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Stability of flow of a generalized second order fluid down
an inclined plane

By Fan Chun, Institute of Mechanics, Academia Sinica, Beijing, China

Introduction

Yih [1] investigated the stability of a triply nonlinear fluid flowing down an inclined
plane. Fan [2] studied the same stability problem for a generalized Newtonian fluid which
exhibits a variation in viscosity with rate of shear. Gupta [3], [4] studied the same stability
problem for a second order fluid. He found that the stability characteristics of the flow
are influenced by its elastic properties, but the second order fluid has a constant viscosity
and hence the effect of variation of apparent viscosity on critical Reynolds number was
not considered. In this paper, the same flow problem is considered for a generalized
second order fluid. It may be expected that stability characteristics of the flow of such a
fluid will be influenced by both its elastic properties and viscosity which varies with rate
of shear.

Differential system governing stability and solution

The constitutive equation of a generalized second order fluid is
S +p:9;;="o (H)Aij+ ﬂ(H)Af Akj+'y(H)5Aij/5tl’ (1)

where §;; is the stress tensor, and g;; is the metric tensor, p; is a scalar, IT is the second
invariant of Rivlin-Ericksen tensor A4;;. The parametes #,, 8, y are given as a function of
II. Aj;, Tl and J A4;;/6¢, are given by

Aij = sz + Vi

IT = 3 A7 4 #)
SA; 04 04, v ove

5 o, U Taw e T g ds

where “,” denotes a covariant derivative.

A layer of a generalized second order fluid of thickness & flows down a plane inclined
at an angle f8, to the horizontal. In a rectangular system (x;, x,, x;), the steady primary
flow is taken parallel to the x;-axis with the x,-axis normal to the plate downwards, the
origin being taken at the undisturded free surface. As is usual in solving plane three
dimensional disturbances problems we introduce a new coordmate system ( y,, y,, y3) by
rotating x,, x5, through an angle 6 = tan~! f/¢, keeping x axis fixed, where ¢ and f are
the wave-number along x,; and x; axes. The relation between the coordinate x; and y, are:

Y1 =2x;cosf + x35in8, y,=x,, y3=2x30080—x,sind.
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We introduce the following dimensionless quantities:
u=u /vy (Wh, v=uo Wh w=u/oY Wk,
x=yfh, y=wpfh, t=t;07 k), M=yh’e, N=ph’g, (3)
R =gv} (WK [no (v} (W),

where v?(y,) is the velocity of steady flow and v9" (k) denotes dv?(y,)/dy, at y, = h.
We introduce a dimensionless stream function  defined by u = &/0y, v = — Dy /Ox
and we assume:

¥ =o(y)explia(x — ct)] @
w=¢(y)expfia(x —ct)].

After some rather lengthy calculations, we obtain the final equation for this stability
problem as follows

iaR[(Ucosl — c)(¢p” — a*> @) — U" ¢ cos 0]
=4iaD {[(y/U)+iaRM (Ucos8 —c)lia¢p’  — RM U (¢" cos8 — & sin6)
—(¢p"cosf — & sm0 + a?cos ) (U M R2U"} +(D? + o)
{[y/U" +iaRM (U cos® — )] (¢” + ¢ @)
+2iaRM (¢ cos@ — Esin@) U —ia RM U” ¢ cos 8
+ (1/U” — y/U’) cos O (¢" cos 0 — & sin b + o? ¢ cos H)}
+igRD[2NU & sinf — (9" cos @ — & sinf + o ¢ cos 0)
-sin? (U2 N'JU"] — (D? + «®) [ia RN U’ & sin 6] (5)
iaR[(Ucos0 —c)é+ U @sinf] =— a?(y/U) ¢
+ D(y/U)YE —(1JU" — y/U")sin 8 (" cos§ — & sin@ + a? ¢ cos 8)]
+iaRN[U (¢p"sinf + & cos — a? @sinf) + U” (£ cos 6 + 2 ¢’ sin )]
+ia RN U [(£cosf + 2 ¢ sinb)
—(@"cosf — &' sinf + a* ¢ cos ) cos 0 sin 6 (U")/U"]
—ia*RM [(Ucos® —c) & + U’ @ sin 6]
+D{MD[Ucosd —c) ¢ + U gsinf]} iaR ©)

where D, D? denote 8/dy, 0*/0y* respectively.

Equation (5) and (6) with the boundary conditions (i.e. at the free surface the
tangential stress must vanish and the normal stress must balance the normal stress
induced by surface tensor; at the bottom no slip condition) constitute an eigenvalue
problem. We may solve it using Yih’s perturbation technique [5]. After some rather
lengthy calculations, we obtain the critical Reynolds number as follow:

R(6) = cot B [1 + 2 ( Udy/U'(1y— {1 +3 5 Udy/U (1)} sin? 0] -
{cos 0 {[U'(1 )]2+4U'(1 j Udy+2j U?dy + j U?ydy — HU’Zydydy}
+ j j’ (M[U"QU —y U”) cos? 0 + 2(U )2 sin H/y] + N(U’)Olosin2 1y
+ [(U” U'Inu' (1) f N U'U"dy (sin” 8 cos” )} dy dy
— f {M[U"QU — yU”) cos? 0 + 2(U")?sin? 0/y] + N (U')*sin” 6y
+ [(U” Uy)ur () f N U’ U"dy (sin” 0 cos” 0)} dy} . @)
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Discussion

Case 1. Generalized Newtonian fluid. M = N = 0.
Substituting# = 0 and M = N = Qinto(7), we obtain the critical Reynolds number R,
with respect to two-dimensional disturbances as follow:

1+ 2} U dy/U’ (1)] cot B,
R, = °

1 1 1 1y :
[UOP+4U (1) Udy+2[Udy+ [ U?ydy ~ [ | U ydydy
4] 0 0 00

This result agrees with that of Fan [2].
Substituting M = N = 0 into equation (7), we obtain the critical Reynolds number
R; with respect to three-dimensional disturbances as follow:

1
Ry =[1 —tan?0 [ Udy/U' ()] R,
o

1
where U'(1) = — 1, { Udy > 0, so R, > R;. Thus Squire’s theorem is valid.
o}

Case 2. Generalized second order fluid.
We assume power law relationship and thus write

o=KO" Y2 1>n>06; y=bI"?;, f=aqall"? 8)

where K, a and b are constants.
Thus in viscometric flows, the viscosity function, the first and second normal stress
differences as defined in Walter’s book [6] are given respectively by

n() =Ky
vi(h)=-— 2bymt?
v (5) = 2b7""2 + ay' 2
where 7 is the shear rate.
Substituting (3) (2) into (8) we obtain:

M=By"™; N=Ay" R=(hjgsin o) (— g hsinfo/K)*" 9

where B = (b/o h®) (— g hsin fo/K)™"; A = (ajo h®) (— g g h sin B/K)'".

Because the second order fluid is a slightly viscoelastic fluid, so the Weissenberg
number should be much less than one. Using an order of magnitude comparison we may
deduce that [BR| < 1; m = 2(n — 1). For Newtonian fluid the critical Reynolds number
is 2.5 and thus | B] should not exceed about 0.1.

Walters [6] notes that a careful scrutiny of the more reputable measurements has led
to a consensus that the second normal stress difference —2 M + N is usually much
smaller than first normal stress difference — 2 M (with |2 M + N| < 0.2{2 M) and also of
opposite sign. Because the first normal stress difference — 2 M is positive, So M < 0.
From the above we have N > 0 and

—16M <N<—-22M. (10)

Substituting = 0 into (7), we obtain the critical Reynolds number R, with respect
to two-dimensional disturbance:

t
15 25 tho

2 1 N 1-2n
3n+2142n nm+n+2)

R, =
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We note that the critical two dimensional Reynolds number is independent of A.
The critical Reynolds number R, with respect to three-dimensional disturbance is:

2 2 + L= 2n B|cos?6
3In+21+4+2n nm+n+2)

Ry=cotfBy[l + (n— 1)sinf] = [(

( 2nB 2nA 1l—n

'29_*_'29 29'
m+2+n+l+n+2>Sln (+20+3+n " ms]

Forcase of n = 1; ] = m = 0, this result agrees with that of Gupta [4]. Differentiating
equation (7) with respect to 8, we obtain:

2n (1+2mB  A(l+2n)
3n+2 m4+2+4+n 1+3+4n

. n nl+n+1)
I+2+n +2

R’(6) = 2sin 8 cos 6 cot f, {

1

+(1—mn){(1 —n)cos*8 + 2n cos? 0]}}.

For case of 1 = n > 0.6; |B| < 0.1; A > 0 the value in the bracket of equation (11) is

greater than zero for all 6. If 8 = g, the critical Reynolds number R () is more than

i
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Figure 1 I8l .
The critical Reynolds number R,/cot f, as a function of elastic parameter | B for various values of

n and m (< 0)
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Figure 2

The critical Reynolds number R,/cot fi, as a function of elastic parameter | B| for various values of
nand m (= 0)

2.5 cot f,. The Reynolds number R (9) is a minimum when 0 = 0. Thus Squire’s theorem
is valid. This result contradicts Gupta’s result. For case of 2M + N =0: n =1 and
I'=m = 0, this result agrees with that of Lockett [7].

Gupta’s critical Reynolds number R, and R, are correct, but he said: “if
— M > 2/5 + N/2, in which case oblique disturbances will be more unstable than the
two-dimensional ones” [4]. From the inequality (10) and |M| < 0.1 we can show that the
inequality stated by Gupta is impossible. The data used by Gupta was based of those
given by Markovitz & Coleman [8] and their data were obtained prior to the discovery
of pressure hole error.

From the above discussions we note that Squire’s theorem is valid and thus we shall
consider only two-dimensional disturbance. It will be observed from Figs. 1 and 2 that
the critical Reynolds number R,/cot 8, decreases as the elastic parameter | B| increases
or as the values of n decreases. Hence, the elastic property and the shear-thinning
properties of the fluid tend to destabilize the flow. It can be seen from Fig. 1. and 2 that
for a fixed value of | B| the critical Reynolds number R,/cot j, increases as m increases.

The model we have chosen may be considered to be only appropriate for a slightly
viscoelastic fluid and thus we limit our results to small values of elastic parameters and
to the values of n near 1.

When |B| is large and # is much less than one then we note that the flow is very
unstable. This might be due to the model chosen. It is known that the second order fluid
may exhibit undesirable instability characteristics [9].

Acknowledgement

The author is deeply indebted to Professor C. F. Chan Man Fong for his help.



440 Fan Chun  ZAMP
References

1] C. S.Yih, Phys. Fluids 8, 1257 (1965).

] Fan Chun, ZAMP 33, 181 (1982).

1 A. S. Gupta, J. Fluid Mech. 28, 17 (1967).

] A.S. Gupta, Lajpat Rai, J. Fluid Mech. 33, 87 (1968).

] C.S. Yih, Phys. Fluids 6, 321 (1963).

] K. Walters, Rheometry: Industrial applications 14, Wiley, Chichester 1980.

1 F.J. Lockett, Int. J. Engng. Sci. 7, 337 (1969).

] H. Markovitz, B. D. Coleman, Adv. Appl. Mech. Academic Press, New York 1964.
] Alex. D. D. Craik, J. Fluid Mech. 33, 33 (1968).

Summary

This investigation concerns the stability of flow of a generalized second-order fluid down an
inclined plane with respect to three-dimensional disturbances. The critical Reynolds number is given
as a function of dimensionless steady flow velocity U (y), material parameters and the slope of the
plane. In this case, for long wave disturbances, Squire’s theorem is valid. This result contradicts that
of Gupta.

Résumé
On considére le probléme de stabilité d’un fluide de second ordre sur un plan incliné. On a
examiné des perturbations tridimensionelles et sous certaines conditions le théoréme de Squire est

valable. Ce résultat contredit le résultat obtenu par Gupta.
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