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The rate at which particles carried in a flowing gas are deposited on a cold surface by thermophoretic 
movement  is studied theoretically. Some exact deductions from the coupled equations for the 
temperature (T) and particle concentration (C) in the moving fluid show that, in cases in which the 
particles come from a region in which T and C are uniform with values To and Co, there are strong 
constraints on the possible values of  C/Co at a point at which T/To is known. This suggests the 
hypotheses that C/Co is approximately uniform (with value Cl/Co say) over a cold isothermal 
boundary (at temperature T1), in which event the total particle flux to the boundary is proportional 
to the total heat flux to the boundary, and that the relation between CI/Co and T~/To is approximately 
the same for all flow systems. These hypotheses are tested against the available numerical results for 
a number  of  steady flow systems, four of  them relating to cold bodies in a uniform stream of gas and 
two relating to flow in a circular tube downstream from a sudden drop in wall temperature, and are 
found to represent the exact results with adequate accuracy except when both T1/To and the 
thermophoretic coefficient are small. We thus have a means  of  estimating the total rate of  deposition 
on a cold isothermal boundary from a knowledge of  the total heat flux to the boundary in cases in 
which computat ion of  the distributions of temperature and particle concentration in the fluid is not  
feasible, although further tests of  the hypotheses are desirable. © 1985 Academic Press, Inc. 

1. INTRODUC T ION 

It has been established (see, for example, 
Kennard (1), Hidy and Brock (2), Friedlander 
(3)) that the discrete molecular structure of  
a gas causes small suspended particles to 
migrate down an ambient temperature gra- 
dient with a velocity which is proportional 
to the temperature gradient. This phenome- 
non of  thermophoresis of  aerosol particles is 
common in nature and in industry. Thermal 
precipitators are particularly effective in re- 
moving small particles with a diameter of a 
micron or less from a gas stream. Thermo- 
phoresis also causes the staining of surfaces 
of  heat exchangers and dirt patterns on the 
ceilings of kitchens and dining rooms. 

There have been relatively few published 
papers in which the rate of thermophoretic 
deposition of  particles on a solid surface in 
flow systems of  practical interest have been 
calculated. The authors of  these previous 
papers have considered particular flow sys- 
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terns, and have used numerical methods of  
calculation. In this paper we shall seek infor- 
mation concerning the rate of thermophoretic 
deposition which is as general as possible in 
its application to different flow fields. 

The Brownian diffusivity of  an aerosol 
particle (D) is very small, much smaller than 
any of  the gas diffusivities (for mass, momen- 
tum, heat), owing to the massive size of a 
particle by comparison with a gas molecule. 
For example, for spherical particles of  di- 
ameter 0.05-1.0 um in air, D ranges from 
2.4 X 10 -3 to 2.8 X 10 -5 m2/s and the 
Schmidt number v/D from 6 X 103 to 5 
X 10 5. Effects of  particle diffusion are con- 
sequently negligible normally, and the move- 
ment  of a particle is affected by convection 
with the fluid and thermophoresis only. This 
results in a strong connection between the 
distributions of particle concentration and of 
temperature in the fluid, and leads to the 
possibility of use of  the considerable body of  
existing analytical, numerical, and experi- 
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mental information about the temperature 
distribution in a variety of  flow systems for 
the purpose of prediction of  rates of  deposi- 
tion of  particles by thermophoresis. We shall 
review briefly all the calculations of deposition 
rates in particular flow systems that are 
known to us, and will add some new exact 
solutions. Interpretation and comparison o f  
the results for all these special cases allows 
the inference of some general conclusions 
which we suggest may be applied in cases 
lying outside the reach of direct computation. 

2. GENERAL FORMULATION OF THE 
PROBLEM OF CALCULATING THE 

DEPOSITION RATE 

The linear relation between the thermo- 
phoretic velocity of  a particle and the local 
temperature gradient is usually written as 

V = - K T V T ,  [2.1] 

where T is the ambient absolute temperature 
of  the gas, ~, is the kinematic viscosity of the 
gas, and the thermophoretic coefficient K 
depends on the properties of  both the gas 
and the particle. Theoretical expressions for 
K are available only for large or small values 
of the Knudsen number X/a. A summary of 
the theory of thermophoresis and the corre- 
spondence with observations of  particle 
movement  may be found in the recent paper 
by Talbot, Cheng, Schefer and Willis (4). 
These authors give evidence in support of 
their belief that the following expression for 
K for a spherical particle of  radius a is 
tolerably accurate for all regimes f r o m  free 
molecular to cont inuum flow: 

K = 2Cs 

(kg/kp + CtX/a)I1 + -~ (1"2 + 0 " 4 1 e - ° 8 8 ~ / X ) ] a  

(1 + 3CruX~a)(1 + 2kg/kp + 2CtX/a) 
[2.2] 

where X is the mean free path of  molecules 
in the gas, Cs, Ct, Cm are the thermal creep 
coefficient, temperature jump coefficient, and 
velocity jump coefficient, respectively, and 
have values Cs = 1.147, Ct = 2.20, Cm 
= 1.146 for complete accommodation (see, 
for example, Shen (5)), and k~ and ~ are the 
thermal conductivities of  the gas and the 
particle. Figure 1 shows K as a function of 
the Knuden number X/a, with kg/l% as a 
parameter, according to [2.2]. Accurate mea- 
surement of  K is difficult and the agreement 
between the available data and the theoretical 
values is not close (see Derjaguin et al. (6)). 
In the literature concerned with calculation 
of  the rate of  thermophoretic deposition K is 
usually taken as ranging from 0.2 to 1.2. 

The gas viscosity u appears in [2.1] essen- 
tially as a measure of the product of  the 
mean free path and the mean molecular 
speed, and any other diffusivity of the gas 
would serve as well. Inasmuch as the thermal 
diffusivity a = kJpcp enters into a calculation 
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of  thermophoretic deposition rates whenever 
the temperature distribution in the gas is 
determined as a part of the problem (instead 
of simply being given), whereas the kinematic 
viscosity ~ does so only if the velocity distri- 
bution also is determined, the replacement 

0.6  i _  k g / k p  = 0 .5  

0 .4  0 .2  

0.1 
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0 ~ - - - I  ~ I I I I I ~ I I I 
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FIG. 1. Values of the thermophoretic coefficient K for 
a spherical particle of radius a according to the expression 
[2.2] proposed by Talbot, Cheng, Schefer, and Willis (4). 

is the mean free path of the gas molecules and kJl£, 
is the ratio of the thermal conductivity of the gas to that 
of the particle. 
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of v by a in [2.1 ] results in some simplification 
in the analysis, especially for flow fields such 
as Poiseuille flow in a tube for which the 
form of the velocity distribution is indepen- 
dent of v. We shall therefore rewrite [2.1 ] as 

O~ 
V = - H -~ VT ,  [2.31 

where the new thermophoretic coefficient H 
is related to the more conventional one by 

H = aK. [2.4] 

The Prandtl number a =- u/a is equal to 0.72 
for air and lies within the range 0.66-0.80 
for common gases at normal temperatures 
and pressures, so the numerical consequences 
of this change of definition are not great. 
Note that since the values of kg and a vary 
slowly with the temperature of a gas, it is 
desirable to avoid the assumption that H is 
constant in a problem of thermophoretic 
deposition involving large temperature differ- 
ences. 

We shall assume that the particle velocity 
due to external body forces is negligible, and 
also that the particle volume fraction is so 
small that the velocity and temperature dis- 
tributions in the gas are unaffected by the 
presence of the particles. These assumptions 
are valid for common aerosols unless a strong 
electric field is applied to charged particles. 

The distribution of particle concentration 
C (= number density) is affected in general 
by convection, diffusion, and thermophoresis, 
and is determined by the equation 

OC 
- -  + U -  V C  = V .  ( D V C )  - ~7. ( C V ) ,  [2 .5 ]  
Ot 

where U is the local gas velocity and V is 
given by [2.3], The gas temperature field T 
is governed by the equation 

OT 
- -  + U .  V T  = ~7. ( a r T ) ,  [2 .6 ]  
Ot 

in which the dissipation due to viscosity has 
been neglected. The gas velocity appearing 
in [2.5] and [2.6] will be regarded as given. 

It is convenient to introduce a length L 
and speed Uo which are characteristic of the 
flow field and to make the position vector, 
time, and the flow velocity nondimensional 
using L and Uo. Both C and T appear 
homogeneously in [2.3], [2.5], and [2.6] and 
so can be nondimensionalized when necessary 
by dividing by representative values Co and 
To without affecting the form of the equations. 
Equations [2.5] and [2.6] can now be written 
a s  

0-7 + u .  v c  = v .  v c  

{ C H a v T ) ]  [2.71 + v "  ° 

0 T + . . v T = I  
0--7 ~ V .  VT , [2.8] 

where r = tUo/L,  u = U/Uo,  D = UoL/ao, 
and a0 is a representative value of a (which 
may vary with temperature). The Peclet 
number ~ depends on the flow system and 
on the gas properties; for guidance on mag- 
nitudes we note that /~ = 5 × 10 z for U0 = 1 
m/s, L = 10 mm and a0 = 20 mmZ/s (as for 
air at 15°C). Values of ~ much larger than 
unity are common in practice. 

As stated earlier, D is very much smaller 
than any of the gas diffusivities such as a. 
Hence, provided the temperature differences 
are not extremely small by comparison with 
the absolute temperature, the first term within 
the brackets on the right-hand side of Eq. 
[2.7] can be neglected except in a very thin 
concentration boundary layer in the vicinity 
of a wail, and [2.7] reduces to 

OC+u. VC= 1 V [CHa ) 
a t  D " \ - ~ a 0  VT , [2.91 

which is a useful simplification of one of the 
governing equations. 

It is usually not necessary to consider 
conditions within the thin concentration 
boundary layer in order to find the rate of 
the deposition at a rigid boundary because 
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the gas velocity relative to the boundary is 
correspondingly small there. Estimates of the 
thickness of the concentration boundary layer 
depend on the nature of the flow system, but 
they all contain a positive power of D so that 
the ratio of the gas velocity in the concentra- 
tion boundary layer to the thermophoretic 
velocity approaches zero as D/a --~ O. Thus 
when D/a ~ 1 the particles that enter the 
concentration boundary layer by thermopho- 
resis continue across the boundary layer to 
the wall without significant change of their 
downstream position, as shown with more 
analytical detail by Walker, Homsy, and 
Geyling (7) for the case of flow in a tube 
with a sudden change of temperature at one 
section of the tube. Hence the local flux of  
particles to the wall due to thermophoresis 
is given by 

Vn. VT'] J=-Cwn.Vw: . CwL--C-lw, [2101 

where the suffix w denotes the value at the 
wall and in the case of Cw it is understood 
that Cw is determined from equations in 
which D = 0. The unit normal to the wall, 
n, is directed into the fluid. 1 We may also 
write [2.10] as 

J = H(C/T)wF, F = a(n. VT)w [2.11] 

where pcpF is the local density of heat flux 
to the wall. 

There is a further contribution to the 
deposition rate due to Brownian diffusion, 
viz., D(n. XTC)w, but owing to the smallness 
of D this contribution is normally much 
smaller than that due to thermophoresis. 

The nature of the problem of calculation 
of the thermophoretic deposition rate is now 
clear. Provided the velocity field is known, 

1 Formula  [2.10] is of  course applicable only to the 
situation in which the wall is colder than the adjacent 
gas and the thermophoretic velocity is towards the wall. 
The  distribution of concentration shows very different 
features when the wall is hotter than the gas (see Goren 
(8)). 

the temperature distribution may be deter- 
mined from Eq. [2.8] and the imposed 
boundary conditions on the temperature. 
Equation [2.9] for the particle concentration 
may then be solved. Finally the local rate of 
deposition of particles at the wall is found 
from [2.10] and the total rate of deposition 
by integration over the boundary. 

It will be noticed that only temperature 
differences occur in [2.8], whereas the abso- 
lute temperature also occurs in [2.9]. Thus, 
for given geometry of the boundaries the 
concentration C depends on H, I~, and AT/ 
To, where AT is representative of the tem- 
perature differences. An alternative form of 
this temperature parameter is TI/To, where 
T1 and To are temperatures specified by the 
boundary conditions (so that AT can be 
chosen as To - TO. It will often be possible 
to eliminate ~ from the equations by a scale 
transformation, although the precise way in 
which this may be done depends on the form 
of the flow field. However, the other two 
parameters, H and T~/To, have a significant 
influence on the structure of the solution. 

There are two main types of practical 
problem of thermophoretic deposition. In 
one type a stream of gas containing suspended 
particles flows past a body or group of bodies 
held at a lower temperature than that of the 
oncoming stream, and particles are deposited 
on the body surfaces. In the other type the 
gas is flowing inside a tube whose wall tem- 
perature is lower than that of the oncoming 
fluid and the rate of deposition on the interior 
tube wall is to be calculated. In both types 
of problem it will often happen that T and 
C are uniform in the fluid far upstream (with 
values To and Co say) and decrease mono- 
tonically along particle trajectories which 
originate in the upstream reservoir and ter- 
minate at a cold boundary. Specification of 
the value of C in the upstream fluid is a 
sufficient boundary condition for the deter- 
mination of C, but more boundary conditions 
on T are needed since the order of the 
differential equation for T is one higher than 
that for C. 
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Specific cases of  both types of  problem 
will be considered. However, we first establish 
some general results applicable to a variety 
of  flow systems which will prove to be useful 
for the interpretation and exploitation of  
these specific cases. 

3. SOME GENERAL RESULTS APPLICABLE TO 
A VARIETY OF FLOW SYSTEMS 

An Exact Solution for H = 1 

It is evident that when H = 1 the two 
governing equations [2.8] and [2.9] allow the 
simple relation between the two dependent 
variables 

C/T--- const. [3.1] 

Provided that the boundary conditions are 
compatible with this relation, as they are if 
the only boundary condition on C is that C 
= Co everywhere far upstream and if T also 
is uniform there (and equal to To), the re- 
quired solution for C is 

C/Co = T/To, [3.21 

with T being determined from [2.8]. The 
distributions of temperature and concentra- 
tion are here identical and the local rate of 
deposition of particles at a wall follows from 
[2.11] as 

J = CoF/To, [3.3] 

where F is the heat flux density at the wall. 
The generality of  this simple exact solution 

seems not to have been commented on hith- 
erto, but the fact that the equations have the 
solution [3.2] when H = 1 has been noticed 
by Goren (8) in the case of flow in the Blasius 
boundary layer on a cooled flat plate and by 
Weinberg (9) in the case of  flow in a circular 
tube whose wall temperature has a discontin- 
uous jump to a smaller constant value. Values 
of  H near unity are not unknown in practice, 
so that the solution has some direct value. 
We shall also find it useful as a guide when 
formulating approximations for arbitrary val- 
ues of  H. 

Bounds on the Value of  C at the Cold Wall 

An analytical solution for C is unlikely to 
exist when H ~ 1, but it is possible to find 
upper and lower bounds on the value of  C 
which coincide in the case H = 1. We begin 
by. combining Eqs. [2.8] and [2.9] in two 
different ways to give 

{ O + (  u ~ a 0 H a ~ ) ' V }  l°gCT 

I~T \ao  

OZ 
+ a ~ V T ' V H  

u I>~*0 og ~-~ 

H(I  - H ) a  l v z l  ~ 

Doe o T 2 

[3.41 

O/ 
+ v v .  vH.  [3.5] 

The operator on each of the two left-hand 
sides represents the time derivative following 
a particle whose velocity is the resultant of  
that due to convection with the fluid and 
that due to thermophoresis. Each particle 
trajectory originates (so we assume) at "infin- 
ity" upstream where C = Co and T = To, 
and we are interested in those trajectories 
that terminate at a boundary where the tem- 
perature is held at a value smaller than To. 

The signs of  the right-hand sides of  [3.4] 
and [3.5] are now determined by inspection. 
The sign of  V. ((a/ao)VT) is the same as that 
of  ((9/07 + u. V)T, which will be negative 
in all those common cases in which the 
streamlines approach or pass near to a 
boundary whose temperature never increases 
in the flow direction. Thus since H is a 
slowly-varying function of T it follows from 
[3.4] that C/T increases along a particle 
trajectory when H < 1 (the typical case) and 
decreases when H > 1. The sign of  the first 
(and dominant) term on the right-hand side 
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of [3.5] is unambiguously negative when H 
< 1, showing that C/T H decreases along a 
particle trajectory. 

Thus the value of  C at a cold boundary, 
where T = T1, satisfies the inequalities 

~00 < ~oo < ~,~00] [3.6] 

when H < 1. As H --~ 1 the exact solution 
described above is recovered. 

An Approximate Solution .for 
the Concentration 

It may be seen that, if AT is representative 
of  the temperature differences in the fluid, 
the right-hand sides of  both [3.4] and [3.5] 
approach zero as AT~To ~ O. This indicates 
that both C/T and C/T H are approximately 
constant along a particle trajectory when AT/ 
To ~ 1 because T is then approximately 
constant. More significant is the fact that the 
right-hand side of [3.5] is of order (AT~To) 2 
when AT~To ~ 1, from which we learn that 

- =  C 1 -  + ~-~o2] [3.7] 
Co 

when AT~To ~ 1. 
Equation [3.5] shows also that the error 

term in [3.7] is negative when H < 1 and is 
zero in the cases H = 1 and H = 0. A more 
accurate representation of the particle con- 
centration than [3.7] is 

~ l l  + (1 - H)  , [3.81 
Co 

which coincides with [3.7] to order AT/To, 
is exact to all orders when H = 1, and gives 
values of  C/Co which are greater than T/To 
but less than (T/To) H. The expression [3.8] 
is of course not unique in having these 
properties. 

Conjecture that the Level Surfaces of C and 
T Coincide Approximately 

It has been seen that 

C/Co = (T/To) H 

is a solution of  the governing equations when 
H = 1 (and in the trivial case H = 0) and 
also, correct to order AT~To, when AT~To 

1 for arbitrary H. We have also found 
upper and lower bounds on C which depend 
on position only through their dependence 
on T, in cases in which all particle trajectories 
originate in a reservoir where C and T are 
uniform. All these deductions are compatible 
with the level surfaces of C and T being 
coincident throughout the fluid. There is no 
reason to suppose an exact coincidence in 
general, but the fact that the molecular flux 
densities of  C and T are everywhere parallel, 
and that the ratio of the magnitudes of these 
flux vectors is constant when H = 1 or 0, 
suggests an approximate coincidence. The 
question is, does the assumption of a general 
relationship between C and T have sufficient 
accuracy for some practical purposes. As to 
the form of such a general approximate 
relationship, [3.8] is clearly a candidate. 

It would be very valuable if there were a 
relationship between C and T for flow fields 
of complex form, because the total rate of 
deposition of particles on a wall of uniform 
temperature would then be proportional to 
the total heat flux to the wall. The integral 
of the particle density flux over the cold wall 
is given by [2.1 1 ] as 

f JdA=f( C)f , 
and in a case in which T and C have the 
uniform values T1 and C1 at the wall this 
reduces to 

f JdA = H ! FdA. [3.9] 
c1 g 

T1 d 

The total heat flux to the wall is more readily 
measured than the particle flux, and if f FdA 
is known determination of f JdA requires 
only the value of  C1, which may be found 
from the relation between T and C. Empirical 
knowledge of the heat transfer from bodies 
held at a uniform temperature in a stream 
of fluid could thus be used to estimate the 
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total rate of deposition of particles on the 
body surface. 

It is worthwhile therefore to use the avail- 
able analytical or numerical data as a test of 
the conjecture that the level surfaces of C 
and T coincide approximately, and we do 
this in the next three sections. 

Figure 2 shows the information gathered 
in this section concerning the value of the 
particle concentration at a cold isothermal 
boundary where the temperature is T1, for 
the particular case H = 0.3. The simple 
expression for C1/Co suggested in [3.8] is 
seen to lie roughly midway between the 
upper and lower bounds, except that when 
(To - TO~To ~ 1 it coincides with the upper 
bound and with the exact asymptote [3.7]. 
For values of H closer to 1.0 the upper and 
lower bounds are closer. 

4. EXACT SOLUTION FOR THE PARTICLE 
CONCENTRATION IN STEADY B OUNDAR Y-  
LAYER FLOW PAST A COLD FLAT PLATE, 

CYLINDER, OR BODY OF REVOLUTION 

Solutions for the temperature distributions 
in gas of temperature To flowing steadily past 

a flat plate held at temperature T1 and in the 
region near the forward stagnation point on 
a cylinder or body of revolution of temper- 
ature T1 in a stream for P >> 1 are well 
known (see Goldstein (10) for the flat plate 
and cylinder and Sibulkin (11) for the body 
of revolution). These three boundary-layer 
solutions for T, which are exact aside from 
the fact that the kinematic viscosity and the 
Prandtl number are taken to be uniform 
over the fluid, are members of the same 
mathematical family, as are the corresponding 
velocity distributions. Goren (8) has shown 
that it is possible also to find an exact solution 
to the equation for the particle concentration 
in the case of flow past a flat plate and 
Homsy, Geyling and Walker (12) later solved 
numerically the equation for the concentra- 
tion in the boundary layer near the stagnation 
point on a cylinder. We give here an inte- 
grated description of the solution for the 
particle concentration in all three cases, that 
for the flow past a body of revolution be- 
ing new. 

The velocity boundary layers in all three 
flow systems have a similarity form, and may 
be described by stream functions defined as 

(a) flat plate 

(b) cylinder 

(c) body of revolution 

1 ( U o l l / 2 y  ' 
"4: = (vUox)U2f (n), O = -~ \ v--x l 

¢ = ( & ) l / 2 x f ( n ) ,  ,7 = y '  [4.1] 

where x represents streamwise distance along the surface from the leading edge or stagnation 
point on the body, y is the position coordinate normal to the boundary, Uo is the speed of 
the stream flowing past the flat plate, and fix is the speed of the fluid at the outer edge of 
the boundary layer near the stagnation point on the cylinder or body of revolution. The 
equations and boundary conditions for the stream functions are 

(a) fiat plate f "  = - i f" ,  f(O) = O, f'(O) = O, f ' ( ~ )  = 1,t 

(b) cylinder f,,, = _ff,, + f , 2  _ 1, f(O) = Oi f'(O) = O, f ' ( ~ )  1, 
1 t2 (c) body of revolution f "  -- - i f "  + -~(f - 1), f (0 )  = 0, f ' (0)  = 0, f '(oo) 1. 

[4.2] 
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Tables of the solution for f in each case are 
available ( see Goldstein ( 10 ) and Schlichring ( 13 ) ). 

The equation for the temperature T has a 
solution which is a function of n alone. With 
the particular definitions of ~b and ~/shown in 
[4.1] this is the same equation in all three cases, 
viz.,  

T"+afT'=O, 
T(O) = T1, T(~) = To, 

[4.3] 

where a denotes the Prandtl number u/a, 
here assumed constant. The solution of Eq. 
[4.3] is 

T -  T 1 

To-T,  

= 3" fo" eXp(-Cr fo~f (~)dOd~, 
where the constant 3' is given by 

[4.4] 

1.0 

H = 0.3 9%°%e 

(3.8 / / / / ~  

Cvc o ,~' 

° °  / 4 :  
/ /  ~ ® Calculated value of C~/C o 

0.2 / / /  v t i i 
O 0.2 0.4 0.6 0.8 1.0 

T1/T o 

FIG. 2. Values of the particle concentration C~ at a 
cold isothermal boundary where the temperature is T~ 
in the case H = 0.3. The two solid curves show the 
bounds [3.6], the long-dashed line is the exact asymptote 
[3.7], and the short-dashed line is the approximate 
relation [3.8]. The encircled points represent the exact 
result [4.8] for boundary-layer flow of  air over a cold 
fiat plate. 

3" = [ fo°° exp(-a fo~f (~)d~)d~] -1 

, E0 l 
To - TI ,=0" [4,5] 

Numerical evaluation of f (~)  and thence of 
3' has shown that 3' is represented well by 
0.664a 1/3 (=0.595 for air) in the case of the 
fiat plate (Goldstein (10), p. 624), by 0.5700 -0.4 
(=0.500 for air) in the case of the cylinder 
(Goldstein (10), p. 632), and by 0.5400-  0.4 

(=0.473 for air) in the case of the body of 
revolution (Sibulkin (11)). 

We likewise find that the steady-state form 
of Eq. [2.9] for the particle concentration 
admits a solution which is a function of 
alone. This function satisfies the equation 

+ /C'  + _---~/C: 0 [4.6] HI 
(H being assumed constant here) with the 
boundary condition C(oo) = Co. The solution 
is 

/ 

C oo T 

Co exp T' f 
+ 

T H 

in which T is given by [4.4]. 

d o t  [4.7] 

It is a feature of these similarity solutions 
that T and C are functions of ~ alone, 
implying a relationship between T and C. At 
the body surface (7 = 0), where T has the 
constant value T1, C is also constant, with 
value Cl given by 

= e x p  . 

+ 
T H 

[4.8] 

Using the tables of f given in the literature 
one can now calculate T numerically from 
[4.4], and then C from [4.7], as functions of 
n for various values of a, T1/To, and H. We 
give in Table I the values of C/Co at the 
body surface for the case of air (a = 0.72) 
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for each of the three flow fields. Despite the 
physical differences between the three flow 
fields, the three values of C~/Co are close to 
each other. We note also from the table that 
the simple expression [3.8] agrees with these 
calculated values of Cl/Co to within a few 
percent, except when H and T1/To are both 
small. The values of C~/Co for the flat plate 
in the case H = 0.3 are shown in Fig. 2 for 
comparison with [3.8] . . . . .  

The local particle flux density at the body 
surface is seen from [2.11] and [4.5] to be 
given by 

J C 1 F 
- H - - -  

Co CoT1 

C ,  To-  TI(O~) 
= Ha3" Co -fl y=o 

[4.91 

where 3' and C~/Co vary slightly between the 
three flow fields and are known numerically, 
3" as a function of a and Cl/Co as a function 
of a, H and TI"/To. On substituting for O~/Oy 
from [4.1] we finally obtain the following 
explicit expressions for the particle flux den- 
sity for each of the three flow fields: 

(a) flat plate 

(b) cylinder 

(c) body of revolution 

1 ( 0/1,2 
J = ~ HCla3"  T---~ \ v x /  

J=HCla3" T° -  T I ( ~ )  1/2 

J = HCIa3" ~ - -  . 

[4.10] 

Empirical values of the parameter 13 in the 
cases of flow at large Reynolds number past 
a circular cylinder of radius a and a sphere 
of radius a are not far from the values 2 Uo/ 
a and 3Uo/2a respectively corresponding to 
wholly irrotational flow. 

5. BLASIUS SERIES FOR STEADY FLOW PAST 
A CYLINDER 

The solutions described in Section 4 for 
the fluid velocity, temperature, and particle 
concentration in the boundary layer near the 
forward stagnation point on a cylinder in 
stream have been extended to larger distances 
downstream by means of the so-called Blasius 
series. It was pointed out by Blasius in 1908 
that, if the fluid velocity at the outer edge of 
the boundary layer is written as a power 
series, viz., 

g ( x )  = UlX -]- U3 x3  -}- U s x  5 -t- ° ° ° -~-, [5.1] 

where x is the distance along the surface of 
a symmetrical cylinder from the stagnation 

point, the stream function for the flow in the 
boundary layer may likewise be expressed as 
a series 

[ I) ~1/2[ 

~(X, y ) =  [-UI)  t s l x f l  + 4U3x3f3  

+) + 
6XSlUSfsl  + U1 J52~ + • • • [5.21 

in which f l, f 3, f51, f52, • • . ,  are functions 
of the similarity variable n (=Y(UI/v)l/2--see 
[4.1]) which are universal in the sense of 
being independent of Ul, U3, U5 . . . . .  The 
coefficient Ul here replaces the symbol /3 
used in Section 4 and f l  replaces f The 
functions f l  , f  3 , f  s~ ,f52 . . . .  , satisfy ordinary 
differential equations which can be solved 
numerically, and the solutions have been 
tabulated in textbooks (e.g., Schlichting (13)). 

It has also been known for many years 
that the temperature in the thermal boundary 
layer at the surface of a cylinder held at a 
temperature T~ different from the tempera- 
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TABLEI 

Valuesof thePa~icleConcentr~ion Ratio C~/~ ~ t h e B o d y S u r ~  W h e ~ t h e T e m p e r a t u ~ i s  

~ /~  

H 0.2 0.~ 0.5 0.~ 0.8 0.9 

1.0 0.2 0.5 0.5 0.~ 0.8 0.9 

0.8 (a) 0.2190 0.3606 0.5322 0.6970 0.8234 0.9142 
(b) 0.2203 0.3624 0.5341 0.6986 0.8244 0.9147 
(c) 0.2199 0.3618 0.5334 0.6981 0.8241 0.9145 
(d) 0.2186 0.3599 0.5314 0.6965 0.8230 - -  
(e) 0.2320 0.3778 0.5500 0.7111 0.8320 0.9180 

0.7 (a) 0.2308 0.3772 0.5510 0.7142 0.8362 0.9218 
(b) 0.2330 0.3800 0.5541 0.7167 0.8378 0.9225 
(c) 0.2323 0.3791 0.5531 0.7159 0.8373 0.9223 
(d) 0.2300 0.3760 0.5499 0.7134 0.8356 - -  
(e) 0.2480 0.4000 0.5750 0.7333 0.8480 0.9270 

0.5 (a) 0.2616 0.4190 0.5971 0.7545 0.8650 0.9384 
(b) 0.2661 0.4248 0.6028 0.7588 0.8676 0.9393 
(c) 0.2647 0.4230 0.6010 0.7575 0.8668 0.9389 
(d) 0.2599 0.4169 0.5950 0.7530 0.8642 - -  
(e) 0.2800 0.4444 0.6250 0.7778 0.8800 0.9450 

0.3 (a) 0.3107 0.4823 0.6618 0.8068 0.9000 0.9568 
(b) 0.3194 0.4925 0.6711 0.8133 0.9036 0.9582 
(c) 0.3166 0.4893 0.6682 0.8113 0.9025 0.9578 
(d) 0.3078 0.4788 0.6587 0.8048 0.8989 - -  
(e) 0.3120 0.4889 0.6750 0.8222 0.9120 0.9630 

0.15 (a) 0.3807 0.5650 0.7380 0.8623 0.9339 0.9735 
(b) 0.3953 0.5805 0.7505 0.8700 0.9377 0.9749 
(c) 0.3907 0.5756 0.7466 0.8676 0.9365 0.9744 
(d) . . . . . .  
(e) 0.3360 0.5222 0.7125 0.8555 0.9360 0.9765 

0.10 (a) 0.4226 0.6106 0.7761 0.8875 0.9481 0.9800 
(b) 0.4406 0.6285 0.7895 0.8953 0.9518 0.9813 
(c) 0.4349 0.6229 0.7853 0.8929 0.9507 0.9809 
(d) . . . . . .  
(e) 0.3440 0.5333 0.7250 0.8667 0.9440 0.98 l0 

Note. The five numbers in each section of the table refer to: (a) the boundary layer on a flat plate in a stream of 
air; the boundary layer near the stagnation point (b) on a cylinder and (c) on a body of revolution; (d) Poiseuille flow 
in a tube at small distances downstream from a sudden drop in wall temperature; and (e) the value given by the 
relation [3.8]. 

t u r e  To o f  t h e  o n c o m i n g  s t r e a m  m a y  be x4( U5 U2 0 ~ 
w r i t t e n  as  + \ U 1 0 4 1 + U 2  4 2 ] +  " ' "  + ,  [5.3] 

T -  TI _ 00 + U3 in  which 00, 02, 041, 042 . . . . .  are funct ions  
To- T~ ~ x202 of ~ and  of  the Prandt l  n u m b e r  ~ which 
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satisfy differential equations involving the 
functions f l ,  f3 ,  f s l ,  f52 . . . . .  Values of  all 
the functions involved in terms up to x a° 
have been calculated and published by New- 
man (14). 

The natural next step of writing the particle 
concentration as 

C U3 2 
Co ¢0 + - -  - -  = U I  X (I)2 

x4(U5 U23 ) 
-]- ~ U  1 ~41 -]- U--~ tI~42 -[- " "  ° "]-' [5 .4 ]  

where Co is the concentration everywhere far 
upstream of  the cylinder and ~o, ff2, (~41, 

~42, . . . ,  are functions of n, o, and H (~0 
being given by [4.7]), was taken recently by 
Homsy, Geyling and Walker (12). These 
authors completed the formidable calculation 
of all the functions needed for the determi- 
nation of the coefficient of  X 4 in [5.4], and 
although they do not give tables of  these 
functions in their paper they give the values 
of the coefficients in the corresponding series 
for the particle flux density at the surface of 
the cylinder, viz., 

C_21 = JT1 
Co HFCo 

T1 
T 0 - T ~  

J =  CoHa Jo + v x J2 

+ [Ul U--~I J42 + " " • + [5.5] 

for ~ = 0.71 and a limited number of values 
of  H and TI/To. The value of J0 is already 
known from [4.10]. 

These values of J0, J2, J41, and J42 provided 
by Homsy, Geyling, and Walker are valuable 
inasmuch as they make possible the accurate 
calculation of the rate of deposition of par- 
ticles over quite a large part of the surface of 
a cylinder of any (symmetrical) shape in a 
stream, in fact over most of  the part of the 
surface at which there is an attached laminar 
boundary layer. And, as the authors point 
out, this may be where nearly all the depo- 
sition takes place. 

Our interest in the results of  Homsy, Geyl- 
ing, and Walker here is different, however. 
Once the heat flux density at the cylinder 
surface is known- -and  for this we have 
Newman's tables--Homsy, Geyling, and 
Walker's calculation of  the particle flux is, 
in effect, a calculation of  the value of  the 
concentration at the surface. Formally we 
have from [2.11], [5.3], and [5.5] 

Jo + x2J2 + k Ul U--~I J42 + • • • + 

[5.61 
+ 05(0)  "[- Ul l  x 2 0 2 ( 0 )  ~- x 4  041(0) ~- U~I 

where the prime denotes differentiation with 
respect to 7. Substitution of  the values of  
0~(0), 0~(0), 0~1(0), 0~2(0) given by Newman 
(14) and of  the values of J0, J2, J41, J42 given 
by Homsy, Geyling, and Walker (12) thus 
enables us to test the conjecture in Section 3 
that the particle concentration, like the tem- 
perature, is constant over the cylinder surface, 
that is, that Cl as given by [5.6] is independent 
of x, not only in the region near the stagnation 
point where x is small but more generally. 

We show in Table II the values of the 
parameters in the numerator of  [5.6] given 
by Homsy, Geyling, and Walker for ~ = 0.71 
and those in the denominator obtained by 
interpolation between the values for ~ = 0.70 
and 1.00 given by Newman. The values of  
C 1/C O at x = 0 obtained from the values of 
J0 and 05(0) given by these authors and 
shown in column 3 of Table II recover those 
given for the case of  flow past a cylinder in 
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TABLE II 

Parameters in the Expression [5.6] for the Particle Concentration at the Surface of a Cylinder in a Steady Stream 
of Fluid as a Function of Distance from the Forward Stagnation Point 

T~ T~Jo J2 A~ A2 0~(0) 0'~(0) 0:,2(0) 
To (To-  T~)O~(O) Jo Jo 3"o 0~(0) 0~(0) OgO) 

0.568 0.3333 0.4075 0.9117 1.198 -0.3925 0.9030 1 .182  -0.3850 
0.568 0.5 0.5835 0.9079 1.191 -0.3883 0.9030 1 .182  -0.3850 
0,568 0.7143 0.7825 0.9045 1.185 -0.3857 0.9030 1 .182  -0.3850 
0.568 0.7778 0.8359 0.9034 1.183 -0.3846 0.9030 1 .182  -0.3850 
0.568 0.8182 0.8681 0.9033 1.183 -0.3846 0.9030 1 ,182  -0.3850 

0.142 0,5 0.7534 0.9108 1.194 -0.3891 0.9030 1 .182  -0.3850 
0.284 0,5 0.6762 0.9104 1.195 -0.3894 0.9030 1 .182  -0.3850 
0.426 0.5 0.6236 0.9093 1.193 -0.3891 0.9030 1 .182  -0.3850 
0.568 0.5 0.5835 0.9079 1.191 -0.3883 0.9030 1 .182  -0.3850 
0.710 0.5 0.5510 0.9061 1.188 -0.3872 0.9030 1 ,182  -0.3850 

Note .  The values of the J parameters are taken from Homsy, Geyling, and Walker (12) and of the 0 parameters 
from Newman (14). 

Table I, although for different combinations 
of H and Tj/To. The entries for J2/Jo, J41/ 
J0 and J42/Jo are all remarkably constant, 
the variation being only 0.9, 1.3, and 2.0% 
respectively despite the wide variation in the 
values of H and T~/To. Furthermore, the 
values of J1/Jo, J41/Jo and J42/Jo coincide, 
within the same margins, with the values of 
0~(0)/0~(0), 0~l(0)/0b(0), and 0~2(0)/0b(0), re- 
spectively, the small variation of J2/Jo, J41/ 
J0 and J42/Jo being consistent with an ap- 
proach to the expected exact equality as 
either H ~ 1 or TI/To --~ 1. We may 
conclude first that that variation of particle 
concentration over the forward face of  a 
cylinder in a stream is quite small, of  the 
order of 1%, for any cross-sectional shape, 
and second that this approximately constant 
value of  the particle concentration at the 
cylinder surface is that given by the exact 
solution valid near the stagnation point. 

6. FLOW IN A CIRCULAR TUBE WITH 
NONUNIFORM WALL TEMPERATURE 

In this case, which may be regarded as the 
prototype for the second of  the two groups 
of problems mentioned in Section 2, fluid 

with uniform temperature To and particle 
concentration Co enters a tube of circular 
cross section with radius R and the steady 
velocity distribution 

U r 2 

u Uo 1 R2 [6.11 

is established. The wall temperature Tw is 
constant and equal to To as far as a cross 
section to be defined as x = 0, and thereafter 
falls, with consequent flux of both heat and 
particles to the wall. One form of wall tem- 
perature change for which some analytical 
progress with the temperature distribution is 
clearly possible is a discontinuous jump to a 
lower wall temperature T1 at x = 0, with Tw 
= T1 at x > 0. The thermophoretic deposition 
of particles resulting from this form of wall 
temperature variation has been considered 
in a paper by Walker, Homsy, and Geyling 
(7). These authors present some useful nu- 
merical data for the particle concentration 
which we shall extend and interpret with the 
aid of the general considerations given in the 
preceding sections. Several different aspects 
of  the problem will be discussed separately. 
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I 

The Temperature Boundary Layer at Short 
Distances Downstream from a Jump in Tw 

At sufficiently small distances downstream 
from x = 0, the lower wall temperature 
diffuses laterally into fluid in which the ve- 
locity is proportional to distance from the 
wall and the wall is effectively plane. This 
gives rise to a type of  temperature boundary 
layer whose features are well known and in 
which the temperature is a function only of  
the similarity variable y(3"/ax) 1/3, where y is 
normal distance from the wall and 3' is the 
velocity gradient at the wall, here equal to 
2 Uo/a. The particle concentration clearly will 
also be a function only of  this same similarity 
variable. Walker, Homsy, and Geyling give 
integral expressions for the temperature T 
and concentration C, and evaluate numeri- 
cally C1 (the uniform value of  C at the wall) 
for several different values of  Tl/To and H. 

This is thus another exact similarity solu- 
tion for C which can be used as a test of the 
general propositions put forward in Section 
3 for all cases in which the particle trajectories 
begin in a region where the temperature and 
concentration have uniform values of To and 
Co. However, no detailed consideration of  
the numerical values of  C~/Co as a function 
of  7"1/To and of  H is needed because, as may 
be seen from Table I, they are close to those 
for the three flow fields examined in Section 
4 and especially close to those for the case 
of  boundary-layer flow over a semi-infinite 
flat plate which is cooler than the oncoming 
stream. The conclusions reached in Section 
4 concerning these latter flow fields thus 
apply equally to this new similarity flow field. 

Nonsmall Distances Downstream from a 
Wall Temperature Jump 

When the thickness of  the temperature 
boundary layer is no longer small compared 
with the tube radius (that is, when the con- 
dition (xotR/Uo) 1/3 ~ R is no longer satisfied), 
the above similarity solution is not applicable. 

33 

Walker, Homsy, and Geyling obtained the 
distributions of  temperature and concentra- 
tion at these larger values of  x numerically. 
T was found from a numerical solution of  
Eq. [2.8] (with OT/Ot = 0, and a = const., 
and temperature gradients in the x-direction 
being neglected on the assumption that the 
Prclet number is large), and then C was 
found by integrating the other governng 
equation [2.9] along a particle trajectory. 
Their results for the rate of  deposition of 
particles on the tube wall are expressed in 
terms of the "cumulative efficiency" E(x), 
defined as the fraction of  the particles carried 
past the section x = 0 that is deposited on 
the tube wall between x = 0 and the section 
x, that is, 

fo  J(X)27rRdx 

E(x)= ~R~UoCo 

4H(To - T , )  f x  Cw F(x) 
- --R--Uo-T1 Jo CoTo~-Tl dX' [6.3] 

where F is the local heat flux to the wall 
divided by pcp, as in [2.11], and F/(To - 7"1) 
is independent of To/Tl. The heat flux F 
diminishes to zero as the temperature in the 
fluid stream relaxes to that of  the wall, and 
E(x) asymptotes to the value E~ as x --* ~ .  
Walker, Homsy, and Geyling give graphs of  
E(x) as a function of x for a few different 
values of H and of  the temperature ratio 
Tl/To (viz., H = 1, T~/gb = ~ and 2; H 
= 0.7, T1/To = !)  and a table of the values 2 

of E~ for many more combinations of  values 
of  H and T1/To. 

If this problem is now approached with 
the help of  the general considerations of  
Section 3, and if in particular we adopt the 
hypothesis that C is constant over any surface 
on which T is constant, then Cw has the 
constant value C1 on the tube wall for x > 0 
and the expression [6.3] for the cumulative 
efficiency becomes 
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4HCI(To - T~) fo x F 
E ( x ) =  R---~oCoT~- __  To T-----~ 

dx, 

[6.4] 

showing a proportionality of  the amounts  of  
particles and of  heat transferred to the wall 
over the axial distance x. Unfortunately 
Walker, Homsy,  and Geyling do not record 
their calculated values of  Cw as a function of 
x, so we are not in a position to make a 
direct check of the hypothesis that C,~ is 
constant (for x > 0). However, we can make 
several indirect checks. 

As we know, there is an exact solution 
[3.2] when H = 1, and in that case [6.3] 
becomes, without approximation, 

{E(X)}H=~ 

_ 4 ( T o  - TI) fo ~ F dx. [6.51 T0----E 
The approximate relation [6.4] is thus equiv- 
alent to 

CoT1 E ( x ) =  To SE(x)~ 
HCI(To- T1) To T1 ~ ~H=l 

whence we find first the exact result 

To- TK 
(E~)H=1 - - -  [6.81 

To 

from [6.5] and second, from [6.41, the ap- 
proximate result 

To - T1 Cl 
E~ = H T ~  Co" [6.9] 

Table III shows the values of  Eo~ calculated 
(by numerical integration) for a number  of  
pairs of  values of  H and TI/To by Walker, 
Homsy,  and Geyling (7) and for comparison 
the values of  E~ which are obtained from 
[6.9] when the simple expression [3.8] for 
the particle concentration is used, viz., 

To - T1 
Eo~ = H - -  

To 

× + (1 - n )  To - 
To J"  [6.10] ( 

TABLE III 

Values of E~ 

TdTo 

H 0.2 0.3 0.5 0.~ 0.8 

_ 4 ~ F dx, [6.61 RUo .Jo To TI 

indicating that the quantity on the far left is 
the same function of x for all values of  H 
and T1/To. This is exactly what Walker, 
Homsy,  and Geyling noticed for three sets 
of  calculations for different combinations of  
values of  H and T1/To (see their Fig. 2). 

For the asymptotic value of E we may use 
the fact that the total transfer of  heat to the 
wall is equal to the difference between the 
amounts  of  heat carried by the fluid past the 
sections x = 0 and x ~ 0% where the fluid 
temperatures are To and T1, respectively. 
This corresponds to 

fo °~ F(x)27rRdx ½7rR2Uo(To - TI), [6.7] 

1.0 0.800 0.667 0.500 0.333 0.200 
0.800 0.667 0.500 0.333 0.200 

0.8 0.73 0.59 0.42 0.27 0.16 
0.742 0.604 0.440 0.284 0.166 

0.7 0.68 0.54 0.39 0.24 0.14 
0.694 0.560 0.403 0.257 0.148 

0.5 0.58 0.44 0.30 0.18 0.10 
0.560 0.444 0.313 0.194 0.110 

0.3 0.42 0.31 0.20 0.12 0.06 
0.374 0.293 0.203 0.123 0.068 

Note. Each of  the two figures in an entry represents 
E~, the fraction of the number of particles entering a 
circular tube that is deposited on the wall downstream of 
the cross section where there is a sudden drop of the wall 
temperature from To to T~. The upper of the two figures 
is the value found by numerical integration of the gov- 
erning equations by Walker, Homsy, and Geyling (7), and 
the lower is the value which follows when C and T are 
assumed to be related as in [3.8]. 
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The agreement is quite good, except when 
both H and 7"1/To are small. 

If we are willing to adopt the approximate 
relation between C/Co and T/To suggested in 
[3.8], then [6.6] can be written as 

E(x) = H{1 To - T, 1 + (I - H) ) 

× {E(X)}H=I [6.11] 

which in conjunction with Walker, Homsy, 
and Geyling's calculations of  {E(X)}H=1 pro- 
vides explicit values of E(x) for any values 
of H and T1/To. (They give values of E as a 
function of  x for H = 1, T,/To = ½ in their 
table I I - -and  a plot of this function in their 
Fig. 3 - -and  the corresponding values of 
{E(X)}H=, for other values of  T, - To follow 
from the exact relation {E(X)}H=, oc (To 
- TO~To.) Alternatively it may be more con- 
venient for computational purposes to use 
the series formula for the heat flux to the 
tube wall found originally by Graetz (15), 
viz., 

F 

T o - T ,  

= ~-- ~ c,~p'n(l)exp(-fl~x/R~), [6.12] 
R n=o 

where ~ = RUo/a and cn, ~p%(1), and fin are 
numbers whose values may conveniently be 
obtained from the paper by Sellars, Tribus, 
and Klein (16). The substitution of  [6.t2] in 
[6.5] gives 

4 ( T 0 -  Tl) o~ cn~(1)  
{E(x)}.=, = -To 2 

× {1 - exp(-13]x/RI?)}. [6.13] 

We have evaluated {E(x)}u=l from the for- 
mula [6.13] and find close agreement with 
the values obtained by Walker, Homsy, and 
Geyling (7) from a numerical integration of 
the equation for the temperature in the fluid. 

Other Forms of Transition from One 
Uniform Wall Temperature to Another 

Suppose now that the wall temperature is 
To at x ~ 0 and 7", at x >t x, ,  and that Tw 
decreases monotonically from the value To 
at x = 0 to the value T, at x = x~. The 
cumulative efficiency is then given by 

foX j(x)2rcRdx 

E(x)= 17rR2UoCo 

_ 41t f*CwTOF(x)dx" [6.14] 
RUoTo Jo Co Tw 

Again some useful exact results can be 
derived for the case H = 1. With the aid of 
[3.2] we find 

4 F(x)dx, [6.15] {E(X)}H=, - RUoTo 

and then, from the heat-conservation relation 
[6.7], 

To- T~ 
(Eo~)u=l = - -  [6.16] 

To 

Thus when H = 1 the asymptotic cumulative 
efficiency is independent of  the way in which 
the temperature changes between the values 
in the two uniform regions far upstream and 
far downstream. 

Walker, Homsy, and Geyling (7) calculated 
the cumulative efficiency from a numerical 
integration of the governing equations for a 
linear variation of  the wall temperature be- 
tween x = 0 and x = 0.3R~ in the one case 
T,/To = ½, H = 1, and noted empirically 
that the asymptotic value of  E had the same 
value (½) as in the case of a jump in wall 
temperature at x = 0 with T,/To = ½. 

7. DISCUSSION 

In this paper we have taken a rather prag- 
matic view of  the problem of estimating rates 
of thermophoretic deposition of small parti- 
cles in flow over cold rigid surfaces. 

We have supposed the availability of  an 
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expression like [2.1] with [2.2] for the speed 
with which a spherical particle of given size 
and thermal conductivity moves down an 
ambient temperature gradient in consequence 
of the discrete molecular structure of the gas. 
With that assumption, and provided the fluid 
velocity distribution is known, the problem 
reduces to the finding of solutions of the two 
coupled differential equations for the tem- 
perature and particle concentration in the 
fluid. We have considered a number of spe- 
cific flow fields for which results concerning 
the temperature and particle concentration 
distributions are already available in the lit- 
erature, and after extending and comparing 
these results we have used them as tests of 
the value and accuracy of the general hy- 
pothesis and approximations described in 
Section 3. 

It appears that, in cases in which all the 
particles originate in an upstream region in 
which the fluid temperature and particle con- 
centration are uniform, the concentration at 
a point in the fluid is nearly determined fully 
by the local temperature (for a given value 
of H), with the consequence that the particle 
concentration is approximately uniform at a 
cold boundary whose temperature is uniform. 
This approximate uniformity is exact in the 
four different flow fields described herein in 
which the concentration and temperature are 
functions of a single "similarity" position 
variable (such as y/x 1/2) and it is exact also 
for all flow fields when H = 1; and in two 
"nonsimilarity" cases (flow in the boundary 
layer on much of the forward face of a cold 
cylinder in a stream, and flow in a circular 
tube at nonsmall distances downstream from 
a sudden temperature drop) the available 
numerical data indicate uniformity of the 
concentration at the cold isothermal bound- 
ary to a good approximation. The value of 
this conclusion lies in the fact that when C 
and T are both uniform over a cold boundary 
(with values C1 and Tl) the total particle flux 
by thermophoresis to that boundary becomes 

HCI f f [7.1] 

showing a proportionality to the total heat 
flux to the boundary which is a more readily 
measured quantity. 

Furthermore, the relation between the val- 
ues of C and T at the cold isothermal bound- 
ary is approximately the same for all the 
specific flow fields considered here. Table I 
shows the closeness of the values of CI/Co 
for the four boundary-layer similarity cases, 
and the closeness in the two nonsimilarity 
cases is implicit in Tables II and III. This 
raises the possibility of devising an approxi- 
mate universal relation between G/CO and 
T~/To which conforms to the analytical con- 
straints listed in Section 3 and which fits the 
available numerical data well. One such re- 
lation which has the merit of extreme sim- 
plicity is that indicated in [3.8], viz., 

Co To 

The comparison between the values of C1/ 
Co given by this relation and those obtained 
by numerical integration in the four bound- 
ary-layer similarity cases made in Table I 
shows differences of at most a few percent 
over a wide range of values of the parameters 
H and TI/To. The use of the relation [7.2] 
also gives accurate results for the flux of 
particles to the boundary in the case of a 
boundary layer over a substantial part of the 
forward face of a cylinder in a stream, and 
in the case of flow in a tube with a sudden 
drop in the wall temperature except when H 
and TI/To are both small (see Table III). 
Functions of TI/To and H which fit the 
calculated values of CI/Co even more accu- 
rately than [7.2] can be invented easily. 

The conclusion is that the expression [7.1 ] 
for the total particle flux to an isothermal 
cold boundary, with the subsidiary relation 
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[7.2], reproduces all the available numerical 
results, viz., those for the four similarity 
temperature fields and the two nonsimilarity 
temperature fields, with an accuracy which 
would be sufficient in practical applications. 

We suggest that there is an adequate basis 
for the use of  [7.1] and [7.2], with due 
caution, for the prediction of  the rates of  
thermophoretic deposition of  small particles 
in the case of  flow systems in which the 
velocity distribution is either unknown or of  
too complex a form for the numerical cal- 
culation of  the distributions of  temperature 
and particle concentration to be feasible. It 
should be kept in mind, however, that a 
condition for the applicability of [7.1] and 
[7.2] is that all the particles that are deposited 
on a cold isothermal boundary at temperature 
T~ originate in an upstream region where the 
temperature and particle concentration are 
uniform with values To and Co, respectively. 

It may also be noted that the arguments 
used in Section 4 do not require the flow to 
be steady. The flow could be turbulent, for 
instance. The assertion that (0/0r + u - V ) T  
is zero or negative everywhere in the fluid 
cannot then be made with confidence, but it 
remains true that the ensemble average of 
this material derivative is negative and this 
seems likely to be sufficient for the validity 
of  the bounds [3.6]. 

A case of considerable practical interest 
for which direct computation of deposition 
rates is unlikely to be feasible and for which 
[7.1] and [7.2[ may therefore be useful is a 
cold circular cylinder in a stream of  fluid 
carrying small particles, with the Reynolds 
number of the flow about the cylinder much 
larger than unity. (The circular cylinder might 
be a rod in a heat exchanger or a thermal 
precipitator.) There exist formulae for the 
total heat transfer rate which are known to 
fit the experimental data over particular 
ranges of the Reynolds number (see for in- 
stance Incropera and De Witt (17)), and 

these in conjunction with [7.1] and [7.2] 
could be used for the prediction of  the total 
particle transfer rate. If it were possible, 
observation of the total particle transfer rate 
in this case of  a circular cylinder in a stream 
would be very valuable because that would 
provide a test of the formulae [7.1] and [7.2] 
on a flow system which is much more com- 
plex than those considered in this paper. The 
value of  H for a particle of  given size and 
thermal conductivity cannot be said to be 
known reliably, but one could get around 
that difficulty by observation of the total 
particle transfer rate at more than one tem- 
perature ratio or more than one Reynolds 
number. 
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