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Classical statistical mechanics is applied to the study of a passive scalar field convected by
isotropic turbulence. A complete set of independent real parameters and dynamic equations are
worked out to describe the dynamic state of the passive scalar field. The corresponding Liouville
equation is solved by a perturbation method based upon a Langevin—Fokker-Planck model. The
closure problem is treated by a variational approach reported in earlier papers. Two integral
equations are obtained for two unknown functions: the scalar variance spectrum F{k ) and the
effective damping coefficient £2 (k ). The appearance of the energy spectrum of the velocity field in
the two integral equations represents the coupling of the scalar field with the velocity field. As an
application of the theory, the two integral equations are solved to derive the inertial-convective-
range spectrum, obtaining F(k ) = 0.61 ye !/ k =5/3, Here y is the dissipation rate of the scalar
variance and € is the dissipation rate of the energy of the velocity field. This theoretical value of the
scalar Kolmogorov constant, 0.61, is in good agreement with experiments.

I. INTRODUCTION

Considerable theoretical and experimental research has
been devoted to the study of a scalar field convected by tur-
bulence.'?° At first sight it seems that it should be straight-
forward to extend our knowledge from the turbulent veloc-
ity field to the addition of a scalar to the velocity field; vet
both theoretically and experimentally this problem has
proved to be very difficult, even for the most simple case, The
difficulty is of a twofold nature. Firstly it is due to our poor
knowledge of the turbulent velocity field. Secondly it is relat-
ed to the fundamental problem of how the turbulent vector
velocity field and the convected scalar field are coupled to
each other.

Let T be the convected scalar, which may be tempera-
ture or concentration; its fluctuating part is 6, and
T= (T) + 6. Themeanpart (7"} isassumed tobe homogen-
eous and stationary. Then the governing equation for §is'~

3,0 + u-d, 0 =p d20. (1)

Here u = u(x) is the turbulent velocity field, i is the molecu-
lar diffusivity of the scalar, d, means partial differentiation
with respect to time ¢, 9, and 82 are, respectively, the gradi-
ent and Laplace operators. Generally Eq. (1) is both dynami-
cally and statistically nonlinear. If the scalar @ is passive, i.e.,
its amplitude is small enough not to affect the velocity field,
the turbulent velocity field can be considered to be indepen-
dent of the passive scalar and assumed to be given. In this
simple case, Eq. (1) is dynamically linear, but statistically
nonlinear. An evolution equation of any lower-order corre-
lation of the scalar-velocity field must contain some higher-
order correlation of mixed type due to the term wd, & in (1).
Hence, similar to the Navier-Stokes equation, Eq. {1} is equi-
valent to an infinite hierarchy of equations for correlations;
any finite subset of the infinite hierarchy of equations is not
closed, and possesses more unknowns than are determined
by the subset. In order to solve this closure problem, i.e, to
find proper approximate methods to convert the infinite
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hierarchy of equations into a closed subset, it is necessary to
properly treat the coupling between the scalar and the veloc-
ity, and to express higher-order correlations of mixed type in
terms of proper lower-order correlations.

By a dimensional argument or some phenomenological
model, Obukov,* Corrsin,”> and Batchelor® predicted the
large-wavenumber behavior of the spectrum F {k }of a passive
scalar field convected by isotropic turbulence. For the iner-
tial-convective range, they obtain

F(k)=Bye "? k%", 2)

a counterpart of the Kolmogorov inertial-range spectrum of
the velocity field. Here B, is the {three-dimensional) scalar
Kolmogorov constant, y is the dissipation rate of the scalar
variance (6 ?), and € is the dissipation rate of energy of the
velocity field. Equation (2} has been confirmed by experi-
ments,”'? and experimental values of B, range from 0.5 to
0.8. There are few theoretical calculations of B;. Kraich-
nan'* used the Lagrangian history direct-interaction ap-
proximation to solve the closure problem of Eq. (1) and ob-
tained B, = 0.208. Gibson’s phenomenological theory'’
predicted B, in the range 1.0 to 1.7. Lundgren’s theory'®
predicts that B, = 0.49.

In this paper the variational approach to the closure
problem of turbulence, reported in earlier papers,*'~* is to
be applied to the study of a passive scalar field convected by
isotropic turbulence. First of all a complete set of indepen-
dent real parameters and its dynamic equation are worked
out to describe the passive scalar field. An approximate solu-
tion of the corresponding Liouville equation is obtained by a
perturbation method based on a Langevin-Fokker—Planck
{LFP} model; then higher-order correlations of the scalar-
velocity field are expressed in terms of their lower-order cor-
relations. The cost of so doing is to introduce a new unknown
function £2 (k ), which is determined by requiring it to opti-
mize the LFP model. Two integral equations are obtained
for two unknown functions: the scalar variance spectrum
and the (2 {k }, thus solving the closure problem of Eq. {1}. As
an application the two integral equations are solved to derive

© 1985 American Institute of Physics 1299

Downloaded 11 Nov 2009 to 159.226.231.78. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



the inertial-convective-range spectrum {2). Finally the scalar
Kolmogorov constant B, is numerically evaluated,
B, = 0.61, which is in good agreement with experiments.

Il. INDEPENDENT REAL PARAMETERS AND DYNAMIC
EQUATION

The turbulent scalar-velocity field is assumed to be in-
compressible, isotropic, and confined within a cubic box
with side L and periodic boundary conditions. Therefore we
have

6 (x) = H Y 6 (klexp (ik-x), (3a)
k

u(x) = H Y u(kjexp(ik-x). {3b)

Here H = (2a/L )*, 2, means summation over discrete wave
vector k, and the 0 (k) and u(k) are discrete Fourier trans-
forms of the scalar and the velocity, respectively. Substitut-
ing (3) into (1), we have

(@ +upk?)0 (k)= —iH Yy ku(r)é (p), )

with r = k — p. Here p and r are also discrete wave vectors;
d, means differentiation with respect to time z. Since the
scalar 6 (x) is a real quantity,

Y —k)=60"k) and 8?9 —k)= — 0P(k). (5)
Here 6 (k) and 0 @(k) are the real and imaginary parts of
8 (k), respectively. Let u'V(k) and u'®(k) be the real and imagi-
nary parts of u(k} respectively; after some manipulation, {4)
becomes

(d, +pk )6 (k) = H 3D “*%ku"r)6 “(p) (6)

with r = k — p. The real-imaginary-part indexes a, b, and ¢
take on 1 and 2. The Einstein summation convention is used
for repeated b and c. The coefficients D > are defined as
follows:

0, ifa+b+c=3o0r5,

—1, fa=2,b=1andc=1, (7)
1, otherwise .

Because of (5), ' (k) are not independent, although
they are real. In order to get independent real modal param-
eters, we combine the wave vector k and the real-imaginary-
part index a into one single index / {do not confuse it with the
imaginary unit) in the following way:
i=(ak), -—i=(a,—Kk) (8a)
i>0if (k;>0) or (k, > 0,k; = 0)(k, > 0,k, = 0,k; = 0). (8b)
The new modal parameters Y; are defined as follows:

Y, = eli)6 k), 9)
wheree{i} = — 1if{i <0, a = 2), otherwise (i} = 1. Then {5)
becomes

Y_, =Y. {10)

Dabc__:

Therefore [Y;;/> 0] constitutes a complete set of indepen-
dent real parameters for the scalar field and the dynamic
equation (6) becomes
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(@ +p)Y. =3 B, Y, (11)
J

Here p1; = pk 2,3, means summation over j, i and j take on
positive integers only, and

B; = HD** [k-u®/(k — ple(dle(j) + k-u®!(k + ple(ie( — /)]

(12)
Einstein’s summation convention is used for the index b; and
B, =0 ifi=j (13)

For the study of high-wavenumber dynamics, the model of
stationary homogeneous turbulence is assumed. In order to
maintain the stationarity of the turbulent scalar field, some
external source of the type u/Y; is introduced at low wave-
numbers; then the dynamic equation {11} becomes

[dt +(/‘l'i “P":)]Y: =ZB¢'ij: (14)
J
Here p; is different from zero only at low wavenumbers.

Ill. CONDITIONAL PROBABILITY DISTRIBUTION AND
LIOUVILLE EQUATION

According to (12} B; is a linear functional of
X = [X,;i>0], and X, are the real modal parameters of the
turbulent velocity field defined in Ref. 21. Since the scalar
field is passive, the probability distribution P (X) of the veloci-
ty field is independent of Y = [Y;i > 0] and can be deter-
mined by the method proposed in Refs. 21 and 22. Therefore
Eq. {11} or (14} is a dynamically linear but statistically non-
linear stochastic equation. The X and Y are, respectively, the
state vectors of the scalar field and the velocity field. The
state vector of the whole scalar-velocity field is [X,Y]. All
possible sets of [X, Y] or all possible states of the scalar-veloc-
ity field, constitute a phase space, called scalar-velocity or X-
Y phase space. The corresponding probability distribution
over an ensemble of numerous realizations of the turbulent
scalar-velocity field is

P(X,Y) = P(X)P(Y/X). (15)

Here P(Y/X]} is the conditional probability distribution of
the scalar when the state of the velocity field is given. Corre-
sponding to the three different probability distributions
P(X,Y), P(X),and P(Y/X), we have the following three differ-
ent statistical or ensemble averages.

(o= f ax f dY (- JP(X,Y), (16a)
- dx = [dX (9P, (16b)
- .)y:de(- - JP(Y/X). (16¢)

Equations {16b) and {16c) are partial ensemble averages over
X and Y, respectively. From (15) and (16},

(o =(¢))x (16d)
If (- - ) is independent of Y,
(o= (o), (16¢)

From the dynamic equation (14), the Liouville equation
for the conditional probability distribution P(Y/X) is
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4,P(Y/X)+LP{(Y/X)=0, {7
where L is the Liouville operator and
L= "z(ﬂ'i — 19y Y; +ZBinjaYi' (18)
7 7

Here 3y, means partial differentiation with respect to ¥, and
2, means summatjon over i andj. Since P (X) has been deter-
mined in Ref. 21, if we can solve Eq. (17) to determine P (Y/
X), then by (16) we can calculate various statistical properties
of the turbulent scalar-velocity field. In the next section the
Liouville equation (17) for a stationary turbulence is solved
by a perturbation method based upon a Langevin—Fokker-

Planck model.

IV. LANGEVIN-FOKKER-PLANCK MODEL AND
PERTURBATION SOLUTION

Similar to the Langevin—Fokker—Planck model pro-
posed for the turbulent velocity field in Ref. 21, it is assumed
that the right-hand side of the dynamic equation (14) for the
scalar field can be approximated by a linear damping force

— B, Y; plus a random force of the type of white noise f;:

SB,Y,= —BY, +f (19)
J

The number of the adjustable coefficients 5, in the approxi-
mation (19} is infinity; the approximation can be made as
good as possible by choosing the optimum £;. By {19) the
dynamic equation (14 becomes

dY,=—2Y +f, ;=8 + W —p (20)
Its Liouville equation is the Fokker-Planck equation, and

the corresponding Liouville operator is the Fokker-Planck
operator

L= — 3 @,[9nY, + G:d%]. 2l

It will be shown later that G, is related to the mean modal
strength. Hence the simplified model (9} implies that the real
Liouville operator (18) can be approximated by the Fokker—
Planck operator,

L=LY. 22)

By taking partial ensemble average over X, the Liou-
ville equation {17) becomes

3 (P(Y/X)), = — (LP(Y/X)),. (23)
For a stationary turbulent scalar-velocity field, (P(Y/X)),

is independent of time; although generally it is a function of
time, we have

(LP(Y/X)), =0. {24)
Its particular solution is LP(Y/X) =0 or
[LY 4+ (L — LYY]P(Y/X)=0. (25)

According to (22), A L = L — LY can be considered to be a
small perturbation operator. Let P(Y/X) = p©@ +p'V 4 ..+,
by the perturbation method, we have

LYp® =0, (26a)
Ltf)p(ll = — A Lp(o) —_ Lp‘o). (26b)
Similar to the derivation of Sec. V of Ref. 21, finally we have
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P(v/X) = (1= S, — ¥, - G/20,6)

+SBYE/GM+ NP @)
i
where
p(O) — H(ZTTG[)_llzexp [ _ Y,/(ZG,)]

is the Gaussian density function.

{27b)

V.CORRELATIONS

By using (15}, {16), {27), and the expression for P (X) ob-
tainedin Ref. 21, itis possible tocalculate various correlations
of the turbulent scalar-velocity field. First of all we have

(Y,Y;) =(Y))5y, {28)
where §;; is the Kronecker symbol and

(Y} =Gi[1—(u; —p))/2;]. (29a)
In the convective range, u;, = u; = 0, we have
0, =p;and (Y?) =G,. (29b)

Hence the physical meaning of G, is the mean modal
strength. For isotropic turbulence {¥7},G, and £2; are func-
tions of konly; and G, = G [k}, 2, = 2 (k). By (3a} and (9},
it can be proved that

(0% = f F (k)dk,

and
F(k)=4nk’gk), gk)=2H(Y?) =2HG,. (30b)

Here F (k )is the three-dimensional scalar variance spectrum.
The triple correlation of mixed type

(30a)

(B,Y.Y)) ..-—.J‘dXJ-dYBin,-Y;P(X)P(Y/X)

31)
According to(12) B; is independent of Y; its correlations can

be calculated by (16¢), and the formula for P(X) in Ref. 21.
After long manipulation, we have

(B;By) =05 H {k-P(k — pykg(|k —p|)

+ kP(k + p)kg(/k + p|)}, (32a)
(B;B;) = (B,B,;), (32b)
(B,B;) = — (B,B,;). (32¢)

Here P(k) = I — kk/k ? is the projector operator,?! I is the
identity operator and g(k ) = 2H(X ?) is the energy spectrum
of the velocity field. In the derivation of (32) we have used the
following property of P(k):

Pk + p}p= F Pk £ prk. (33)

By Egs. (31) and (32) we have solved one fundamental
problem of the theory of a passive scalar field convected by
turbulence: how to express the higher-order correlation of
mixed type in terms of proper lower-order correlations. The
cost is to introduce an infinite number of new unknown £2,,
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which will be determined by requiring that they have to opti-
mize the approximation (19) or (22).

VI. VARIANCE EQUATION AND VARIANCE TRANSFER
FUNCTION

Multiplying (11} by ¥, and then taking the ensemble
average, using {30), we obtain the variance equation of the
scalar field,

(d, +2uk?)F(k) =S (k); (34a)

S(k)=167HK>Y (B, Y,Y)) (34b)

is the scalar variance transfer spectrum function. By (31) and
{32), after some manipulation (34b} becomes

([k — p)k-P(k — pykIg(p) — gk)]
2(k)+2p)

S(k) = 8rHK?Y 4
(34¢)

Let the size of the cubic box containing turbulence approach
infinity; after some manipulation finally we have

Sik)= 167k [ dp Clieplp* EPL—=8K) (349
(k)= f p Clhoplp' FL=ETL,  (340)
where

C(k,p)=C(p,k)=J:d¢ sin® ¢ ‘1|(l|‘k—_!-|’ﬁ (34e)

Here ¢ is the angle made by vectors k and p.
Similar to the energy transfer function of the velocity
field, the scalar variance transfer function is defined as

_ f arS(

Since the integrand in (34d) changes sign when & and p are
interchanged, from (34d) and (35a) we have

+_&lp) ~ glr)
(k)_lsff drf dp Clrak) g
(35b)

In the convective range the variance transfer function is in-
dependent of & and is equal to the dissipation rate of scalar
variance

(35a)

=2u j dk k2F (k). (36)
(4]
Therefore in the convective range,

"
- h s _8p) —glr)
Y= 16172J; er(; dp C(r,p)irp) 2000 (37)

VIl. VARIATIONAL APPROACH AND 2 EQUATION

The scalar variance spectrum F(k ) and g{k ) are related
by {30b). The energy spectrum g(k } can be determined by
solving the closure problem of the Navier-Stokes equa-
tion.?!*> Hence the variance equations (34) or {37) contain
two unknown functions g(k ) and {2 {k ). Another equation of
glk ) and £2 (k) is needed to solve the closure problem of the
convected passive scalar field. The validity and error of the
perturbation solution {27) depend upon the validity and er-
ror of the LFP model (19}~(22). The effective damping coeffi-
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cient = [{2;; i > 0] is to be adjusted to optimize the LFP
model, i.e., to minimize its error. This is similar to the opti-
mum-parameter-estimation problem in control theory. The
usual approach is the mean-square estimation method,?"**
i.e., the optimum £ has to minimize the mean-square error
of the approximation {19} which is

Q= 2«2 B,Y, — (-8 Y)) > {38)
By variational calculation, we have

3n; £=0. (39)

From (38) and (39), by using (28)—(32), after long manip-
ulation finally we have {see Appendix)

e [ o0 8lk) =gl
stk )2 () = 4k [ dp Cplp*2 o TS

(40)

The £2 equation (40) and the variance equations (34) or (37)
constitute a closed set of integral equations for two unknown
functions g(k ) and £2 (k ). This solves the closure problem of
the convection-diffusion equation (1). As an application, in
the next section the two integral equations will be solved to
derive the inertial-convective-range spectrum (2} and to
evaluate numerically the scalar Kolmogorov constant B,.

VIil. INERTIAL-CONVECTIVE RANGE

The idealized model of the inertial-convective range of
a turbulent scalar-velocity field is an energy source and a
scalar variance source at zero wavenumber, an energy sink
and a scalar variance sink at infinity wavenumber, with an
energy flow and a scalar variance flow across the spectrum at
the constant rates € and y, respectively. According to Ref. 21
in the inertial range,

glk) =Ko €k ~""3/(4x), Ko=12. (41)
Substitute (41) into {34¢), and we have
C (k,p) = Ko é/3¢(k,p)/(4m), (42a)
¢lk,p) = 0.75(kp) >{ }(k* — p*
X[|k+p|~"? — |k —p|" 13
— 0.4(k2 + p)[ |k + p|~%'* — [k — p|~3"]
— [k +p|"* — |k —p|"*]}. (42b)
Let
glky=4dk™, 2(k)=Bk", {43}

and p = xk; Eq. (40) then becomes

B2=Ko e.2/3 k4/3-—2nfdx c(l’x)x4+n ((11 ,,)l (44)
Since B is a constant, from (44)

n=2/3. (43)
Let B = De'’3, then

0 (k)= De'Pk?3, {46)
and (44) becomes

DZ—KOJ dx gLt +r L=XT) (47)

{1 +x7)
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Let p = xk, r = yk, and by using (43) and (46), Eq. {37}
becomes

X=4’)TKO GUS(;{ /D)k 1134+ m

& 1 m __ m
x [ ay [ ax oo E=2. (48)
1 0 X' +y

Since y is a constant, from (48),

m= —y. (49)
Let A = B,ye™'/*/(4m), from (43) and (48); we then have

F(k)=4mkglk) = Byye "’k =33, (50)

o« 1 m __ .m
D _ Kof dyj dx (;(y,x)(xy)“xn yn. (51)
B3 1 ] X ..[..y

Equation (50} is simply the inertial-convective-range spec-
trum (2). We have derived it as a consequence of the dynamic
equation (1) by the method of statistical mechanics.

From (41), (45), (47), (49), and (51}, by numerical compu-
tation we have

D?=0.25, D/B,=0.82. (52)
Therefore
D =10.5and B, =0.61. . (53)

IX. COMPARISON WITH EXPERIMENTS

A series of experiments have been made to test the va-
lidity of the spectrum {50} and to determine the scalar Kol-
mogorov constant B;.”~'? There is some confusion about the
experimental data of the scalar Kolmogorov constant due to
its different definitions. The 3-D scalar Kolmogorov con-
stant B; used in this paper is defined by Eq. (2) or (50}, and
correspond tothe 3-Dspectrum F (k ). Inexperiments the 1-D
spectrum F(k ) is measured, and a corresponding 1-D scalar
Kolmogorov constant B, is determined;

Fk)=Bye 3k ~53, (54)

Some authors'? prefer to use 0.5y as the dissipation rate, and
introduce a new 1-D scalar Kolmogorov constant B {,

Filk) = B, (0.5y)e~ /% —5/3, (55)

The relationships between B,, B, and B, are®”'2

B =2B,and B, =(5/3)B,. (56)
The experimental values of B,, B {, and B, are given in Table
I. The experimental values of B; are between 0.5 and 0.8. The
present theoretical prediction (B, = 0.61} is in good agree-
ment with the experiments. This is very encouraging andisa

further justification of the variational approach to the clo-
sure problem proposed in Ref. 21.

TABLE 1. Experimental values of the scalar Kolmogorov constant.

Reference B, B B,
Gibson and Schwarz (1963)7 0.35 0.70 0.58
Gurvich and Zubkovskii (1966)*°  0.45 0.90 0.75
Grant et al. (1968)° 0.31 0.62 0.52
Panofsky (1969)*° 0.35 0.70 0.58
Paquin and Pond (1971)"? 0.41 0.82 0.68
Wyngaard and Cote (1971)"! 0.40 0.80 0.67
Champagne et al. {1977)"* 0.45 0.90 0.75
1303 Phys. Fluids, Vol. 28, No. 5, May 1985

X. DISCUSSION

The theoretical value of B,, 0.208, obtained by Kraich-
nan'* is too small. Gibson’s phenomenological theory'® pre-
dicts that B; is between 1.0 and 1.7, which is too large. Lund-
gren’s theoretical prediction® B, = 0.49 is better, but still is
lower than the experimental data. In Lundgren’s theory
some adjustable parameters are needed to specify the energy
spectrum, and Corrsin’s independent hypothesis is used to
relate the Lagrangian and Eulerian statistics. In present the-
ory there is no adjustable parameter and Corrsin’s indepen-
dent hypothesis is not needed.

Dimensional arguments can predict that the inertial-
range energy spectrum and the inertial-convective-range
scalar variance spectrum are proportional to k¥ ~3/3, but can-
not determine the values of the Kolmogorov constants Ko
and B,. The theory developed in Ref. 21 and in this paper can
prove that the k ~%/% spectrum is actually a consequence of
the corresponding dynamic equation, the Navier-Stokes
equation or the convection-diffusion equation (1), moreover
it can determine the values of Ko and B,. This situation is
somehow similar to the relationship between thermodynam-
ics and statistical mechanics.

At the present time we have no formal proof of the con-
vergence of the perturbation method used here. A relevant
problem is the possibility of the perturbation solution {27)
being negative when the modal parameters ¥; are very large.
As discussed in Ref. 21 this probability is very small or near-
ly zero.

The Liouville operator L (18) is called an unsolvable
operator, because we don’t know how to obtain the exact
solution of its corresponding Liouville equation. On the con-
trary the Fokker-Planck operator L' is a solvable operator,
since we know that the exact solution of its corresponding
Liouville equation, the Fokker-Planck equation, is the
Gaussian density function. In the perturbation-variation
method developed in Ref. 21 and this paper, the solvable
operator L'/ is used to approximate the unsolvable operator
L, and the exact solution of the solvable operator is used as a
zero-order approximate solution of the unsolvable operator.
The success of this method depends upon the proper choice
of the solvable operator. The studies reported in Refs. 21-23
and in this paper show that choosing the Fokker-Planck
operator as the solvable operator is successful, although it is
not clear whether this choice is the best one.
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APPENDIX: DERIVATION OF THE 2 EQUATION (40)
Substituting (38) into {39) and using (28)—29), we have

Giﬂi = - z [(BijBij>Gj + <Biiji)Gi]/(‘0i +'Qj)

+ Z {‘Q"[<BijBij)Gj + (Biiji>Gi]
+Q,[(B,B;)G; + (B,;B;)G, |}/ + 2,/
(A1)
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For isotropic turbulence, G, and £2; are functions of k only,
G, = G (k) and £2, = 2 (k). By means of (30b) and (32), Eq.
(A1) becomes

glk) —glp)
[2(k)+ 2 ()]
(A2)

with r = k — p. Let the size of the cubic box containing tur-
bulence approach infinity. The summation over the discrete
wave vector p approaches a 3-D integral, and (A2) becomes

sk k) =2[ [ [ ao

Xk ’p? sin” ¢ g(r42 (p)

=Mf@f@

X k*p* sin’ ¢ q(r)(2 (p)

glk )2 (k) =2H Y q(rk-P(rFke2 (p)

glk) —glp)
{ri2k)+2pn¥

glk)—glp)
{rl2 (k) + 2()1¥
(A3)
with r = k — p. Here ¢ is the angle made by vectors k and p.
By means of = |k — p| and Eq. (34¢), from (A3) we have

glk)—glp) _
[@2k)+ 2P
(A4)

glk )2 (k) = 4k j dp C (kplp*2 ()
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which is simply the £ equation (40). The derivation of Eq.
(3d) is similar.
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