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Abstract--The strain energy density criterion is used to characterize subcritical crack growth 
in a thin aluminum alloy sheet undergoing general yielding. A finite element analysis which 
incorporates both material and geometrical nonlinear behaviors of the cracked sheets is de- 
veloped to predict fracture loads at varying crack growth increments. The predicted results are 
in excellent agreement with those measured experimentally, Ihus confirming the validity of the 
strain energy density criterion for characterizing ductile crack propagation. 

INTRODUCTION 

CONSIDERABLE effort has been devoted in the last decade to the development ofductile fracture 
characterization capable of successfully predicting design life expectancy of engineering com- 
ponents undergoing gross yielding. While the fracture criterion such as J-integral [I, 2], COD 
[3, 4] and tearing modulus [5, 6] have received relative popularity [7], there remain many 
inconsistencies in their respective interpretation of test data extracted from different specimen 
geometries and modes of loading [8-1 I]. These inconsistencies have cast doubts on their vi- 
ability as ductile fracture control parameters. The strain energy density criterion due to Sih 
[121 has been shown to be capable of characterizing not only brittle [131 but also ductile fractures 
[14, 15]. 

According to the strain energy density criterion, crack initiation or growth is postulated to 
occur when the strain energy density (dW/dV) in an element ahead of the crack tip along its 
prospective crack path reaches a critical material resistance parameter (dW/dV),. The param- 
eter is determined from the area underneath a true stress-strain diagram experimentally de- 
termined from an uniaxial tensile specimen or using the following expression: 

d W'~ ",, 
" ~ / , .  = f ,  c r d e ,  (I) 

where W is stored strain energy, V is volume element of the material used, e,, is ultimate strain, 
cr is true stress and �9 is true strain. For a structt|re loaded beyond the elastic range of its 
material, the irreversible plastic deformation experienced by the structure will induce residual 
stresses and its associated strain energy will no longer be available for crack initiation or 
advancing its growth. Ira point p along the true stress-strain curve is assumed to have reached 
beyond the elastic limit, then eqn (I), which may also be regarded as a material resistance 
parameter to crack growth, should necessarily be modified as 

( dW~* (dW~ _ (dW~ 
-d-f:/,. = \dV/,. \dV),,' 

(2) 

where (dW/dV), represents the degree of plastic deformation at the stress cr~, on a true stress- 
strain diagram. 

The methodology describcd above has been applied by Sih and Madenci [14, 15] recently 
to predict fracture loads of a thin plate stressed beyond gross yielding using a finite element 
method. However, no experimental verification was presented in their analysis to substantiate 
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the validity of the strain energy density criterion for ductile crack growth analysis. In addition, 
no explicit reference was made to highlight the importance of crack surface unloading after 
each crack advance on its subsequent crack growth behavior. 

This paper is intended to examine the validity of the application of the strain energy density 
criterion to ductile subcritical crack growth in a thin plate undergoing large plastic deformation. 
Both material and geometrical nonlinearities are included in a finite element formulation which 
also incorporates crack surface unloading after each incremental crack advance. The predicted 
fracture loads during a series of subcritical crack growth steps in the thin plate are then com- 
pared with those measured experimentally. 

Pinite element attalysis 
In order to take fully into account large elastic-plastic deformation near a crack in the thin 

plate, an Eulerian finite element formulation capable of characterizing large elastic-plastic flow 
is chosen. This is based on Hill's variational principle for incremental deformations of iso- 
tropically hardening PrandtI-Reuss materials [16]. The formulation of rate equilibrium at any 
large deformation may be expressed in the form of virtual work equation as [17] as 

(3) 

:r 
where V is element volume, -r,- i is Jaumann co-rotational rate of Kirchhoff stress, and D o. is 
deformation rate. {v} is the vector of velocity components, v~.j is &,JO.vl for the position vector 
x of a material in the current state, j~,. is force vector intensity rate and b is body force intensity 
rate. The velocity vector {v} and the deformation rate {D} to the rates of  degrees of freedom 
{~} of a mesh representing the current geometry are: 

= [m]{+} 

[D] = [I31{+}. 

The matrices are expressed as 

[B;,-] = ~[N,I,j + �89 

An Enlerian finite element rate equilibrium equation based on the virtual work formulation of 
eqn (3) may be deduced as 

[K]{+} = 

where 

and 

for which 

[K] = [K,.p] + [Ks], 

[K,.j,] = f v  [B]T[CI[B] dV 

[Ks] = f v  [Nk]5~roINkl'i -- 2[Btl]7~~ dV. 

The matrices [Kc~,] and [K.,] shown above represent respectively conventional small displace- 
ment stiffness matrix and geometrical nonlinear matrix. 
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As mentioned earlier, a thin plate embedded with a center crack subjected to an applied 
stress cro at both upper and lower boundaries (see Fig. 1) was considercd in the investigation. 
Because of the axisymmetrical nature of the specimen geometry and loading, only a qnarter 
of the specimen needs to be discretizcd. A typical finite element idealization is shown in Fig. 
2 whereas Fig. 3 depicts detailed element construction neat the crack tip. The finite element 
analysis was performed utilizing the tangent modulus incremental plasticity or updated La- 
grangian and a first-order self-correcting procedure for solution convergence [181. 
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Fig. I. An inclined crack subject. 
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Fig. 2. A typical finite element representat ion of  a center  cracked plate. 
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Table I. Mechanical properties 

Young's modulus, Yield stress, Ultimate stress, Maximum elongation, 
Material E (GPa) o3., (MPa) or,, (MPa) e/(mm) a n 

LYI2-CS 69.48 320 489 0.134 0.013 5.0 

The material chosen for the investigation is aluminum alloy LY12-CS and its mechanical 
propert ies are outlined in Table 1. The dimensions selected are H = 94 mm, W = 55 mm, 
a = 6.73 mm and t (thickness) = 1.50 mm. The measured true stress-strain curve  from the 
uniaxial standard tensile test may be expressed as a power hardening law: 

IT IT 
e = ~ + a  - 1  , 

/ 
(4) 

where E is Young's  modulus,  IT~.s is yield stress, n in the strain hardening exponent  and a is 
the material coefficient,  all of  which can be found in Table I. The  computed multiaxial stress 
distribution in a cracked thin plate is related to the uniaxial tensile data with the equivalent 
stress (re as 

,"3  r z ",. I / 2  
ITe = ~ f f i j f f i j )  (5) 

where ITb is stress deviator  tensor.  
The loading of  the cracked specimen is applied incrementally until the threshold condition 

of  crack growth is satisfied, i.e. (dW/dV)* = (dW/dV) in an element ahead of  the crack tip 
along its prospective crack path. Over a hundred load increments were found necessary before 
the threshold condition was met. The crack surface was then allowed to unload itself after  each 
crack advance.  Five incremental unloadings were used, resulting the development  of  a typical 
unloading zone and secondary plastic zone as depicted in Fig. 4. 

Fig. 3. Finite element representation at crack tip. 

t"" UNLOADING 
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CRACK PI P~ 

ZONE 

Fig. 4. Development of unloading and secondary plastic zones after a crack advance from P] 
to P2. 
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EXPERIMENTS 

The tests were carried out with a universal testing machine. The specimen was in the first 
instance fatigue-precracked to produce the initial total crack length of 13.46 mm. The specimen 
was gradually loaded incrementally to about 70% of its estimated critical load. The critical load 
is defined as the load at which further crack propagation will lead to global instability of the 
test specimen. The load increment was then substantially reduced until final rupture. The 
continuous growth of the crack as the specimen was being loaded was monitored with a trav- 
elling microscope at • 80, which enabled the recording of the crack extension np to 0.01 mm. 

In order to aid the measurement of crack growth as well as the plastic strains developed at 
the crack tips, moir6 and laser speckle methods were used on each side of the specimen surfaces 
[18]. The moir6 method was used to record relatively large plastic deformation with a cross- 
grating frequency of about 40 lpm, while the speckle method with equivalent frequency of 
about 467 Ipm was chosen to measure elastic deformation field when the applied load was 
relatively low. 

DISCUSSION OF RESULTS 

The strain energy density function dW/d V is defined as the total energy stored per unit volume 
of material under consideration. It may be expressed in terms of the true stress cr;j and trite 
strain e;j computed from the finite element analysis as 

dW 
dV = f~u deu. 

From physical considerations, excessive change in shape or distortion in a volume element is 
associated with yielding, while excessive change in volume or dilatation is associated with 
fracture. The strain energy density may be subdivided into two parts. The term involving the 
dilatation energy may be evaluated by 

( dW'~ 1 
- ~  /,.  = -~ f(r,, de;,, 

and the distortion energy by 

(dW  dW :dW  
/ , ,  - -oF k - i f / , . "  
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Fig. 5. Variations of strain energy density for half crack length of a~ = 6.7 mm. 
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Fig. 6. Variat ions of  strain energy densi ty  for half crack length of  az = 7.05 mm.  
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Fig. 7. Variat ions of  strain energy densi ty  for half crack length of  a3 = 7.48 mm.  

According to the strain energy density criterion, the onset of crack initiation and growth is 
postulated to occur when the strain energy density ahead of the crack tip (dW/dV) is equal to 
the material crack growth resistance parameter (dW/dV)* defined in eqn (2). The computed 
crack growth results are summarized in Figs 5-9, each representing a crack increment for a 
total of five growth steps. It can be observed from the figures that the initial half crack length 
of 6.7 mm was extended at the applied stress of 295 MPa to its final crack length of 11.08 mm 
at the applied stress of 306.8 MPa, resulting a total crack growth ofAa = 4.38 mm. Each figure 
also illustrates significant crack surface unloading effects due to nodal force release after the 
crack growth threshold condition of (dW/dV) = (dW/dV)~. is initially satisfied. Figure 4 depicts 
the unloading zone together with the development of a secondary plastic zone behind a crack 
tip after it has advanced from a crack location PI to its new location P2. 

Both the computed and experimental crack growth results against their corresponding frac- 
ture loads are illustrated in Fig. I0. Also shown in the figures are the predictions made based 
on an elongation failure criterion [18]. Because of the difficulties of maintaining an "absolute" 
symmetry of the embedded crack with respect to its center line, some deviations, although not 
substantial, in the crack growth measurement at its right and left tips were observed, and are 
illustrated in the figure. The elongation failure criterion postulates that crack initiation takes 
place when the tensile strain at the crack tip reaches the elongation of the material at failure 
under the uniaxial tensile loading. 

For ease of comparison, the results shown in Fig. 10 are summarized numerically in Table 
2. It can be concluded from the table that the predicted fracture loads are in excellent agreement 
with those determined experimentally with the maximum percentage error between the pre- 
dicted and measured fracture loads being within 4.0%. 

One of the hypotheses made in the strain energy density criterion is related to the rate of 
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Fig. 8. Variations of strain energy density for half crack length of a4 = 8.18 mm. 
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Fig. 9. Variations of strain energy density for half crack length of a.~ = 9.28 mm. 

crack growth governed by the condition that [15] 

( dlrV'~* Si $2 _ S  j _  _S(. 
d V  / ,. r ,  r~. . . . . .  Ci . . . . .  r,. 

- constant, 

where S , .  and r,. are respectively the critical strain energy density factor and the critical crack 
length. Unstable crack propagation or global instability is said to occur when S , / r ,  is reached, 

Table 2. Subcritical crack growth 

Strain energy density criterion Experiment 

Crack Applied fracture 
Growth Applied load, Crack growth, Applied load, growth, load differences 
step no. tr (MPa) Aa (mm) o (MPa) ~a (mm) (%) 

I 295.0 0.35 300.0 0.3t/0.12~: i .7 
2 297.0 0.43 309.0 0.38t/0.11 ~+ 3.9 
3 301.0 0.70 313.6 0t/0.2% + 4.0 
4 304.8 1.10 315.6 0.33t/0.29:~ 3.4 
5 306.8 1.80 316.5 Unstable 3.1 

tLeft  crack tip growth measurement. 
+~ Right crack tip growth measurement. 
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Fig. I0. Subcritical crack growth. 
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Fig. I I. Strain energy density factor vs crack length. 

provided that 

S,  < $ 2 <  . . . .  < S i <  . . . . .  < S, 

r l < r2 < . . . .  "< t)  < . . . . .  < r,.. 

The above conditions may be verified by plotting the strain energy density factor, S, against 
crack length a as shown in Fig. 11. The figure reveals the linear S-a relationship, thus confirming 
the validity of the hypothesis that dS/da = constant. 

C O N C L U S I O N S  

1. The strain energy density criterion can correctly characterize the subcritical crack growth 
behavior of thin crack plates stressed beyond gross yielding. 

2. The validity of the application of the strain energy density approach to ductile fracture 
studies is verified by comparing the predicted and measured fracture loads of a thin cracked 
plate experiencing subcritical crack growth. Excellent agreement between the predicted and 
measured fracture loads is attained with the maximum percentage prediction error less than 
4.0%. 
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