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Stability of flow of a generalized second order fluid down 
an inclined plane 

By F a n  C h u n ,  In s t i t u t e  o f  M e c h a n i c s ,  A c a d e m i a  Sinica,  Beijing, C h i n a  

Introduction 

Yih [1] investigated the stability of a triply nonlinear fluid flowing down an inclined 
plane. Fan [21 studied the same stability problem for a generalized Newtonian fluid which 
exhibits a variation in viscosity with rate of shear. Gup ta  [3], [4] studied the same stability 
problem for a second order fluid. He found that  the stability characteristics of the flow 
are influenced by its elastic properties, but the second order fluid has a constant viscosity 
and hence the effect of variation of apparent  viscosity on critical Reynolds number  was 
not considered. In this paper, the same flow problem is considered for a generalized 
second order fluid. It may  be expected that  stability characteristics of the flow of such a 
fluid will be influenced by both its elastic properties and viscosity which varies with rate 
of shear. 

Differential system governing stability and solution 

The constitutive equation of a generalized second order fluid is 

Si j  q- ffi gij = ~0 (H) Aij + fl (H) A~ Akj + ? (H) 5 Aifl3 tl, (1) 

where S~j is the stress tensor, and glj is the metric tensor, p~ is a scalar, H is the second 
invariant of Rivlin-Ericksen tensor Ai~. The parametes r/o, fi, 7 are given as a function of 
H. A~j, 17 and 5 Aifl5 tl are given by 

Aij = V~,j + Vzi 

1 A s A t 
n = v . -3  (2) 

3 t 1 ~ t  1 + vs - -  + - -  A j s  + ~x s ~x i ~x j Ais 

where "," denotes a covariant  derivative. 
A layer of a generalized second order fluid of thickness h flows down a plane inclined 

at an angle rio to the horizontal. In a rectangular system (x~, x2, x3), the steady pr imary 
flow is taken parallel to the xz-axis with the xz-axis normal  to the plate downwards,  the 
origin being taken at the undisturded free surface. As is usual in solving plane three 
dimensional disturbances problems we introduce a new coordinate system ( Yl, Y2, Y3) by 
rotating xl ,  xa, through an angle 0 = t a n -  1 fi/~, keeping x 2 axis fixed, where ~2 and fi are 
the wave-number  along xl  and x 3 axes. The relation between the coordinate x~ and y~ are: 

Yl = xl  cos0 + x 3 sin 0, 22 = x2, Y3 : X3 COS 0 - -  Xj_ sin 0. 
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We in t roduce the following dimensionless quantit ies:  

u = u l / v  ~ (h) h, v = u a / v  ~ (h) h, w = u 3 / v ~  h,  

x = yl/h, y = y2/h, t = t t v ~ (h), M = y/h a ~, N = fl/h z Q, (3) 

R = e v~ (h) h2/qo ([v ~ (h)]2), 

where v ~ (Y2) is the velocity of s teady flow and  v ~ (h) denotes dv ~ (ya)/dy2 at Y2 = h. 
We in t roduce a dimensionless s t ream funct ion ~, defined by u = OO/Oy, v = - OO/Ox 

and  we assume:  

= cp (y) exp [i c~ (x - ct)] (4) 

w = 4 (Y) exp [i c~ (x - ct)]. 

After some rather  lengthy calculations, we obtain  the final equat ion  for this stability 
p roblem as follows 

i ~ R  [ (Ucos  0 - c)(q)" - c~2 q)) - U"cp cos0]  

= 4 l a D  {[(y/U') + i a R M ( U c o s O  - c)] iaqo' - R M U ' ( c p "  c o s 0 - -  4' sin0) 

- -  (q~" cos 0 - r sin 0 + ~2 cos 0) (U') z M '  R/2  U"} + (D 2 + ~2) 

�9 {[y/U'  + i c ~ R m ( O c o s O -  c)] (q)" + c~2 cp) 

+ 2 i c ~ R M  ((p' cos 0 - r s in0) U' - i e R M  U"cp cos0  

+ ( l /U"  - y/U')  cos 0 (~0" cos 0 - 4' sin 0 + e2 ~o cos 0)} 

+ i ~ R D [2 N U' 4' sin 0 - (qr cos 0 - 4' sin 0 + c~ 2 cp cos 0) 

�9 sin 2 0 (U') 2 N'/U"] - (D 2 + cd) [i c~ R N U'  4 sin 0] (5) 

i c~ R [(U cos 0 - c) 4 + U' ~o sin O] = - ~2 (y/U')  4 

+ D [(y/U') 4 -- ( l /U"  - y /U')  sin 0 ((p" cos 0 - ~' sin 0 + ~2 qo cos 0)] 

+ i c~ R N [U' (q~" sin 0 + 4' cos 0 - cd ~o sin 0) + U" (4 cos 0 + 2 (p' sin 0)] 

+ i c~ R N '  U'  [(4 cos 0 + 2 (p' sin 0) 

- (~o" cos 0 - ~' sin 0 + ez q~ cos 0) cos 0 sin 0 (U')/U"] 

- -  i ~3 R M [(U cos 0 - c) 4 + U'  go sin 0] 

+ D { M D  [ (Ucos  0 - c) 4 + U'~o sin 0]} ic~R (6) 

where D, D z denote  ~/~y, Oa/Oy2 respectively. 
Equa t ion  (5) and  (6) with the b o u n d a r y  condi t ions  (i. e. at the free surface the 

tangential  stress must  vanish and  the normal  stress must  balance the normal  stress 
induced by surface tensor;  at the b o t t o m  no slip condit ion) consti tute an eigenvalue 
problem. We m a y  solve it using Yih's per turba t ion  technique [5]. After some rather 
lengthy calculations, we obta in  the critical Reynolds  number  as follow: 

1 1 

R (0) = cot  flo [1 + 2 .f U dy/U'  (1) - { 1 + 3 ~ U dy /U'  (1)} sin a 0] + 
0 1 O 1  1 l y  

{cos a 0 { [u '  (1)] a + 4 u '  (1) I U dy + 2 ~ U a dy + f U'a Y dy - ~ I U'a y d y d y }  
l y  0 0 0 0 0  

+ ~ ~ {M [U" (2 U' - y U") cos 2 0 + 2 (U') 2 sin 2 0/y] + N (U') 2 sin g O/y 
0 0  y 

+ [(U" - U' /y) /U'  (1)] ~ N U' U" dy (sin a 0 cos z 0)} dy dy 
1 0 

- ~ {M [U" (2 U'  -- y U") cos 2 0 + 2 (U') 2 sin z O/y] + N (U') 2 sin 20/y  
0 y 

+ [(U" - U' /y) /U'  (1)] ~ N U'  U" dy (sin 2 0 cos 2 0)} dy}.  (7) 
0 
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D i s c u s s i o n  

Case 1. General ized Newtonian  fluid. M = N = 0. 
Substi tut ing 0 -- 0 and M = N = 0 into (7), we obta in  the critical Reynolds number  R 2 

with respect to two-dimensional  disturbances as follow: 

1 

[1 + 2 ~ U dy/U' (1)1 cot/~o 
0 

Rz= 1 1 1 l y  

[U'(1)]2 + 4U ' (1 )  f Udy  + 2 S U2dy + ~ U ' 2 y d y -  ~ S U'2ydydy  
0 0 0 0 0  

This result agrees with that  of Fan  [2]. 
Subst i tut ing M = N = 0 into equat ion (7), we obta in  the critical Reynolds number  

R 3 with respect to three-dimensional  disturbances as follow: 
1 

R 3 = [1 - tanZ0 ~ Udy/U'(1)] R 2 
0 

1 

where U' (1) = - 1, S U dy > 0, so R2 > R3. Thus Squire's theorem is valid. 
o 

Case 2. General ized second order  fluid. 
We assume power law relat ionship and thus write 

rlo = K II ("-1)/~, 1 ~> n > 0.6; 7 = b Fl"/2; ~ = a H  ~/2 (8) 

where K, a and b are constants.  
Thus in viscometric flows, the viscosity function, the first and second normal  stress 

differences as defined in Walter 's  book  [6] are given respectively by 

ri(~) = Ko? . -1  

Vl (~?) = -- 2b~  m+2 

v2(~) ) = 2b~) "+2 + a)) ~+2 

where -) is the shear rate. 
Substi tut ing (3) (2) into (8) we obtain:  

M = B ym/,; N = A y~/"; R = (h/g sin rio) ( -  Q g h sin flo/K) z/" (9) 

where B = (b/oh 2) ( -  ~gh sinflo/K)m/"; A = (a/Qh 2) ( -  o~gh sinfio/K) z/". 
Because the second order  fluid is a slightly viscoelastic fluid, so the Weissenberg 

number  should be much less than one. Using an order  of magni tude compar ison we may  
deduce that  [BR] ~ 1 ; m >~ 2(n -- 1). F o r  Newtonian  fluid the critical Reynolds number  
is 2.5 and thus ]B] should not  exceed about  0.1. 

Walters  [6] notes that  a careful scrutiny of the more reputable measurements  has led 
to a consensus that  the second normal  stress difference - 2 M  + N is usually much 
smaller than first normal  stress difference - 2 M (with ]2 M + NI < 0.2 t2M]) and also of 
opposi te  sign. Because the first normal  stress difference - 2  M is positive, So M < 0. 
F r o m  the above we have N > 0 and 

- 1.6M < N < -  2 . 2 M .  (10) 

Substi tut ing 0 = 0 into (7), we obta in  the critical Reynolds number  R 2 with respect 
to two-dimensional  disturbance:  

1 
- -  cot flo 
l + 2 n  

R 2 = 
2 1 1 - 2 n  

- - +  B 
3 n + 2 1 + 2 n  n ( m + n + 2 )  
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We note that the critical two dimensional Reynolds number is independent of A. 
The critical Reynolds number R3 with respect to three-dimensional disturbance is: 

I (  2 2 1 - 2 n  ) + cos 2 0 R 3 = cotflo [1 + ( n -  1) sin0] + 3n + 2 1 + 2n n(m + n + 2) 

+ - -  sin 2 0 -- m + 2 + n l + n + 2 (l + 2)(l + 3 + n) sin2Oc~ z 

For  case of n = 1; l = m = 0, this result agrees with that of Gupta  [4]. Differentiating 
equation (7) with respect to 0, we obtain: 

f 2 n  (1 + 2n)B A(1 + 2n) 
R'(O) = 2 sin 0 cos 0 cot /3 o ~ + + 

m + 2 + n  / + 3 + n  

n n (1 + n + 1) 
�9 + (11) 

l + 2 + n  I + 2  

+ (1 - n) {(1 - n) cos 4 0 + 2 n cos 2 01}}. 

For  case of 1 >~ n > 0.6; [B[ < 0.1; A > 0 the value in the bracket o fequa t ion( l l )  is 

than zero for all 0. If 0 = ~-, the critical Reynolds number R (0) is more than greater 
z 

R2/cot 

L0 

Figure 1 18 I 
The critical Reynolds number R2/cot  13 o as a function of elastic parameter [BI for various values of 
n and m ( <  0) 
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Figure 2 1 [3 [ 
The critical Reynolds number R2/cot/~o as a function of elastic parameter IBI for various values of 
n and m (/> 0) 

2.5 cot/?o. The Reynolds number  R (0) is a minimum when 0 = 0. Thus Squire's theorem 
is valid. This result contradicts  Gupta ' s  result. F o r  case of 2 M  + N = 0: n = 1 and 
l = m = 0, this result agrees with that  of Locket t  [7]. 

Gupta ' s  critical Reynolds number  R c and Rot are correct, but  he said: "if 
- M > 2/5 + N/2, in which case oblique disturbances will be more unstable than the 
two-dimensional  ones" [4]. F rom the inequali ty (10) and I MI < 0.1 we can show that  the 
inequali ty stated by G u p t a  is impossible. The da ta  used by G u p t a  was based of those 
given by Markov i tz  & Coleman [8] and their da ta  were obtained pr ior  to the discovery 
of pressure hole error. 

F r o m  the above discussions we note that  Squire's theorem is valid and thus we shall 
consider only two-dimensional  disturbance. It will be observed from Figs. 1 and 2 that  
the critical Reynolds number  R2/cot/~o decreases as the elastic parameter  I BI increases 
or as the values of n decreases. Hence, the elastic proper ty  and the shear-thinning 
propert ies  of the fluid tend to destabilize the flow. It can be seen from Fig. 1. and 2 that  
for a fixed value of ]BI the critical Reynolds number  R2/cot J?o increases as m increases. 

The model  we have chosen may be considered to be only appropr ia te  for a slightly 
viscoelastic fluid and thus we limit our  results to small values of elastic parameters  and 
to the values of n near 1. 

When  [BI is large and n is much less than one then we note that  the flow is very 
unstable. This might be due to the model  chosen. It is known that  the second order  fluid 
may exhibit undesirable instabil i ty characteristics [9]. 
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Summary 

This investigation concerns the stability of flow of a generalized second-order fluid down an 
inclined plane with respect to three-dimensional disturbances. The critical Reynolds number is given 
as a function of dimensionless steady flow velocity U(y), material parameters and the slope of the 
plane. In this case, for long wave disturbances, Squire's theorem is valid. This result contradicts that 
of Gupta. 

R~sum~ 

On consid6re le probl6me de stabilit6 d 'un fluide de second ordre sur un plan inclin& On a 
examin6 des perturbations tridimensionelles et sous certaines conditions le th6or~me de Squire est 
valable. Ce r6sultat contredit le r6sultat obtenu par Gupta. 
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