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Abstract—The strain energy density criterion is used to characterize subcritical crack growth
in a thin aluminum alloy sheet undergoing general yielding. A finite element analysis which
incorporates both material and geometrical nonlinear behaviors of the cracked sheets is de-
veloped to predict fracture loads at varying crack growth increments. The predicted results are
in excellent agreement with those measured experimentally. thus confirming the validity of the
strain energy density criterion for characterizing ductile crack propagation.

INTRODUCTION

ConsiDERABLE cffort has been devoted in the last decade to the development of ductile fracture
characterization capable of successfully predicting design life expectancy of engineering com-
ponents undergoing gross yielding. While the fracture criterion such as J-integral [1, 2], COD
[3, 4] and tearing modulus [5, 6] have rececived relative popularity [7], there remain many
inconsistencies in their respective interpretation of test data extracted from different specimen
geometries and modes of loading [8-11]. These inconsistencies have cast doubts on their vi-
ability as ductile fracture control paramelers. The strain energy density criterion due to Sih
[12] has been shown to be capable of characterizing not only brittle [13] but also ductile fractures
[14, 15].

According to the strain energy density criterion, crack initiation or growth is postulated to
occur when the strain encrgy density (dW/dV) in an clement ahead of the crack tip along its
prospective crack path reaches a critical material resistance parameter (dW/dV),... The param-
eter is determined from the area underneath a true stress—strain diagram experimentally de-
termined from an uniaxial tensile specimen or using the following expression:

dw €u
(W)‘.= J:) o de, (1)

where W is stored strain energy, V is volume element of the material used, e, is ultimate strain,
o is true stress and e is true strain. For a structure loaded beyond the elastic range of its
material, the irreversible plastic deformation experienced by the structure will induce residual
stresses and its associated strain energy will no longer be available for crack initiation or
advancing its growth. If a point p along the true stress—strain curve is assumed to have reached
beyond the elastic limit, then egqn (1), which may also be regarded as a material resistance
parameter to crack growth, should necessarily be modified as

dw\® _ diy - (dw 2

av /).~ \dv/. av )’ -

where (dW/dV), represents the degree of plastic deformation at the stress o, on a true stress-
strain diagram.

The methodology described above has been applied by Sih and Madenci [14, 15] recently

to predict fracture loads of a thin plate stressed beyond gross yielding using a finite element
method. However, no experimental verification was presented in their analysis to substantiate
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the validity of the strain energy density criterion for ductile crack growth analysis. In addition,
no explicit reference was made to highlight the importance of crack surface unloading after
each crack advance on its subsequent crack growth behavior.

This paper is intended to examine the validity of the application of the strain energy density
criterion to ductile subcritical crack growth in a thin plate undergoing large plastic deformation.
Both material and geometrical nonlincarities arc included in a finite element formulation which
also incorporates crack surface unloading after each incremental crack advance. The predicted
fracture loads during a series of subcritical crack growth steps in the thin plate are then com-
pared with those mecasured experimentally.

Finite element analysis
In order to take fully into account large elastic—plastic deformation near a crack in the thin
_plate, an Eulerian finite element formulation capable of characterizing large elastic—plastic flow
is chosen. This is based on Hill’s variational principle for incremental deformations of iso-
tropically hardening Prandtl-Reuss materials [16]. The formulation of rate equilibrium at any
large deformation may be expressed in the form of virtual work equation as [17] as

(750D, — 10;,8Q2DuDy — v J1AV = | fdu; dS + | bduv. dV, (3)
v v Ky v

where V is element volume, 7 is Jaumann co-rotational rate of Kirchhoff stress, and Dy is
deformation rate. {v} is the vector of velocity components, vy ; is dux/dx; for the position vector
x of a material in the current state, §; is force vector intensity rate and b is body force intensity
rate. The velocity vector {v} and the deformation rate {D} to the rates of degrees of freedom
{#} of a mesh representing the current geometry are:

{v} = [NK#}
[D] = [BK{}.

The matrices are expressed as
[B;] = 3Ny + 3N

An Eulerian finite element rate equilibrium cquation based on the virtual work formulation of
eqn (3) may be deduced as

[KH} = {P),

where
#y = [ NGy av + [ Ny as
and
[K] = [Ke] + [K],
for which

(Ke) = [ 1BI(CIBY 4V
(K] = f N0, [N), — 20BulToy[Bi] dV.

The matrices [K.,] and [K,] shown above represent respectively conventional small displace-
ment stiffness matrix and geometrical nonlinear matrix.
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As mentioned earlier, a thin plate embedded with a center crack subjected to an applied
stress oy at both upper and lower boundaries (see Fig. 1) was considercd in the investigation.
Because of the axisymmetrical nature of the specimen geometry and loading, only a quarter
of the specimen needs to be discretized. A typical finite element idcalization is shown in Fig.
2 whercas Fig. 3 depicts detailed element construction near the crack tip. The finite element
analysis was performed utilizing the tangent modulus incremental plasticity or updated La-
grangian and a first-order self-correcting procedure for solution convergence [18].
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Fig. 1. An inclined crack subject.
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Fig. 2. A typical finite element representation of a center cracked plate.
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Table 1. Mechanical properties

. Young’s modulus, Yield stress, Ultimate stress, Maximum elongation,
Material E (GPa) ays (MPa) ., (MPa) €7 (mm) o n
LY12-CS 69.48 320 489 0.134 0.013 5.0

The material chosen for the investigation is aluminum alloy LY12-CS and its mechanical
properties are outlined in Table 1. The dimensions selected are H = 94 mm, W = 55 mm,
a = 6.73 mm and ¢ (thickness) = 1.50 mm. The measured true stress—strain curve from the
uniaxial standard tensile test may be expressed as a power hardening law:

+a[<")"—1], 4
Oys

where E is Young’s modulus, oy, is yield stress, n in the strain hardening exponent and « is
the material coefficient, all of which can be found in Table 1. The computed multiaxial stress
distribution in a cracked thin plate is related to the uniaxial tensile data with the equivalent
stress o, as

tmia

o, = (afol)'"? (5)

where o} is stress deviator tensor.

The loading of the cracked specimen is applied incrementally until the threshold condition
of crack growth is satisfied, i.e. (dW/dV); = (dW/dV) in an element ahead of the crack tip
along its prospective crack path. Over a hundred load increments were found necessary before
the threshold condition was met. The crack surface was then allowed to unload itself after each
crack advance. Five incremental unloadings were used, resulting the development of a typical
unloading zone and secondary plastic zone as depicted in Fig. 4.

Fig. 3. Finite element representation at crack tip.

| UNLOADING ZONE
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CRACK A R

Fig. 4. Development of unloading and secondary plastic zones after a crack advance from P,
to Pa.
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EXPERIMENTS

The tests were carried out with a universal testing machine. The specimen was in the first
instance fatigue-precracked to produce the initial total crack length of 13.46 mm. The specimen
was gradually loaded incrementally to about 70% of its estimated critical load. The critical load
is defined as the load at which further crack propagation will lead to global instability of the
test specimen. The load increment was then substantially reduced until final rupture. The
continuous growth of the crack as the specimen was being loaded was monitored with a trav-
elling microscope at x 80, which enabled the recording of the crack extension up to 0.01 mm.

In order to aid the measurement of crack growth as well as the plastic strains developed at
the crack tips, moiré and laser speckle methods were used on each side of the specimen surfaces
[18]. The moiré method was used to record relatively large plastic deformation with a cross-
grating frequency of about 40 Ipm, while the speckle method with equivalent frequency of
about 467 Ipm was chosen to measure elastic deformation ficld when the applied load was
relatively low.

DISCUSSION OF RESULTS

The strain energy density function dW/dV is defined as the total energy stored per unit volume
of material under consideration. It may be expressed in terms of the true stress o and true
strain g; computed from the finite element analysis as

dw
W = fO’,'j dE,_,

From physical considerations, excessive change in shape or distortion in a volume element is
associated with yielding, while excessive change in volume or dilatation is associated with

fracture. The strain encrgy density may be subdivided into two parts. The term involving the
dilatation energy may be evaluated by

dw 1
(-(]—V) . = gf()’ii deyi,

and the distortion energy by

dw\ _dw _ (dw
dv /), dv dv /.
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Fig. 5. Variations of strain energy density for half crack length of ¢; = 6.7 mm.
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Fig. 6. Variations of strain energy density for half crack length of a> = 7.05 mm.
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Fig. 7. Variations of strain energy density for half crack length of ¢3 = 7.48 mm.
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According to the strain energy density criterion, the onset of crack initiation and growth is
postulated to occur when the strain energy density ahead of the crack tip (dW/dV) is equal to
the material crack growth resistance parameter (dW/dV); defined in eqn (2). The computed
crack growth results are summarized in Figs 5-9, each representing a crack increment for a
total of five growth steps. It can be observed from the figures that the initial half crack length
of 6.7 mm was extended at the applied stress of 295 MPa to its final crack length of 11.08 mm
at the applied stress of 306.8 MPa, resulting a total crack growth of Aa = 4.38 mm. Each figure
also illustrates significant crack surface unloading effects due to nodal force release after the
crack growth threshold condition of (dW/dV) = (dW/dV)? is initially satisfied. Figure 4 depicts
the unloading zone together with the development of a secondary plastic zone behind a crack
tip after it has advanced from a crack location P, to its new location P,.

Both the computed and experimental crack growth results against their corresponding frac-
ture loads are illustrated in Fig. 10. Also shown in the figures are the predictions made based
on an elongation failure criterion [18]. Because of the difficulties of maintaining an ‘‘absolute”
symmetry of the embedded crack with respect to its center line, some deviations, although not
substantial, in the crack growth measurement at its right and left tips were observed, and are
illustrated in the figurc. The elongation failure criterion postulates that crack initiation takes
place when the tensile strain at the crack tip reaches the elongation of the material at fallure
under the uniaxial tensile loading.

For ease of comparison, the results shown in Fig. 10 are summarized numerically in Table

2. It can be concluded from the table that the predicted fracture loads are in excellent agreement
wnh those determined experimentally with the maximum percentage error bctween the pre-
dicted and measured fracture loads being within 4.0%.

One of the hypotheses made in the strain energy density criterion is related to the rate of
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Fig. 8. Variations of strain energy density for half crack length of ¢4 = 8.18 mm.
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crack growth governed by the condition that [15]

dw\* _ S _ S _ _ S _Se _
dv . - ’-l had "2 T s e e s o - lji T a s s & s -— ’.(V —

where S, and r. are respectively the critical strain energy density factor and the critical crack
length. Unstable crack propagation or global instability is said to occur when S,./r. is reached,

constant,

Table 2. Subcritical crack growth

Strain energy density criterion Experiment
Crack Applied fracture
Growth Applied load, Crack growth, Applied load, growth, load differences
step no. a (MPa) A (mm) o (MPa) Aa (mm) (%)
1 295.0 0.35 300.0 0.31/0.12% 1.7
2 297.0 0.43 309.0 0.381/0.11% 3.9
3 301.0 0.70 313.6 01/0.29% 4.0
4 304.8 1.10 315.6 0.331/0.29% 34
5 306.8 1.80 316.5 Unstable 3.1

tLeft crack tip growth measurement.
i Right crack tip growth measurement.
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Fig. 10. Subcritical crack growth.
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provided that
S1<85:< .<SJ< ..... < S,
n<r<....<p<..... < r,

The above conditions may be verified by plotting the strain energy density factor, S, against
crack length a as shown in Fig. | 1. The figure reveals the linear S—a relationship, thus confirming
the validity of the hypothesis that dS/da = constant.

CONCLUSIONS

1. The strain energy density criterion can correctly characterize the subcritical crack growth
behavior of thin crack plates stressed beyond gross yielding.

2. The validity of the application of the strain energy density approach to ductile fracture
studies is verified by comparing the predicted and measured fracture loads of a thin cracked
plate experiencing subcritical crack growth. Excellent agrecement between the predicted and
measured fracture loads is attained with the maximum percentage prediction error less than
4.0%.
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