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Abstract. In Paper I (Hu, 1982), we discussed the the influence of fluctuation fields on the force-free field 
for the case of conventional turbulence and demonstrated the general relationships. In the present paper, 
by using the approach of local expansion, the equation of average force-free field is obtained as 
(1 + b)V • B o = (c~ + a)B o + a O) x B o + K. The average coefficients a, a O), b, and K show the influence of 
the fluctuation fields in small scale on the configurations of magnetic field in large scale. As the average 
magnetic field is no longer parallel to the average electric current, the average configurations of force-free 
fields are more general and complex than the usual ones. From the view point of physics, the energy and 
momentum of the turbulent structures should have influence on the equilibrium of the average fields. Several 
examples are discussed, and they show the basic features of the fluctuation fields and the influence of 
fluctuation fields on the average configurations of magnetic fields. The astrophysical environments are often 
in the turbulent state, the results of the present paper may be applied to the turbulent plasma where the 
magnetic field is strong. 

1. Introduction 

The approximation of force-free field is applied to the region where the magnetic field 
is strong enough that the magnetic pressure is much larger than the thermodynamical 
pressure and the kinetic pressure of plasma, and in this case, the local current will be 
nearly parallel to the local magnetic field, it results in the smaller Lorentz force (the 
review, see, for example, Hu, 1983a). The force-free field is expressed, approximately, 
as 

(7 x B) x B = 0, (1.1) 

v .  B = 0 .  (1.2) 

The theory of force-free field is extensively applied to the astrophysical environments, 
especially, to the solar atmosphere. For example, the magnetic field in the sunspots and 
active regions are force-free fields which dominate the equilibrium and activities. 

Usually, the theory of force-free field is laminar - that is, the magnetic field B in 
Equations (1.1) and (1.2) is considered as average field. In a lot of astrophysical 
environments, the plasma is in the turbulent state, the fluctuation fields of velocity and 
magnetic field will have influence on the average fields. In this case, the fluctuation 
velocity field couples with the fluctuating magnetic field, hence; the fluctuation Lorentz 
force has contributions in the momentum equilibrium. Lerche (1970) and Hu (1982) 
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discussed the case of turbulent force-flee field, and Hu (1983b) analyzed the case of 
magnetostatic one. 

In considering the fluctuation of magnetic field and the state of turbulent plasma, we 
denote the magnetic field as 

B = Bo + ~B.  (1.3) 

In the case of conventional turbulence, the fluctuation current is parallel to the average 
magnetic field (see Hu, 1982) 

V x ~B = ~bB o (1.4) 

and the average equation of force-free field is 

V x B o + L = e(t, r)B o + K,  (1.5) 

where 

and 

K = - ~  ((>b(t,r)Br(r •162 ~ (1.6) 

L = f f f  (~b(t,r)ab(t,C))VrG(r,{)XBo(t,r r (1.7) 

G(r, r is the Green's function of Poisson equation, and Br({) the boundary value of 
fluctuation vector magnetic potential function. The terms L and K give the influence of 
the fluctuation fields, and Equation (1.5) is reduced to the usual force-free equation if 
both terms are zero. The terms K and L may be determined if the correlation terms are 
given, and then, we can analyze the detailed influence of the fluctuating fields on the 
average fields. 

In the next section, we shall demonstrate the average equation of force-free field by 
using the approach of local expansion. In Section 3, we shall discuss the magnetic 
induction equation, and then, the consistent conditions of the equations. Three examples 
are given in Section 4, and they show the influence of fluctuations fields and the features 
of turbulent force-free field in detail. The last section is devoted to discussions and 
conclusions. 

2. The Local Expansion 

The local expansion method is extensively used in the dynamic theory to demonstrate 
the induced turbulent electrical field (see, for example, Roberts, 1971). Similarly, this 
method may be applied to relationships (1.6) and (!.7) to give the connection between 
the average magnetic field Bo(t, r) and the correlation terms K and L. In the relationships 
(1.6) and (1.7), we expand the magnetic field Bo(t, r at position r. The correlation term 
( bb(t, r)~b(t, ~)) is a function with small typical length scale Io, and decays rapidly to 
zero when I r - r > l o. On the other hand, the k-order derivation of the average 
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magnetic field is O(Bo)/L~ in order of magnitude, where Lo is the typical length on large 
scale. Therefore, relationship (1.7) may be written in order of magnitude as 

~,=o \LooY " ( 2 . 1 )  

Relationship (2.1) implies that the contribution of the term is more important if the term 
associated with smaller index k. 

Expanding Bo(t, ~) in Taylor series about r, relationship (1.7) may be written in the 
components forms as 

OBol , ~2 Bol 
Le = - aoBoj + bok + Cok l - -  + " "" , (2.2) 

OX s axjaxk 

where 

f f aG(r, ~) dzr (2.3) a U = - ein j (Sb(t ,  r)bb(t, ~)> 8x.  

b~k= f f ~i.k <~)b(t,r)~b(t,r ( x j -  ~j) - -  
OG(r, ~) 

~xn 
dzr (2.4) 

etc. for the coefficients of higher orders. We retain the first two terms in relationship 
(2.2), and obtain 

~Bok 
Li = - aoBo j + b~t, - -  , (2.5) 

0:9 

where (ao) and (b~k) are, respectively, the second and third tensors depending on the 
properties of the correlation function. Substituting (2.5) into Equation (1.5), the average 
equation of force-free field is given as 

~B0k 
(eUk + buk) = CtBoi + agBoj + Ki .  (2.6) 

0:9 

If K;, ao, and bok are zeros, Equation (2.6) is reduced to the usual force-free equation. 
The influence of the turbulent fields in small structure on the average fields in large 

scale are given by the coefficients a~, buk, and K i. The influence may be discussed in 
detail after the coefficients are given. Similarly as in the kinetic theory or the turbulent 
theory, these coefficients may be determined by either the demonstrations of statistical 
approach or the macroscopic analyses. We will use the latter approach and avoid to treat 
the detailed structure of fluctuation fields at the first step. 

The first term V • B o in the left-hand side of Equation (1.5) is a pseudovector; hence, 
other terms in Equation (1.5), such as vector K and L, should be pseudovectors, and 
~(t, r) is pseudoscale. In consideration of relationship (2.2), (ao.) and (bok) are 
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pseudotensors of the second and third orders, respectively. Generally, a o may be 
expressed as 

ag aSg + a(k 1) ~Ok + (2) (1) (2) = a A,- Aj , (2.7) 

where a is a pseudoscalar, a (1) is a pseudovector, and A 0) and A (2) are of the same types 
if a (2) is a scale and of different types if a (2) is a pseudoscalar. Similarly, bek may be 
expressed as 

bi j  k = bg i j  k q- b l ~ l )  a jk  -]- b2]~j(.2) a/a. -{- b3/~(k3) (~/j. -{- 

/'1 o L)(4)/~(5) + b5~,~6)~7)  + 
-q- t,, 4 t.,jkll.., l lai 

q" 5 6/~tjlfl(/8)fl(k 9) "b b 7 ~ i l ~  (12) , (2.8)  

where b is a scalar; bi and fl(o are of the same type for i = l, 2, 3; b4, bs, and b6 are scalars 
iffl(o and fl(~+ 1) are of the same type, otherwise, b4, bs, and b 6 are pseudoscalars for 
i = 4, 6, 8; and b 7 is a pseudoscalar if fl(o (i = 10, 11, 12) are all pseudovectors, or b7 
is a scalar if they are all axial vectors. 

For simplicity, in the expansion formulas of a~ and buk we neglect the tensors with 
order equal to or higher than 2. Therefore, the first two terms in the right-hand side of 
Equation (2.7) and the first term in the right-hand side of Equation (2.8) are retained, 
and Equation (2.6) is reduced into 

(1 + b)V x B o = (a + a)B o + a (1) x B o + K.  (2.9) 

On the other hand, the average relationship of condition (1.2) is of the form 

V . B o  = 0 .  (2.10) 

Equations (2.9) and (2.10) describe the average properties of the force-free field. The 
coefficients a, a (1), b, and K reflect the the influence of turbulent structure in small-scale 
and may depend on the average magnetic field Bo. Relationships (1,6) and (1.7) require 
that 

7 . K  = 0 ,  7 . L  = 0.  (2.11) 

Using conditions (2.11), we find that Equation (1.5) gives 

(Bo 'V)~=  0 ,  (2.12) 

and Equation (2.9) requires that 

(V • Bo). Vb = B o �9 7a  + V. (a (1) • Bo). (2.13) 

The condition (2.12) shows that the force-free factor ~ keeps constant along a magnetic 
force lines. This requirement is the same as in the case of usual force-free field. Condition 
(2.13) is the requirement for the coefficients of fluctuation fields, and the connections 
between the fluctuation fields and average fields. 
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In comparison with Equation (2.9), force-free field equation (1.1) may be written, as 
USUal~ 

V x B = a(t, r)B. (2.14) 

Equation (2.9) is formally reduced into Equation (2.14) if the coefficients a, a (1), b, and 
K are zeros. Generally, average Equation (2.9) does not require that the current should 
be parallel to the average magnetic field. The average current consists of three parts: 
one component is parallel to Bo, one component is perpendicular to Bo and one 
component is contributed by the turbulent boundary value K. We can introduce the idea 
of effective force-free factor ~., defined by 

e + a  
a, - (2.15) 

l + b  

Therefore, parallel to average magnetic field B o, the current component is ct, Bo; and it 
is similar to the case of usual force-free field. However, a, could be non-zero when a = 0. 
In the usual theory of force-free field, the force-free factor e is a fundamental quantity, 
and ~ = 0 corresponds to the potential field without current. In the present case, in 
consideration of the contributions of the turbulent energy, the state of zero e is no longer 
corresponding to the state with lowest energy. The turbulent energy may play an 
important role in equilibrium and conservation of the energies, and introduce additional 
mechanism in the astrophysical processes. On the other hand, in the consideration of 
the magnetic field configurations, the average magnetic field is no longer required to be 
parallel to the average current, and has more general structure. 

3. Magnetic Induction Equation 

The magnetic induction equation including the influence of fluctuation fields gives the 
connections between the fluctuation velocity and the fluctuation magnetic field. Then, 
the average magnetic induction equation may be given (see Hu, 1982) as 

where 

8Bo 
- V x (M + N) + ~AB o + V x (Vo x Bo) ,  (3.1) 

8t 

Mi= - 1- f f f ~ijk~kbaSlmn oGffl(r;t; ~, 
8xb 

X 

x (6vj(r, t)bvm(~, t)) Bon(~, t) dzr 

-- ~ijl~lmk X 
~I 8xm 

(3.2) 

x <avj(r, 0Br,(r 0> do-r (3.3) 
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It can be seen that both M and N are pseudovectors. Using the local expansion method, 
we expand Bo(r t) as a Taylor series at (r, t), and relationship (3.2) is reduced to 

Mi = duBoj + f l U k  - -  0B~ , (3.4) 
8xj 

where only the first two terms are remained. Similarly, the coefficients c~ u and flUk may 
be generally written (see Roberts, 1971) as 

~ = ~oa,j + ~*)~ + ' " ,  ( 3 . 5 )  

rio.k= - fio~uk + . . . ,  (3.6) 

where % is a pseudoscalar; rio, scalar; and e(1), a pseudovector. In relationships (3.5) 
and (3.6), we neglect the tensors with order equal to and larger than 2. In this case, 
Equation (3.1) is reduced to 

0 B ~  o + ~ ~  o-f lo 7 x B o ) +  t/AB o+ 
Ot 

+ V x (% x Bo) + V x N .  

If % and rio are constants, Equation (3.7) may be written as 

(3.7) 

OBo 

Ot 
- %TxBo+(r/+f io)ABo+TX(V o x B o ) +  

+ V x N + V x (a (*) x Bo), (3.8) 

where the terms with % and rio correspond, respectively, to the ~ effect and fi effect in 
the usual dynamo theory. In the turbulent dynamo theory, people pay attentions mainly 
to the magnetic induction equation, and the momentum equation is not considered in 
detail, that is, the evolution of the average magnetic field is analyzed by assuming that 
the average and fluctuation velocity are given. In principle, the kinetic theory of turbulent 

dynamo is inconsistent. 
In the static problem, it is required that a/at = 0 and Vo = 0, and Equation (3.7) is 

reduced into 

V x [%B o + 4 (1) x B o - (~ + flo)7 x B o + N] = 0,  (3.9) 

or it may be rewritten as 

/ \ / 1 \  1 
7 •  o = [  % } B o + [ - ~  | ~ O ) •  + _  ( N + T N , ) ,  (3.10) 

\~ +/~o/ \~ +/~o/ ~ +/~o 

which allows us to express Equation (2.9) in the form 

~ + a  1 1 
7 x B  o=  B o + - -  a ~ 2 1 5  K.  (3.11) 

l + b  l + b  l + b  



INFLUENCE OF FLUCTUATING FIELDS ON FORCE-FREE FIELD, II 359 

It can be seen that Equations (3.10) and (3.11) are similar in form, although they are 
demonstrated, respectively, from the induction equation and the momentum equation. 
The consistent conditions require that 

~o ~ + a ~(1) a(i) 1 K 
- , - -  - - -  , - -  ( N  + V N , )  - ( 3 . 1 2 )  

r/+fio l + b  r/+fio l + b  ~/+~o l + b  

In this case, the consistent problem is described by Equations (2.9) and (2.10). 
Generally, the consistent problem should discuss Equations (2.9), (2.10), and (3.7). 

Induction equation(3.7) is a parabolic differential equation, and momentum 
equation (2.9) is an elliptic differential equation. The consistency condition requires that 
the magnetic field must satisfy some special conditions, and the problem is complex even 
for the case of usual kinetic force-free field (Hu, 1977). On the other hand, if we consider 
a special approximate case where the process is quasi-static (v o --- 0, ~3/Ot ~ 0) and the 
magnetic Reynold number is much larger than 1, then, magnetic induction 
equation (3.7) is approximately satisfied if the turbulent coefficients satisfy the conditions 
similar to (3.12). The problem is described approximately by Equation (2.9) and (2.10). 

4 .  T h e  A v e r a g e  M a g n e t i c  F i e l d  

We analyze the configurations of average magnetic fields which are described by 
Equation (2.9) and (2.10). There are three terms in the right-hand side of Equation (2.9): 
the first term gives the current component which is parallel to Bo, and the second term 
is perpendicular to B o. We discuss three examples, which show the basic features of the 
turbulent force-free field. 

4.1. P A R A L L E L  C O N F I G U R A T I O N S  W I T H  ct ,  = 0 

When ct. = 0, Equation (2.9) is reduced to 

1 1 
7 x B  o -  a ~I~xB o + -  K,  (4.1) 

l + b  l + b  

where b is a constant. We discuss the parallel configuration of average magnetic field, 
for example, B o is parallel to ex, and denote 

Bo = Bo(x ,  y, z) ex . (4.2) 

By use of (4.2), Equation (4.1) may be written in the component forms as 

0 = K x , (4.3) 

(1 + b) ~B~ -- a~I)Bo + K y ,  (4.4) 
?z 

(1 + b) 0B~ = a ~ y l ) B o  - K z . (4.5) 
Oy 
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According to condition (4.3), the first relationship of condition (2.11) leads to the 
definition 

( OB. OB,] (4.6) 0, @/,  

where B,  is a function of (x, y, z) and has the dimension of magnetic field. By using (4.6), 
we write Equations (4.4) and (4.5) as 

0 - -  [(1 + b ) B o  - B,I = a(~l)Bo, (4.7) 
Oz 

-:- [(1 + b)B o - B ,  l : @I)B o . (4.8) 
oy 

On the other hand, the condition (2.13) yields 

((~a (1) (~a(yl)~ =a(zl)QB, a(yl)~B, (4.9) 
(1 + b)Bo \-  ~y Oz I (~z - 

It is easy to see that this latter condition (4.9) may be obtained from Equation (4.7) and 
(4.8), and is automatically satisfied by the solution of the turbulent force-free field. 

The consistency of Equations (4.7) and (4.8) requires that 

a(~ 1) ~yy [(1 + b)B o - B*] - a (1) ~zz [(1 + b)Bo - B , ]  = O. 

The characteristic equation of (4.10) is of the form 

@1) dy - a(~ I) dz = 0.  

We denote the integral relationship of Equation (4.11) as 

~(x, y, z) = constant ; 

then the solution of Equation (4. t0) becomes 

(4.10) 

(4.11) 

(4.12) 

1 
Bo(x , y ,  z) = - -  [B, + f ( ~ ) ] .  (4.13) 

l + b  

In the infinite space, the average configuration of magnetic field at infinite requires 

B , ~ 0  and f ( ~ ) ~ 0 ,  when r ~ o o .  

Therefore, we obtain an important conclusion, that the average configurations of force- 
field could persist by their own electric currents if the influence of fluctuation fields is 
included. The reason of this conclusion is that the energy of fluctuation fields will 
contribute to the energy conservation. In the usual force-free theory, the field cannot 
persist by its own current, and it is one of the fundamental features. 
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If @1) and a~ 1) are constants, we have 

~(x ,y ,  z) = a(1)y + a(1)z + c ,  (4.14) 

where c is a constant. The condition (4.9) gives 

B .  -- B . ( @ l ) y  + a(~a)z, x ) .  (4.15) 

Furthermore, Equations (4.7) and (4.8) give 

Bo(x,  y, z)  = fl(a(yl)y + a~l)z, x ) .  (4.16) 

Both (4.15) and (4.16)satisfy the relation of general solution (4.12). In detail, we express 
especially solution (4.16) in the form 

Bo(x ,  y, z)  = fo exp [(a~yl)y + a(zl)z)2], (4.17) 
X 2 q- Xg 

where Xo is a constant. Then, the current may be written as 

c foa?  ) 
Joy . . . . .  (a(1)Y + a(z 1)2) exp[ - (@i)y  + a(zl)z)2] , (4.18) 

41r x 2 + x~ 

c So  l_, 
Jo, = 4re x z + x g (a(yl)y + a(~l)z)exp[ -(a(yl)y + a(~l)z)2] , (4.19) 

It shows that the average current is perpendicular everywhere to the average magnetic 
field, and both current and field tend to zero at infinite. This simple example describes 
one of the features which associated with the influence of turbulent fields, and this 
feature is obviously different from the properties of usual force-free fields. 

4.2. TWO-DIMENSIONAL MAGNETIC FIELD WITH C~, = 0 

We discuss Equation (4.1) with constant b and constant vector a (1). According to the 
assumption of two-dimensional configuration, the magnetic field may be expressed as 

Bo(x,  y, z) = -~z ' O, - . (4.20) 

If we substitute (4.20) in (4. t), the components equations of average force-free field are 

d [ ( t+  b) 0~s a(1)~t] = - K  x (4.21) 
' 

(1+b)(C321//'+O:~s'~ (a(xl) CGl~ a(zl) ~) - - -  + = Ky (4.22) 
\ ~x ~ ~z 21 Ox ~z ' 

~,z[ ,~S a(yi, l~ ] (1 + b) ~ - = - K : .  (4.23) 
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By virtue of condition (2.13), Equation (2.9) requires that  

a (1)" K = 0 .  

Equations (4.21) and (4.23) require also that the consistency condition 

(4.24) 

0K~ 8K~ _ 0,  (4.25) 
8z 8x 

be satisfied. We introduce a typical magnetic field B*, which is defined as 

8B * 8B * 
K~ = - - -  , K~ - (4.26) 

Ox Oz 

For the case a(y = 0, by use of the definition (4.26), Equation (4.24) admits of the 
solution 

B* = B*(a(~l)z - a(~l)x). (4.27) 

Substituting (4.27) in the first equation of (2.11), we obtain 

a(x ~) = 0,  a(~ l) = 0 and B* = constant. 

In this case, Equations (4.21)-(4.23) are reduced to the Poisson equation 

, I , , I , 3 2  . 8 2  Ky ; (4.28) 

cgx 2 8z 2 1 + b 

the solution of which is of the form 

t~(x'Y'z)=;ffG(r'~)KY(~)d~e'l+b (4.29) 

where G(r, r is the Green's function of the Poisson equation. The influence of 
fluctuation fields in this example is the existence of an average current component in 
the direction which is parallel to the y-axis and perpendicular to the average magnetic 
field. 

For the case of @1) ~ 0 and Ky ~ 0, if we use the condition (4.24), Equation (2.11) 
may be written as 

•2B* f- ~2B* a~l) d2B* a(1) c32B* - 0 . (4.30) 

2 ez 2 ex y  yez 

The solution of Equation (4.30) in half-plane y > 0 is 

= ( G i n  e + iv ~.~ e -  ~ y  , 
n=O m = 0  

(4.31) 
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where c,m are constants, V,m and On are characteristic values and the indices 

1 Fa(1) La~9~ /(a(xO']4 1 S1, 2 = -- 02-1- ~\~yl) / ]  OJ-- 4~2m , 

! F a ( 1  ) /(a(zl)~ 2 ] 
S3, 4 = -- 2 / a ~  1~ ~ + ~/ \a~-iSyl~J ~ + 47~2m " 

Integrations of Equations (4.21) and (4.23) may be written as 

o0 
(1 + b) ~y - a(y l~ 0 - B* = Co(Y), 

(4.32) 

(4.33) 

where co(y ) is an arbitrary function. Using (4.33), we can reduce Equation (4.22) to the 
form 

~ 2 0 +  ~2 0 1 (a(xl)t~ 0 a(zl ) t ~ )  1 (a(x 1) OB* a (1) t~B*)~;.,,/" 
. . . .  + - _ _  _ _  +a( l l  ~x 2 ~z 2 1 + b ~x ~z 1 + b \@1~ ~x Y 

(4.34) 

The nonhomogeneous terms in the right-hand side of (4.34) are given by solution (4.31). 
Similar to (4.31), we expand solution O(x,y, z) as 

0(x, y, z) = ~ 0o(X, z) e -  4Y, (4.44) 
n=O 

and Equation (4.34) reduces to 

020o+ 0a0o 1 (a~l ~ ~0o + a~l)00o~ _ _ _ 1  (a~x 1) dB~' + a~y 1)a~ 1) OB*~ , 
Ox 2 Oz 2 l + b Ox ~z J - l + b \ ~yl~ 3x Oz I 

(4.45) 

where the function B*(x, z) is the terms in square bracket of solution (4.31). Therefore, 
the solution of Equation (4.45) may be written as 

O0(x, Z) ~,  V ssx VI s6x~ / VII STZ .VIII 
= (Cnme + Cn,,,e )tCnm e + ,:,,,, e sSz) + O,(x,z), 

m = 0 (4.46) 

where 0.(x, z) is a special solution ofinhomogeneous equation (4.45), Cnm are constants, 
and the index se are defined as 

l~a~x 1~ / ( a ~ )  ~ z ] 
~, 6 = ~ L1 + b + ~ \ ( ~ +  b ) /  - 47z"~ ' 

(4.47) 1 [" a(= l) /(a(=1)~2+47~21 " 
ST, 8 = ~ L1 + b + ~ / \ i - ~ /  

and the 7n,.'s are the characteristic values. 
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If we substitute the solutions (4.44) and (4.46) into (4.20), the two-dimensional 
configuration of magnetic field is then obtained. Furthermore, we obtain the electric 
current. In general cases, the magnetic field is neither parallel nor perpendicular to the 
electric current. This feature is different from the one of usual force-free field. 

4.3. THE CONFIGURATION OF MAGNETIC FIELD WITH a (1) = 0 

By use of the condition a (1) = 0, Equation (2.9) may be written as 

1 
7 x Bo = ~*Bo + - -  K.  (4.48) 

l + b  

Equation (4.48) is reduced into the usual equation of force-free field, formally, i lK  = 0, 
and in this special case, the average current is parallel to the average magnetic field. 
There is a component of current which is not parallel to Bo, if vector K is not parallel 
to Bo. According to the first condition of (2.11), Equation (4.48) requires 

(Bo" 7)~ ,  = 0 ,  

and the effective force-free factor keeps constant along a magnetic force line. 
In considering the linear field, we assume that all quantities depend on x and z - i.e., 

0/~y = 0. In this case, the magnetic field may be written as 

Bo(x, z) = ( ~  , Boy , ~Xt)) . (4.49) 

According to the condition (2.11), vector K may be written as 

K = (Oh, Ky, Oh) (4.50) 
\ oz  - F x  " 

Substituting definitions (4.49) and (4.50)into Equation (4 48), we have 

( i - ~ )  O~ (4.51, 0 Boy + - - ~ * - -  
Oz 8z 

1 
Ar = ~,Boy + - -  Ky, (4.52) 

l + b  

( 1 + - ~ )  81p (4.53) a Boy + ~. 
Ox Ox 

Both Equations (4.51) and (4.53) require that 

h Boy + - -  = G(~,) (4.54) 
l + b  
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and 
dG(q/) 

~, = (4.55) 
dq/ 

Substituting conditions (4.54) and (4.55) into (4.52), we obtain the basic equation in the 
form 

dG(q/)_ 1 ( dG(q/)" / (4.56) 
A q / -  G(q/) dq/ 1 + b Ky - h dq/ ]"  

For the liiaear field, Equation (4.56) reduces to 

1 
A q/+ ~2, q/= _ _  (Ky + ~,h). (4.57) 

l + b  

In general, the boundary condition for Equation (4.54) is given as 

q/Iv = q/r- (4.58) 

It is easy to see that the homogeneous equation of (4.55) is formally the same as the 
usual equation of linear force-free field. That is, the turbulent force-field problem (4.57) 
and (4.58) may be divided into two parts, and one is the usual force-field problem: i.e., 

kq/1 + ~q/1 = 0,  (4.59) 
q/ I I r  = q / r ;  

and the other is a special solution 

1 
Aq/2  + ~ q / 2  - 1 + b (Ky+ ~,h),  

q/2Ir = 0. (4.60) 

The solution of turbulent field is obtained by the addition of both solutions, of the form 

q/= q/1 + q/2. (4.61) 

The influence of fluctuation fields introduces the term associated with the special 
solution q/2. We denote the average turbulent force-free field in the form 

B0 = Beffective + Bfluctuation , (4.62) 

where the effective force-free field is 

Beffective \ OZ ' G( q/) , Ox / 

and the field corresponding to the fluctuation field is 

Bfluetuat ion _ (~q/2 h aq/2~ 
\ &  ' l + b '  a x J "  

(4.63) 

(4.64) 

Generally, according to the influence of fluctuation fields, the average current is no 



366 WEN-RUI HU 

longer parallel to the average magnetic field. The basic equation (4.59) is formally the 
same as usual equation of force-free field, however, the force-free factor is c~. instead 
of 0c, which may be larger or smaller than e.. The value of e. associates with the 
transverse component of magnetic field and, than, the component of transverse magnetic 
energy, which is often considered as the energy sources of solar flare and activities. 
Furthermore, there is a transverse component of magnetic field in (4.64) associated with 
K. All of these introduce new components of magnetic field, and then the sources and 
mechanism in energy conservations, it may have extensive applications in astrophysics. 

It can be seen that the coefficient a in (2.7) should be zero in the approximation of 
conventional turbulence. However, a r 0 in the general cases, and it is retained in the 
present paper. 

5. Discussion 

In the present paper, the basic equation of average force-free field are demonstrated by 
the method of local expansion. As the average current is no longer parallel to the average 
magnetic field, the features of turbulent force-free field are different from those of usual 
one. For example, in the usual theory, the transverse component of magnetic field Boy 
keeps constant in a magnetic surface ~ = constant as shown in (4.63). The influence 
of turbulent fields introduce an additional component of magnetic field h/(1 + b), which 
is generally not a constant in a magnetic surface. Therefore, the magnetic force line in 
a magnetic surface may be sheared, and then, the magnetic energy may be stored. 
Moreover, as the average current is generally not parallel to the average magnetic field, 
there is an average Lorentz force in the region of strong field, and the plasma may be 
driven to flow with the kinetic pressure smaller than the magnetic pressure. In the case 
of magnetostatics, the average Lorentz force is balanced by the turbulent forces, which 
associate with the turbulent energy and introduce additional components of magnetic 
field in the equilibrium configurations. Therefore, the average force-free field may have 
more general features than the usual ones. 

In Section 4, the first two examples show that the magnetic field depends on three 
space variables (x, y, z) and has no topological invariance. We have discussed that the 
cosmical magnetic field may generally have equilibrium configuration without topological 
invariance (Hu, 1983e, d; Hu et al., 1983). As the fluctuation fields are included, there 
are additional freedom in the equilibrium equations, and it is easy to construct the 
magnetic field without topological invariance. 

The plasma in the astrophysical environments is often in the turbulent state, and so 
is the magnetic field. Paper I and the present paper discuss the configurations in the 
region where the magnetic field is relatively strong and can be considered as force-free 
field. Similar results may be obtained for the magnetostatic problems (Hu, 1983b). The 
applications of these results to the detailed processes in astrophysics will be interesting 
and important. In the view point of physics, the turbulent coefficients, which is 
introduced in the present paper by the local expansion, should be connected with special 
physical processes as discussed in the turbulent dynamo theory. These will be analyzed 
in future. 
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