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Dynamic Response of a Laminated 
Plate With Friction Damping 
A sandwich-type plate with metal facings and felt core, fastened by bolts, was 
studied using both test and finite-element analysis. This type of plate is cheap, light, 
damping-effective and without pollution; therefore, it is widely used in 
astronautical engineering. The tests were conducted for different felt thicknesses, 
bolt numbers, and fastening forces. The results show that the damping depends on 
friction between the plates and the felt. As compared with an identical stiffness 
solid plate, the damping of laminated plates can be increased up to 30 times. A mesh 
with rectangular elements was adopted in the finite-element analysis. In accordance 
with the slipping mechanism, a rectangular plate clamped on one edge was analyzed 
with the foregoing elements to determine the resonant frequency and the damping. 
The difference between the calculated and tested results was within 5 percent for the 
resonant frequency. 

Introduction 
In recent years, viscoelastic materials have been frequently 

used for decreasing structural vibration. Considerable 
damping can be achieved by using them, but the damping 
capacity of these materials is both frequency and temperature 
sensitive to a much greater extent than that found with 
friction. Therefore, frictional damping has also been studied 
and design criteria for the useful application of friction 
damping in vibrating structures have been established. As 
described in this paper, the damping in plate-type structures 
can be significantly increased by using laminated plates 
correctly fastened to allow controlled interfacial slip during 
vibration, and the damping and stiffness performance of such 
structures have been studied theoretically and experimentally. 

Structure of the Laminated Plate and its Mechanical 
Mode 

The sandwich-type plate consists of aluminum facings and 
felt core fastened by some bolts, as shown in Fig. 1. The 
thickness of the facing is 2 mm; the thickness of the core is 3 
mm or 6 mm; the length and width of the plate are 420 mm 
and 220 mm. 

The bolts were fitted with calibrated springs to control the 
clamping force, so that the actual clamping load could be 
found by measuring their deflection. The clamping force 
offered by each bolt is 24 kg. To simplify the actual state, let 
us suppose the clamping force per unit area of plate is a 
uniform load Q and we have F=f Q. The frictional factor 
/ = 0.4, was obtained by measurement. Fis the frictional force 
in the interacting surface between the facing and core. Ob­
viously, there was a shearing stress T in the aforementioned 
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surface when the plate was bent by the excited force. As 
shown in Fig. 2, Fand T are periodic forces. The facings and 
core were connected together for T0 <F\ the bolted laminated 
plate with felting core was considered as an ordinary 
laminated plate. The slip occurred in the interface for T0 >F; 
thus the first function of the core is separating for upfacing 
and downfacing. Its antishearing function was replaced by an 
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idealized core. The shearing mode of the ideal core was 
determined by test. The damping of the laminated plate 
depends on frictional dissipation. 

Formulation of the Rectangular Laminated Element 

The state of deformation of the laminated plates can be 
fully described by five quantities: the uniform transverse 
displacement W and the longitudinal displacements of the 
midplanes of the facings Ut, Vlt U3 and V3. Let us use x, y, z 
to denote Cartesian coordinates. U, V are components of 
displacement parallel to x, .y-axes. Symbols 1, 2, 3 denote 
upfacing, core, and downfacing, respectively. The symbol ht 

(;'= 1, 2, 3) denotes layer thicknesses of laminated plate. Thus, 
on the basis of the linear elastic theory of the laminated plate, 
we have the following geometric relationships: 

t / 2 = y [(£/,+t/3)-
1 
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3W 
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From the formula (1) we can further obtain the strain 
components of the facings and the shearing strain com­
ponents of the core. The finite element of the rectangular 
laminated plate is defined by nodes /, j , m and p, as shown in 
Fig. 3. The number of degrees of freedom per node is seven 
(W, dW/dx, dW/dy, U,, Vu U3 and F3) and the element 
degrees of freedom become 28. This, in turn, allows for 28 
unknown coefficients «,•(/= 1, . . . ,28) in the polynomial 
expressions representing the displacement functions. These 
polynomials are chosen as follows: 

W = «, +a2x + aiy + aAx2 +a5xy + a6y
2+a7x
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V\ = a„+a]sx + a19y + a20xy (2) 

U3 = a2l+a22x + a23y + a24xy 

V2 = a25+a26x + a27y + a2Sxy 

According to the approach of reference [1], we can use the 
foregoing polynomial expressions to obtain the stiffness 
matrix of the elements, the mass matrix of the elements and 
the damping matrix of the elements. They are [K]e, [M]e, and 
[C]e, respectively. 

[K\e 

[M]e 

[C\e 

= {^ [B]r[D][B]dV 

[N]Tp[N]dV 

= \ye [N\Tv[N]dV 

(3) 

(4) 

(5) 

In these formulas, the matrix [B] describes the relationship 
between the element strain and nodal displacement, [D] is the 
matrix of material constants, [JV] are shape functions, p is 
material density, Ve denotes the element volume, v is the 
damping factor, derived according to the equivalent damping 
principle. Thus we have 

4 J F( / ! l +/ ! 3 +2/ j 2 )J s ( 
~dx~ 17 dS 

COTT(/2| +h2 + h3)\ w2dS 

(6) 

where v can be evaluated by Gaussian quadrature formula, S 
denotes the area of the rectangular element plane, W, d JV/dx, 
d W/dy are unknown quantities. 

Calculated Example and Test 

A cantilever rectangular laminated plate, as an assembly of 
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Table 1 
Bolt numbers 

N 

/test(Hz) 

/calcu.(Hz) 

\/A test 

lMcalu. 

5 

0.14 

26.8 

28.0 

0.210 

8 

0.23 

31.6 

32.1 

0.300 

0.303 

12 

0.34 

35.8 

35.4 

0.300 

0.318 

18 

0.51 

38.7 

38.8 

0.211 

26 

0.74 

43.0 

41.6 

0.200 

35 

1.00 

44.6 

43.1 

0.156 

Another test was made for the identical stiffness solid plate 
and the laminated plate. 

The calculated and tested results are listed in Table 1. 

Conclusions 

1 Obvious slipping between facing and core was observed, 
and this is the main damping mechanism. 

2 The damping and stiffness of the plate increased with the 
felt thickness. 

3 The stiffness of the plate increased with the number of 
bolts and fastening loads. 

4 The damping of the plate is dependent on the bolt 
numbers, and there is a optimum range for which maximum 
damping can be obtained. 

5 The difference between calculated and measured results 
is within 5 percent for the resonant frequency. 

6 As compared with the identical stiffness solid plate, the 
damping of laminated plates can be increased 30 times. 

7 The mechanical mode was defined on the basis of 
bringing the effect of the structural stiffness and frictional 
damping into full play. Therefore, the mode is suited to the 
optimal damping range. 
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rectangular elements is illustrated in Fig. 4. The total matrix 
[K], [M] and [C] can be obtained by the sum of the 
corresponding element matrices [K]e, [M\e, and [C\e, 
respectively. Thus, for sinusoidal vibration, we can write the 
vibration equation of the plate as follows: 

(-oJ
2[iW] + /to[c] + [A])[^) = (^l (7) 

and the eigenequation 

[K\{g}=^[M\[g] (8) 
where [g] and [F] denote the displacement and the load, 
respectively. From equation (8), we can obtain the natural 
frequency co. From equation (6), we can obtain the damping 
matrix [C], which depends on displacements (g). This allows 
that equation (7) is a group of forced vibration equations that 
include nonlinear damping, which can be solved by iteration. 

The test was conducted for different size, felt thickness, 
bolt numbers and fastening forces. Each plate was excited on 
its foundation. At the first mode resonance of the plate, we 
measured the vibration frequency / and the ratio \/A of the 
exciting amplitude to the transverse response amplitude on the 
free end of the plate. 

Let us consider the middle plate as an example; its tested 
results are illustrated in Figs. 5 and 6. Figure 5 shows the 
relation of the first mode resonance frequency/to the relative 
clamping force N. Figure 6 shows the relation of the factor 
\/A with N, where A7" is a function of the distributed density 
of the bolts when all bolts offer the same clamping force. 
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