2000 to 10 000, but Sheih-Ten-
nekes-Lumley values’ are much lower and range from 5 to
15 for R, from 2300 to 6000. As emphasized by Tennekes
and Wyngaard,® there are some technical difficulties in mak-
ing reliable measurements of F at high Reynolds number.
Recently a series of further experiments have been per-
formed by McConnell,’ Park,'® Williams and Paulson,'’
Gagne and Hopfinger,'? and Antonia et al.'?

Many efforts have been made to include the intermit-
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tency phenomenon in the turbulence theory. Kolmogorov'*
and Oboukhov'® modified their original similarity hypothe-
sis to take account of intermittency and further assumed that
the logarithm of the average energy dissipation rate over a
finite volume has a Gaussian distribution. Along this line
many heuristic phenomenological models of the dissipation
fluctuation have been proposed by Novikov and Steward,'®
Corrsin,!” Gurvich and Yaglom,'® Tennekes,'® Saffman,?®
Kuo and Corrsin,?! Kraichnan,?® and Van Atta and An-
tonia.?®> Mandelbrot** applied the concept of “fractal dimen-
sion” to the study of intermittency. A “S model” of intermit-
tency was developed by Frisch, Sulem, and Nelkin.?®
Nelkin?5?® studied the similarity between the critical phe-
nomenon and intermittency and proposed a phenomenologi-
cal scaling theory to relate measurable scaling exponents to
each other. All these phenomenological approaches do not
meet the objective of the analytical turbulence theory, which
evaluates the statistical properties of turbulence, e.g., the
flatness factor, directly from the Navier-Stokes equation by
means of the general method of statistical mechanics.

The central problem of the analytical turbulence theory
is the closure problem. There are many methods for this
problem.>*?%-32 A serious common drawback of many clo-
sure methods is the complete neglect of intermittency. As far
as the author knows, there is no published paper in which a
closure theory is applied to the evaluation of the flatness
factor. The purpose of this article is to develop a closure
theory that would enable us to evaluate the flatness factor
directly from the Navier-Stokes equation by means of the
general method of statistical mechanics. This will be done
without appealing to any extra phenomenological model.

H. FLATNESS FACTOR AND PROBABILITY
DISTRIBUTION
For an isotropic turbulence?
€

2 o0
a, 2 =-——J k2E(k)dk = , 4
( 14y) 5 J (k) (157) 4)
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where E(k) is the energy spectrum and € is the energy dissi-
pation rate. Substituting (4) into (1), we have

F=225(v/€)*((3, u)*). (5)

A complete set of independent real parameters [ X; ] has
been worked out in Ref. 31 to describe the dynamic state of
turbulence; they are the real or imaginary parts of turbulent
velocity components in properly defined wave-vector-de-
pendent coordinates. The statistical behavior of turbulence
is described by the probability distribution P=P([X;])
over an ensemble of numerous realizations of the turbulence,
which satisfied the Liouville equation.®’ Assuming that the
perturbation solution of the Liouville equation is

P=pO L pW 4 p@ (6)
then the flatness factor can be expanded into a series

F=FO L FO L O . (D
Here

2
F™ = 225(1) J(&xlul)“P""H dX,, (n=0,1.2,.).
€

(8)

A homogeneous isotropic incompressible turbulence is
assumed to be confined within a large cubic box with side L
and cyclic boundary condition. The velocity component
u,(x) can be expanded into a Fourier series,”' where

u(x) = H Yu,(Kexp(ik-x), H=Qm/L), (9)
k

u,(k) = (27)_3JJJu1(x)exp( — ik - x)dXx, (10)

are the Fourier components of the velocity field, and Z,
means the summation over the discrete wave vector k. By
means of (9) we have

(95 u)t) = H42klplrlsl<ul(k)ul(p)ul(r)ul(s))
kprs
Xexp[i(k +p+r+s8) *x]. (11)

Because of the homogeneity of turbulence, Eq. (11) is equi-
valent to

(B u)*y = H*Y kypyrisi(uy (K)uy (P)uy (r)u,(s))

kprs

(12)

><("‘k+p+r+a1.0’

whered, , , . 1 50 is the Kronecker symbol; k, p, r, and s are
discrete wave vectors.

By means of the formulas in Appendix A of Ref. 31 we
have

(uy(K)u, (p)uy(r)u,(s))

=3 T (—DEHETEO 2, (k)my, (B)

abed affyoc
X1y (P)ng, (8)S(NS()HS(M)S(n)( X, XX, X,),
(13)
with
i=(a,ak), j=(Bbp), m=(ycr), n=I(04ds).
(14)
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For the meanings of #,; (k) and S(/) see Appendix A of Ref.
31. From (8), (12), and (13)

2
F™ =225 (l) H*S kpirys,

€ kprs

X <u1(k)ux(P)u1(l')u1(S))(")5k+p+.+,,o

2
=225 (_v_) H4Zk1P1r1S1( — 1) @+tBtr+a
€

ijmn

X (K)ngy (PIng (r)ny, (8)S(E)S(/)S(m)S(n)

XXX X, X, ) P8y 4 psevno (15)
Here
(o)™ =f(---)P‘")H dX, (n=0,12,.). (16)
For later use we define
()= [ ()P0 + PO)TLaX, (an

Ill. PROOF THAT F©@ 4 F — 3.0

By the variational approach to the closure problem we
obtain®!*2

PO=T11(2nd,) " exp[ —X¥/(24,)] » (18)
(v, —v))(X7—¢))
P(0)+P(l)= (1 _ i i i i
2 (27;4;)
A, XXX
. g XX, X )p«», (19)
% (600 + 7 + 1))

The ¢; is related to the energy spectrum. The energy spec-
trum and the dynamic damping coefficient 7 satisfy two in-
tegral equations: the energy equation and the 7 equation.
When the four wave vectors k, p, r, and s are such that the
modesi,j, m,and nin (13) are all different, from (13), (17),
(18), and (19), we have

(X.XX,X,)"=0,

(uy (K)u, (p)u, (r)u, (s))°" =0.

(20)
(21)

Because of the presence of 8, ,,,r 40 in (15), when
L— o and H—O0, the contribution of ( XX, X,,X,)°" to
F© 4 FWis not zero only when the four wave vectors can
be divided into two groups—one is (k, — k), and the other is
(p, — p). After some manipulation we have

FO L FV=675(v/e)*H*

X Sk ipt (uy () P|lu, (|0 (22)
kp

Here |---| means the absolute value. From (13), (18), and
(19), if k is not equal to p or — p, we have

(lul(k)lzlul(l‘”z)m) = <Iu1(k)|2|>(01)<|u1(l))|2)(01)- (23)
Hence (22) becomes
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2
F© +F(l) — 675(1-) H4(Zkfpi<|u1(k)|2)(on
€ kp
X (|1 (D) [2YOV 4+ 25k 4 [ (| (k) |4y
k

- ((Im(p)l’)“’”)"]). (24)

When L— o0 and H—0 the second summation in (24) ap-
proaches zero. After some manipulation we have

o 2
F‘°’+F<”=675(l)2(if kZE(k)dk), (25)
€ 15 Jo
where
E(k) = 4k *g(k) = 4mk 2(2H){ X2)© (26)

is the 3-D energy spectrum defined in Refs. 31 and 32. From
(4) and (26)

FOLF®=30 (27)

So long as we use (19) as an approximate expression for
the probability distribution P, according to (20) we neglect
the correlation between four different modes. In this case the
flatness factor is 3.0 by (27), so the degree of intermittency is
zero. In order to study the intermittency phenomenon, the
higher-order term P ? in the perturbation solution (6) has to
be considered. Many closure methods neglect these higher-
order terms and fail to explain the intermittency phenome-
non.

IV. HIGHER-ORDER TERMS IN PROBABILITY
DISTRIBUTION

The Liouville operator corresponding to the Navier—
Stokes equation is*'
L= - Z((v,. —v)d,X, — ZA,-ijj-Xmax,). (28)
i jm

J

ifjmn

PP = ( + ¥ Dy X X; X X, /[¢i(71.~ + 0+ M 1)) + ---)P“”,

with

Dijrrm = 22¢uAivj (Avmn/¢u + 2‘Amun/¢m )/(nv + Mm + Nn )

According to the Langevin—-Fokker—Planck model,*' the
Liouville operator (28) can be approximated by the
Fokker-Planck operator

j(f) = —zﬂ‘(aXlX, +¢ia:2\’i)' (29)
Hence
55:3_3(}') (30)

can be considered a small perturbation operator. The Liou-
ville equation of a stationary turbulence is

(LD +8L)P=0. (31)
Substituting (6) into (31), we have

LHpo =, (32a)

LPPV= —52PC, (32b)

LPpO= —52PY, (32¢c)

andsoon. We havesolved (32a) and (32b) toget P ®and PV
in Ref. 31; they are given by (18) and (19). From (32c¢)

PP= — (g~ 62P". (33)

By the eigenfunction expansion method of the Fokker—
Planck operator, the right side of (33) is a complicated lin-
ear combination of the following terms: '

(X?_¢i); Xin§ (X?_¢i)(X}_¢j); XinXm§
(X?_¢i)Xij§ (X?_¢i)XinXm§

(X7 =) (X — ) (X7, — ) =3

X,-XijX,,; ves X,-XijXnXuXU. (34)

It is not necessary to evaluate the coefficients of all the above
terms. Only the term X, X, X, X,, contributes to the correla-
tion of four different modes; all other terms have no contri-
bution. Hence the manipulation is greatly simplified, and we
have

(35)

(36)

We did not make D,,,,, symmetrical with its subscripts j, m, and n, although it may be symmetrized.

From (35), for four different modes i, j, m, and n, we have

< XinXan >(2) = J‘XinXanP(z)H Xm = [¢i¢j¢m¢n/(ﬂi + ”j + nm + nn )]

X (I)jmnDijmn/¢i + PmniDjmm‘/¢j + Pm'ijm'j/¢m + Piijmjm/¢n )

Here P, is a perturbation operator, and
pP,.D,

Jmn™ijmn =Dijmn +Dijnm +Dimnj +Dimjn + Dinjm +Dinmj‘

(37

(38)

Notice that { X,X,X,,X,)® = ( X,X,X,,X,)® = 0. The higher-order term P of the perturbation solution (6) must be
considered in order to re-evaluate the degree of intermittency of turbulence, which depends upon the correlation of four

different modes.

After a long manipulation of Egs. (15), (36), (37), and (38), and the formulas in Appendixes A and B of Ref. 31, we

V. EXPRESSION FOR F @
have
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FO_43 200H6(1)2 3 GUp )P PIF(PIGS)S,s s pBurss

€ kprst

X{{7(t) +7(r) + ) k) +7(p) +7(r) +7(s)1} " (39)

Here G(k,p,r,s,t) is a complicated geometrical factor, and

G(kprst) =k, prs{2[¢(0)/¢(r) 1 [a(kp)d(k,tr)a(rs) + b(kp)e(ktr)a(r,s)
+a(k,p)e(r,t,k)b(rs) + b(k,ple(ktr)b(rs)] — [a(k,p)d(k,tr)a(ts)

+ b(k,p)c(k,tr)a(ts) +a(kp)d(kts)a(tr) + bkp)elkts)a(tr)]},

a(k,p) =k, _Pl(k‘p)/P2>
b(kp)=1-— (kl/k)z - (Pl/P)2 +p,k1(k'p)/(kp)2,

c(k,p,r) =k, —py(k+p)/p> —ri(ker)/F +r (k-p)(r-p)/(rp)?

(40a)
(40b)
(40c)
(40d)

dk,p,r) =1 — (ki /k)> — (pi/p)> — (r/r)* + p ik, (k= p)/ (kp)?

+ ik (Ker)/(kr)? + pyri(x=p)/(rp)? — kyr(r-p) (k- p)/ (kpr)?,

e(kpr) =k+r— (k-p)(p-r)/p’.

For the evaluation of the average modal intensity, Eq.
(19) is a good approximate expression for the probability
distribution, and we have*':3

(XD =ed, e,=1—v/n,. (41)

For isotropic turbulence ¢,, { X 7), and 7, are functions of k
only. Let

q(k) =2H(X?), q(k)=2H¢; (42)
we have

g(k) =e(k)g(k), e(k)=1—vk?/q(k), (43)
and

E(k) = 4mk *q(k) = 4k e (k)G (k). (44)

Here E(k) is the 3-D energy spectrum. Let L— 0 and H—0,
and by means of the formulas in Appendix B of Ref. 31, Eq.
(39) becomes

2
F2) = 5400(%) f ”dp dr dsG(k,p,r,8,)3( p)a(r)(s)

x{[n() +7(r) + ()]

X [9(k) +9(p) +n(r) + ()1}, (45)

witht =r 4+ sand k = t — p. The right side of (45) isa 9-D
(nine-dimensional) integral.

VI. FORMULA FOR E(k) AND v(k)

In order to calculate the integrand of the 9-D integral in
(45), it is necessary to determine §(k) and 77 (k). Since g(k)
is related to E(k) by (44), it is equivalent to determining
E(k) and (k). In Ref. 31 the variational approach to the
closure problem is successful in determining E(k) and % (k)
for the inertial range, and gives

E(k) = 1.196*3k =53, y(k) =0.268¢'°k */>. (46)
In Ref. 32 the variational approach is extended to determine
E(k) and 57 (k) for the universal equilibrium range by means

of the equation error method of the control theory, and gives
that

E(k) =€2/3k _5/3F(k/kd),
F(x) = 1.19[1 + 5.3x*/%]exp( — 5.4x%/3),

(47a)
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(40e)
(40f)

n(k) =0.268¢'°k ¥*[1 + 3.73(k /k,)**].  (47b)

Here k;, = (e/v*)"/* is the Kolmogorov wavenumber.

Let k, be the characteristic wavenumber of the energy-
containing eddies; Eqgs. (46) and (47) are valid for k> k,
only. Although the variational approach to the closure prob-
lem has not yet been extended to determine the accurate
behavior of E(k) and (k) for k =k, the general character-
istics of E(k) and n(k) for small k are known. The energy
spectrum E(k) has a maximum around k, When k ap-
proaches zero,” firstly E(k) =k, then E(k) ~k.* As long as
the Reynolds number R is very high and k, >k, there is a
wide inertial range; the detailed structure of E(k) and 5 (k)
near k, is not important for the evaluation of the 9-D integral
in (45). For the numerical computation of the flatness factor
of high-Reynolds-number turbulence, the following formula
is used for E(k):

E(k) =Pk —5PF(k /k;)/[1 + (ko/k)%?],
if 0.01k,<k<2k,,
E(k) =0, if k<0.01lk, or k>2k,. (48b)

The formula (47b) is used for % (k) for numerical computa-
tion. The cutoff at 0.01k, and 2k, is for convenience in nu-
merical computation. Since E(k) is nearly zero when
k <0.01 k, or k > 2k, this cutoff is acceptable. When k> k,,
(48) becomes (47a). When 0.01 &, <k <0.5k,, by (48),
E(k) =~k for small k, which is the expected behavior of E(k)
for small k. It has to be emphasized that (48) is a good
approximation only when R is very high. A much simpler
formula for E(k) may be

E(k) =3k 73F(k /ky), if ko<k<2k,, (49a)
E(k) =0, if k<k, or k>2k,. (49b)

Tentative numerical computation (by the Monte Carlo
method, see the next section) shows that when R is very
high, (48) and (49) give nearly the same results.

(48a)

Vil. NUMERICAL COMPUTATION BY MONTE CARLO
METHOD

The Monte Carlo method is used to evaluate the 9-D
integral in (45). Because of the cutoff at 0.01%, and 2k, the

J. Qian 2168

Downloaded 11 Nov 2009 to 159.226.231.78. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



integration domain is finite instead of being infinite. By (45)
the integrand of the 9-D integral is a function of wave vectors
p, T, and s only. The random sampling points in the 9-D
space (p,r,s) are generated by the standard method of pro-
ducing uniformly distributed pseudorandom numbers,
based on the recurrent use of the following residue for-
mula,3>3*

B, .1 =cB,(Mod M).

Here ¢ and M are properly selected positive numbers.
The ratio ¢(£)/#(r) in (40a) is to be calculated by the
following formula:

d(0)/b(r) =G(t)/G(r) = Pe(r)E@)/[t’e()E(r)].
(50)

When r~ — s and t~0 the ratio ¢(¢#)/¢(r) makes the geo-
metrical factor D(k,p,r,s,t) oscillate between large positive
and negative values. This will lead to some anomalous fluc-
tation, although the probability is very small. Actually when
t=0,r= —sandk = — p, thefour modesi,j, m,and n are
not different; their correlation has been considered in Sec.
II1. Hence in the numerical computation we exclude any
sampling point for which ¢ /(7 + 5) < 0.05.
The relationship between u_,, and E(k) is

ER f E(k)dk.
2 o

By (2), (3), (4), (48), and (51) the corresponding R, was
calculated for many different k,/k,;. Then by interpolation
ky/k, can be obtained for a given R, . The value of ky/k, in
Table 1 is obtained in this way. In the numerical computa-
tion all wavenumbers are made dimensionless by using k; as
unit.

Ten different sets of 10° random sampling points are
used to calculate the 9-D integral in (45) by the Monte Carlo
method?® so that ten different values of F® are obtained.
The F® obtained in this way is a random variable because
the sampling points are random. Then the standard statisti-
cal method is applied to the evaluation of the expected value
and the standard deviation of F ®. The final results are given
in Table I for R, from 250 to 10°. The comparison with the
experimental data is given in Fig. 1 for R; from 250 to 2000.

(31)

VIll. DISCUSSION

We have succeeded in developing a closure theory to
evaluate the degree of intermittency of turbulence directly

TABLE I. Degree of intermittency of isotropic turbulence.

‘00_ ¥ T T T _‘ T ]
N .
| Lol
o o AI LI
10:— DLAQ_IG'eg :
1 L 4 P | !
102 103 R

FIG. 1. Variation of flatness factor with Reynolds number: I Present theo-
retical result; @ Wyngaard and Tennekes (1970); { Gibson, Stegen, and
Williams (1970); @ Sheih, Tennekes, and Lumley (1971); & Kuo and
Corrsin (1971); A McConnell (1976); ® Park (1976); O Williams and
Paulson (1977); A Gagne and Hopfinger (1979); B Antonia, Satyapra-
kash, and Hussian (1982).

from the Navier-Stokes equation by the general method of
statistical mechanics, without appealing to any extra pheno-
menological model. The expected values of the degree of
intermittency given in Table I are a sample average and,
therefore, it is a random variable, so there is some fluctuation
in its change with R . The standard deviations given in Ta-
ble I are quite large. In order to reduce the standard devi-
ation, it is necessary to increase the number of sampling
points. Since the convergence of the Monte Carlo method is
extremely slow, it would increase the computation time
greatly to achieve a little more accuracy. The computed val-
ues of the flatness factor range from 9 to 15 for Reynolds
numbers from 250 to 10° and have the same order of magni-
tude as the experimental data. The change in F'is small, and
asymptotically F seems to approach a constant as R, be-
comes very high. This result is not in agreement with the
conclusions of most phenomenological theories,'** which
show that

where A is a constant between 0.2 and 1.5. This would indi-
cate a significant increase in F with R ;. The available experi-
mental data of F for high Reynolds number vary widely.>"**
Most experimental data support (52), while the Sheih-Ten-
nekes—Lumley values seem to be in favor of the present theo-
retical results. This disagreement between the present theo-

Reynolds Expected Standard Flatness factor
number R, (ko/ky) value of F @ deviation of F @ F=F9 4+ FY 4 F?

250 4.10x 1073 6.7 2.3 9.7

500 1.26x 1073 1.4 22 10.4
1000 4.16x107* 8.6 1.9 11.6
2000 1.40x10~* 10.5 2.6 13.5
5000 3.38x 1073 10.1 2.4 13.1
10* 1.18x 1073 11.7 2.3 14.7

2x 10 4.11%x107° 11.5 2.0 14.5
5%10% 1.04x10~¢ 12.0 2.2 15.0
10° 3.65x 1077 11.8 25 14.8
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retical results and Eq. (52) is very interesting and reflects
the conflict of the Kolmogorov 1941 and 1962 theories.
The 1941 theory is intended to describe an asymptotic
universal statistical state attained by the small-scale motion
after a long cascade process.”” The 1941 theory does not
deny the weak dependence of the small-scale statistics on the
Reynolds number or other mean-flow parameters; it only
asserts that this dependence becomes negligible when the
Reynolds number is very high. On the contrary the 1962
theory denies the existence of such a universal statistical
state, and asserts that the dependence of the small-scale sta-
tistics on the macrostructure persists even when the Reyn-
olds number approaches infinity. In this sense we say that
the 1962 theory disqualifies the 1941 theory. This point can
beillustrated by the energy spectrum E(k) in the small-scale
range. According to the 1941 theory we may assume that

E(k) =€k 5[4y + A, (KL) ' + A,(kL) 2
+ -], kL>1. (53)

Here L is the characteristic length of the large-scale motion.
According to the 1962 theory we have,

E(k) =€k —33(kL) —*°[B, + B,(kL) !
+ By(kL) >+ -], kL»1. (54)

Here u is a constant between 0.2 and 0.5.2%°%*° Equation
(53) means that the dependence of E(k) on the large-scale
motion in the small-scale range is weak, and when kL is very
large we have asymptotically

E(k) = 4,6%k 373,

with 4, being a function of k /k, only. This is the Kolmo-
gorov k ~3/% law. On the contrary Eq. (54) means that the
dependence of E (k) on the large-scale motion persists even
when kL— o, because u is positive and B, might depend on
the macrostructure.® The situation is the same for the rela-
tionship between the flatness factor F and the Reynolds
number R ;. The 1941 theory does not deny the weak depen-
dence of Fon R, , it asserts that F asymptotically approaches
a constant as R, approaches infinity. On the contrary the
1962 theory asserts that F increases infinitely with R, ac-
cording to (52). The exponent 4 in (52) is proportional to u,
for example, & =y or A = 1.5 u.** In the framework of the
1962 theory, the constant i or some expression, for example,
Loy = (pn/18)(n — 3) or ( 1£/3) (n — 3) used in Ref. 39,
can be considered as a measure of the degree of dependence
of small scales on large scales.

In the analytical turbulence theory it is generally as-
sumed that a fully developed turbulence is isotropic and con-
fined in a cubic box with side L and cyclic boundary condi-
tion; then let L approach infinity.?*->*!*? This idealized
model or infinite isotropic turbulence, which is also used in
this article, has no macrostructure, so the role of the mac-
rostructure is automatically discarded. Hence it comes in
conflict with the 1962 theory. The model of infinite isotropic
turbulence is in accordance with the 1941 theory, and corre-
sponds to the universal statistical state attained by small
scales after a long cascade process, as assumed in the 1941
theory. The present theoretical results in Table I represent
an estimation of the flatness factor of this idealized model of

(55)
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infinite isotropic turbulence with a truncated energy spec-
trum. As explained in the last two sections, different values
of the ratio k; /k, of the truncated energy spectrum are used
to correspond to different Reynolds numbers. In the present
theoretical framework the flatness factor would approach a
constant that is the F value of the infinite isotropic turbu-
lence without truncating the energy spectrum, which is in
disagreement with (52). This disagreement reflects the con-
flict of the Kolmogorov 1941 and 1962 theories.

The weight of experimental evidence is more in favor of
some form of the 1962 theory than in favor of the 1941 the-
ory, but this is very much an open problem. The 1941 theory
is attractive because of its simplicity and self-consistency. As
pointed out by Kraichnan,” once the 1941 theory is aban-
doned, a Pandora’s box of possibilities is open. The 1962
theory means that the small-scale statistics can not be uni-
versal, but depend upon the Reynolds number and other
mean-flow parameters,* while the small-scale motion of tur-
bulence is random, the large-scale motion is organized or
coherent and depends upon the boundary conditions. When
the small-scale structure is dependent on the macrostructure
of turbulence, the statistics of the random small-scale mo-
tion would have to include structures pertaining to the large-
scale motion.*! It would be a formidable task for the analyti-
cal turbulence theory. According to the 1962 theory,*'* the
variance of the logarithm of the average dissipation rate €,
over a sphere of radius 7 is*

P =A+pin(L/r), (r<L), (56)
and as a consequence,
F=BR". (57)

Here A depends upon the macrostructure of turbulence and
Bis a function of 4, so B depends upon the macrostructure.
Hence by the 1962 theory, the relationship between Fand R ;
might not be universal, but may depend upon the macros-
tructure,* i.e., depend upon the conditions under which the
turbulent flow develops.

The closure method itself does not necessarily mean that
the flatness factor has to asymptotically approach a con-
stant. The theoretical results in Table I are the consequence
of the application of the closure theory to the idealized mod-
el of infinite isotropic turbulence. If the 1962 theory is cor-
rect, it must be in accordance with the Navier—Stokes equa-
tion, and its conclusion Eq. (52) will be a consequence of the
application of the closure method to a proper model of tur-
bulence that reflects the important role of the macrostruc-
ture in the small-scale statistics. At the present time there is
no such application of the closure method because of the
formidable mathematical difficulty. For the analytical tur-
bulence theory, the infinite isotropic turbulence having no
macrostructure is the unique workable theoretical model for
the study of common features of small-scale statistics of var-
ious real turbulent flows at very high Reynolds numbers.
The intermittency phenomenon indicated by a high flatness
factor is a common feature of the kind. The work reported in
this article shows that a closure theory can explain the inter-
mittency phenomenon if the higher-order terms in the per-
turbation solution of the Liouville equation are considered.
Most closure theories discard these higher-order terms and
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fail to explain the intermittency phenomenon.

Kolomogorov traces the origins of the 1962 theory to a
remark by Landau that questioned the validity of the Kol-
mogorov k ~3/3 law because the local energy dissipation rate
fluctuates.*?? In Ref. 31 the variational approach to the clo-
sure problem of turbulence theory is applied to derive the
Kolmogorov k ~*/* law and evaluate the Kolmogorov con-
stant. In this article the same closure theory is extended to
the calcuation of the flatness factor that indicates the degree
of intermittency; the resultant F values are very high and
have the same order of magnitude as the experimental data.
As pointed out by Kraichnan,?? the 1941 theory can not be
disqualified merely because the dissipation rate fluctuates.
The Kolmogorov k ~*/* 1aw and the high degree of intermit-
tency can coexist as two consistent consequences of the clo-
sure theory.
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