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In this paper we consider the problem of the concentration jump of a vapour in the 
vicinity of a plane wall, which consists of the condensed phase of the vapour, in a 
rarefied gas mixture of that vapour ( A )  and another ‘inert’ gas (B) .  The general 
formulation of the problem of determining the concentration-jump coefficient C d A  is 
given. In the Knudsen layer the simplest model of Boley-Yip theory is used to 
simplify the Boltzmann equations for the binary gas mixture. The numerical 
calculation of the concentration jump coefficient C d A  for various values of evaporation 
coefficient aA is illustrated for the case of nB % nA, for which experimental data are 
available. 

1. Introduction 
The evaporation and condensation of liquid droplets are among the important 

contents of aerosol behaviour investigations and are of great practical significance. 
When the radius a of the spherical droplets is so small that it is comparable with the 
mean free path h of the surrounding gas, the effect of the discrete molecular structure 
must be taken into account. In the region 0 < K < 0.1 (K = h/2a),  the methods of 
the slip-flow regime can be used, i.e. the Navier-Stokes equations are used as the 
controlling equations, and the conditions on the solid boundary under continuum 
assumptions are modified with various jumps present there. In the case of momentum 
transfer and energy transfer, when there are velocity and temperature gradients at  
the wall, there must be discontinuities in the velocities and temperatures of the gas 
andoftheboundary (Maxwell 1879; Kennard 1938). Theslip-velocityandtemperature- 
jump boundary conditions have been investigated in detail (Welander 1954 ; Cercignani 
1975; Sone 1966a, b ) ,  and the dependences of slip coefficient, temperature-jump 
coefficient and thermal-creep coefficient on the accommodation coefficient have been 
estimated numerically with fair accuracy (Loyalka 1968; Loyalka & Cipolla 1971 ; 
Ivchenko & Yalamov 1971; Onishi 1973; Shen 1983). In the mass-transfer problem 
of evaporation and condensation of liquid droplets, when a concentration gradient 
is present at the wall, there must be discontinuity of the vapour concentration, and 
the concentration-jump boundary condition and concentration-jump coefficient have 
to be introduced, the investigation of which has been far from complete (see Hidy 
& Brock 1970). There have been several works (e.g. Pao 1970; Sone & Onishi 1973, 
1978) concerning the evaporation and condensation of one-component gas onto its 
condensed phase. The purpose of this paper is to  investigate the concentration-jump 
boundary condition in the slip flow regime in the case where there exists two species 
of gases and where one of them may condense on or evaporate from a solid wall of 
its condensed phase and diffuse through another, and to determine the dependence 
of the concentration-jump coefficient on the evaporation coefficient. 
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When a vapour gas (component A )  evaporates from its condensed phase and 
diffuses through another gas (component B) ,  the concentration of component A in 
the gas, under the continuum assumption, satisfies the following equation : 

where u is the local velocity of the gas, DAB is the mutual diffusion coefficient between 
component A and component B .  In  the case of a spherical particle with radius a, the 
following boundary conditions are imposed in continuum flow : 

nA = nAl (T  = a ) ,  (2) 

nA = nAO (v+ m), (3) 

where nA1 is the equilibrium concentration of component A a t  the particle surface. 
For the simplest case of quiescent fluid and a quasi-stationary process ( ( 1 )  becomes 
V2nA = 0 )  the rate of condensation or evaporation is found to be 

where Qc is the total rate of transfer of component A from the particle surface. The 
expression (4) in the limit a+O is incorrect, for, physically speaking, Qc/4xa2 must 
be finite, but the right-hand side would lead to Qc/4xa2+ 00 as a+O. When a+O the 
discrete structure of the gas must be taken into account. 

In the slip regime the concentration jump can be postulated a t  the surface, i.e. in 
place of (2) the following slip-flow boundary condition can be postulated: 

where h, is the mean free path of A in the gas mixture,t and CdA is the 
concentration-jump coefficient. The rate of evaporation is 

This result can be used in the region 0 < K < 0.1. The crux of the matter remaining 
is how to determine CdA. 

In  this paper an attempt is made to determine C,, on the basis of kinetic theory 
for a binary gas mixture. For simplicity we shall consider the plane-boundary 
problem. The model Boltzmann equations are solved in the Knudsen layer, and far 
from the surface the normal gradient of concentration is assumed to approach a 
constant. A t  the surface the fraction aA of incident molecules of component A is 
supposed to be re-emitted from the surface in a Maxwellian distribution with the 
temperature of the wall, and the remaining (1 - aA) portion only changes the direction 
of the normal component of velocity. Here uA is the evaporation or condensation 
coefficient of A .  

t I n  a gas mixture consisting of two components, the notion of the mean free path must be further 
clarified. The size and  mass of the vapour molecules and air molecules may differ from each other 
greatly, so the mean free path A, of the air molecules in the mixture and t h a t  A,  of the vapour 
molecules must be distinguished. The numerical coefficient CdA in the concentration-jump condition 
will vary in accordance with which of the different mean free paths is meant. When A, is meant, 
Cl,, will be written as c d A ( A ) ,  and when AB is meant Cd, will be written as C,,,,,. Obviously 
cdA(A) = ( / \ B / ’ A )  ‘ d A ( B ) .  
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I n  $2 the general formulation of the problem will be given. Then the simplifying 
model Boltzmann equations for a binary gas mixture will be discussed. Finally, for 
the specific case of nB B nA, the calculation of the coefficient C,, is given, and the 
result is compared with experimental data. 

2. The formulation of the problem 
The case of an infinite plane wall (y = 0) will be considered. Far from the wall 

(outside Knudsen layer) the vapour concentration has constant normal gradient, and 
it evaporates from the wall of its condensed phase or condenses on it. We consider 
the distribution of the vapour concentration in the Knudsen layer near the wall in 
the presence of another gas. 

As far as the two-component gas mixture is concerned, the governing equations 
are binary-component Boltzmann equations (see e.g. Chapman & Cowling 1970) : 

where u denotes the molecular velocity, fA,fB are the distribution functions of 
condensable vapour (component A )  and of the other gas (component B, say air), the 
right-hand sides are the collision integral operators, J A  is the self-collision operator 
of component A ,  J A g  is the cross-collision operator of components A and B ,  etc. 

The air molecules satisfy the Maxwellian boundary condition at the wall 

where ag is the accommodation coefficient of air at the wall, C,, = (2kT/mB)t the 
most-probable speed of the air molecules, k is Boltzmann's constant, and mg is the 
molecular weight of component B ;  obviously the air molecules also satisfy the 
condition of no absorption and condensation 

Vy fBdU = 0. (8) s 
The vapour molecules satisfy the Maxwellian boundary condition a t  the wall 

where aA is the evaporation or condensation coefficient, CmA = (2kT/m,): is the 
most-probable speed of the vapour molecules, and mA is the molecular weight of 
component A .  As component A evaporates or condenses a t  the surface, its normal 
velocity does not vanish, and is determined by the behaviour of solution a t  infinity. 
The procedure of determination of normal velocity is shown for the example of 
small nA. 

We consider the case of small deviations from equilibrium, when the Boltzmann 
equations can be linearized and simplifying models can be invoked (see $3) .  The 
vapour concentration nA = fAdu can be written as 

nA = nAl(l  + vA). (10) 

and vA is small (for the definition of vA through disturbed distribution function 
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see (24)). For our purposes we should consider the case of finite constant concentration 
gradient far from the wall. One can suppose v A  to have the form 

V A  = C y + b + V A K ,  (11)  

where c and b are constants, c = (l/nAl)dnA/dy characterizes the value of the 
concentration gradient, b characterizes the value of concentration jump ( b / c  = CdAh) ,  
and vAK is a function vanishing at CQ. 

The deviation rA of the temperature of component A from its equilibrium value 
(for the definition of rA see (26)) can be supposed to be of the form 

with T A K  vanishing at co . 

from their equilibrium values have the form 

74 = a y + d + T A K ,  (12) 

Similarly, the small deviations of concentration and temperature of component B 

where vBK,  rBK vanish at 00. Certain constraints imposed on a ,  b,  c, d ,  01, P, y ,  S can be 
obtained from the behaviour of the solution at 00. We shall show this in the particular 
case of small concentration of evaporating gas. 

Thus, supposing the disturbed concentrations and temperatures to have the form 
(1  I)-( 13), and to satisfy the boundary conditions (7)-(9), and determining the normal 
velocity of component A from a constraint at 00, we can solve the linearized form 
of (6) or its model version in the Knudsen layer and determine the value of b in 
particular. We thereby prove that there is a concentration jump and find the 
concentration-jump coefficient CdA as b/ch. 

3. The modelling of the collision operators in the linearized Boltzmann 
equations for a binary gas mixture 

In rarefied gas dynamics the investigation of the Knudsen layer has been carried 
out quite extensively, many works have been based on the model Boltzmann 
equations, among which the most frequently used is the simplest model proposed 
originally by Bhatnagar, Gross & Krook (1954) and Welander (1954) (referred to as 
the BKW or BGK equation for simplicity). 

What we need to solve are the Boltzmann equations (6) for a binary gas mixture. 
For the case of small departure from equilibrium, the distribution functions f A ,  f B  can 
be linearized : 

[1 + $ i ( U ,  r,  t)I (i = A ,  B) ,  (14) 
n,F,(v) 

f i ( C  r ,  t )  = ~ 

C&i 

where 

And (6) can be written in the form 

where KA, K B  are the linearized one-component collision operators for A and B 
respectively, which can be modelled with the BKW model; 
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is the linearized cross-collision matrix. Boley & Yip (1972a, b )  proposed a modelling 
theory for i t  with the help of the eigentheory of the cross-collision operators. 
According to their theory, the simplest model is the one which is obtained in the 
expansion of L in terms of its eigenfunctions and eigenvalues with all conservation 
eigenfunctions and a relaxation frequency y (the corresponding eigenvalue being - y ,  
y positive) retained and with all other eigenvalues replaced by this frequency (with 
negative sign). The conservation laws in collision are thus satisfied, and the 
eigenfunction corresponding to  that relaxation frequency is also properly taken into 
account. This simplest model can be written 

where kA,  is the coefficient of proportion of the force potential between components 
A and B, ,u = mA m,/(rn, + m,) is the reduced mass, 

< A  = fi/QmA> 5 B  = v/C,B, UA = ( Z A U A + Z B U B ) / ' Q ~ A .  

UB = ( z A u A + z B u B ) / C m B ,  ' A  = m A / ( m A + m B )  

and ZB = m B / ( m ~ + m ~ ) .  

vA,uA and rA are the departures of local density, velocity and temperature of 
component A from equilibrium : 

vB, uB, rB have a similar meaning. I n  a binary gas mixture the diffusion coefficient 
D A B  and the eigenvalue IA;ll have the following relationship (Boley & Yip 1972b): 

Taking &ll as the relaxation frequency retained (thus we have taken into account 
the eigenfunction related to the diffusion process) we find the coefficient in (16) to  
be 

It is well known, in the case of a one-component gas, that making use of the BKW 
model, when the value of the relaxation frequency is chosen to lead to  the correct 
expressions of viscosity (or conductivity), the correct values of the slip-velocity 
coefficient Cm (or the temperature jump coefficient C, and the thermal creep coefficient 
C,) can be obtained (Cercignani 1975; Welander 1954; Sone 1966a, b ;  Loyalka 1968, 
1971; Ivchenko et al. 1971; Shen 1983). Therefore, when y is chosen as in (19), the 
simplest model of the cross-correlation operator is expected to depict the process 
where mutual diffusion predominates. 

4. Example of numerical calculation of the concentration-jump coefficient : 
the case nB %- nA 

Under the general formulation of the problem, C,, depends on the condensation 
coefficient uA and other dimensionless parameters such as nB/nA,  mB/mA,  SAB/S, ,  
( S A B  being the collision cross-section between the vapour and air molecules, and S,, 
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that between air molecules), so i t  is rather lengthy and tedious to give the value of 
C,, under various values of the various parameters. Here we are confined to giving 
the detailed calculation in a case when experimental data are available, and the 
equations can be greatly simplified. 

The experiment of Birks & Bradley (1949) on the evaporation of a spherical liquid 
droplet in quiescent gas seems to be the most exact one under the condition of small 
K .  They investigated the evaporation of a dibutyl phthalate (C,H,(CO. OC,H,),, 
M = 278) droplet (a x 0.5 mm) inlow-pressureair. Theevaporationpressureofdibutyl 
phthalate (component A )  is approximately lop5 mmHg and the air pressure in the 
experiment was 0.1-200 mmHg. We see from the experimental condition that 
nB $ nA,  and this can simplify the linearized model (15) greatly. 

In  the case of a plane wall, when the simplest linearized model of Boley & Yip is 
used with the eigenfunction related to  the diffusion process taken into account ( (  16) 
and (19)) (15) can be written as 

(20) 

(21 ) 

W A  

aY 
W B  

aY 

- = n A I ( A # A + n B y ‘ [ v A - # A + 2 6 A , ~ 7 A , + 8 ( 7 A + 7 B )  ( E i - $ i l ,  

2’ - = n B  K B  #B + nA y ’ [ v B - # B  + 26€fy uB, - 8 ( 7 A  + 7 B )  (6?3-$17 

I n  general (20) and (21) are to  be solved simultaneously. But with nA 6 nB and hence 
uB 6 uA (20) and (21) can be simplified: 

~ V A  = n B y ’ [ v A - # A + 2 6 , U y + 8 ( 7 A + 7 B )  (ti--%)], (32) 
aY 

with 

(23) 

(24) 

z ( V A  +7A) = J F A # A ~ P ~ c .  (26) 

and we have dropped the suffix A in C A  and UA. The distribution function of 
component A is controlled by cross-collision and that of component B by self-collision 
of air molecules. In  the state of equilibrium the distribution of air molecules is 
Maxwellian, Qfg = 0, and $ A  can be found by solving (22) independently. 

Making use of expressions for the mutual diffusion coefficient DAB and the mean 
free path of component A (Kennard 1938 ; Chapman & Cowling 1960), and introducing 
the new variable 

we can rewrite (22) as 

where vA,  U, and 74 satisfy conditions (24), (25) and (26). 
The boundary condition (19) a t  the wall, when linearized, can be written 

# A ( [ % ,  6g* 6 z )  = + (%-%) 7w1+ ( l  -a) # A ( 6 % ?  - 6 ~ 3  6 z ) .  

(27) 
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When the equilibrium concentration a t  the wall and the wall temperature are taken 
as reference values, we can simplify the boundary condition further as 

It is easily seen from (28)  that  Uy = const. In  fact, multiplying both sides of (28)  by 
FAdg and integrating, we have 

i.e. 

From ( 1  1 )  and (12)  we see that vA and T A  have the following forms at GO : 

I V A  = c ’ r+b ,  

= a’r+d, 

where c/c’ = a/a‘ = 8 /3dAA.  From (311, (32)  and the basic equation (28)  one can 
obtain the form of the solution $ a t  CO. Substituting this expression for $ into the 
macroscopic conditions (24)-(26), one obtains the following constraints on a’, d and 

(33)  a’ = d = 0, 
uv : 

Equation (33)  is an isothermal requirement outside the Knudsen layer for component 
A in the case nB 9 nA. Equation (34)  is a kinetic derivation of the requirement that  
the normal velocity is determined by the diffusive flux caused by the presence of the 
concentration gradient at infinity. Substituting ( 1  I )  and (12)  into (30) with (33) and 
(34)  in mind, and substituting the solution into the macroscopic conditions (24)-(26), 
we obtain, with subscript A omitted from v A K ,  TAK : 

where 
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a A  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 .o 
bo 9.017 4.584 3.104 2.364 1.918 1.621 1.408 1.248 1.123 1.011 

TABLE 1 .  Values of bo for various aA 

a A  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 .o 
C,,,,, 120.6 58.06 37.01 26.61 20.24 15.97 12.88 10.54 8.69 7.19 

TABLE 2. Values of C,,,,, for dibutyl phthalate m,/m, = 0.1043 

P a l  

J ,  = Jn(lr-cl), (45) 

J,* = J,(q + C). (46) 

The integral equations (36) and (37) are to be solved simultaneously to give the values 
of functions uK and 7 K .  As there seems no analytic method to solve the coupled 
Wiener-Hopf equations (36) and (37), one resorts to  solving them numerically (see 
Appendix). Since the left-hand sides of (36) and (37) are linear and homogeneous 
relative to vK,  7 K ,  one can solve these equations once and for all for uc’ = 1 and get 
uR = ~ ~ l ~ ~ , = ~ , 7 R  = ~ ~ l ~ ~ ~ = ~ ,  then from (35) one also gets bo = bl,,,,. A numerical 
calculation has been done for specific magnitudes of aA. The result for bo is given in 
table 1 .  

uK, 7 K  and b for arbitrary uc‘ can be obtained by multiplying &, 7% and bo by uc’, 
in particular 

b = uc’bo = (2-aA) 1 +- c’bo. (47) ( 3 
The concentration-jump coefficient Cd, for specific values of aA and mass ratios 
mA/mB can be found from bo given in table 1 and the following formula 

For a binary mixture of dibutyl phthalate and air, mB/mA = 29/278 = 0.1043; the 
result for C d A ( A )  is given in table 2 .  
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5. Comparison with experimental results, and discussion 
Birks & Bradley (1949) in their experiment obtained the evaporation rate of a 

dibutyl phthalate spherical droplet suspended in a capsule of absorbing wall in the 
continuum regime (K = 0) and the slip regime (small K ) .  Simple analysis shows that, 
for a spherical droplet evaporating in a capsule, the radius of which is sufficiently 
large in comparison with that of the droplet, (4) and (5) are valid with high accuracy 
in the continuum and slip-flow regimes. So QJQSL is linear in A,/u  for AA/u small. 
One can easily find from the data of Birks & Bradley (1949) that  C d A ( B )  = 1.2 (see 
also Hidy & Brock 1970). At the same time Birks & Bradley directly measured the 
rate of mass transfer by evaporating a flat surface of dibutyl phthalate under high 
vacuum conditions and found aA = 0.69. 

The calculation in the previous section has given the values of C d A ( A ) .  To compare 
with the experiment we have the relationship between C d A ( A )  and C d A ( B )  

For the case n, >> nA we have 

So C d A ( A )  and C d A ( B )  are related as 

where T A  and rB are collision radii for dibutyl phthalate and air respectively. The 
values of ?-A found by Birks & Bradley (1949) vary from 4.45 A to 5.44 A depending 
on with which partner the collision radius of dibutyl phthalate is determined. 
Using the result C d A ( B )  = 1.2 derived from the data of Birks & Bradley, we 
have c d A ( A )  = 7.88-10.55 and according to our calculation we ought to put 
aA = 0.9544.799 (see table 2). The lower value agrees fairly well with aA = 0.69 
obtained from the direct measurement of the evaporation rate of dibutyl phthalate 
in vacuum. It should be pointed out that  Birks & Bradley made their direct 
measurement of aA (=  0.69) only in passing to show that aA is near unity. The latter 
conclusion they drew from the measurement of Qc/QsL from which we derived 
C d A f B )  = 1.2. so it  would be incautious to  draw definite conclusions about the 
accuracy of the above calculation from comparison with just one experimental result 
by Birks & Bradley. It seems to  us appropriate to conduct more-direct measurement 
of C d A  and aA for dibutyl phthalate and other substances. 

Our analysis of the concentration-jump coefficient for a rarefied binary gas mixture 
is preliminary. The kinetic model used here does not take into account the internal 
degrees of freedom, so in comparing theoretical results with experimental data for 
polyatomic gases, one ought to have some caution. It is of interest to  have 
experimental data for cases of not small nA and to  compare them with theory. 
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Mathematics and Theoretical Physics, University of Cambridge. The author expresses 
his thanks to Professor G. K. Batchelor for his kind invitation and hospitality and 
also for useful discussion. Thanks are due also to Professor C. Cercignani, Professor 
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at  the Euromech Colloquium 169 held at Trondheim, Norway, 2&23 June 1983. He 
also wishes to acknowledge The Royal Society and British Petroleum for their 
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Appendix 
Expanding vK, 7K as polynomials of J n ( y )  (Sone 1964) 

m 

m 

substituting into (36) and (37), multiplying the obtained equations by y2 for 
1 = 0, 1 , . . . , m (the moment equations for 1 = m + 1 are unnecessary in our case, as a' 
and d have been determined to be zero from (24) and (26), which lead to (36) and 
(37)) and integrating over y from 0 to 00, one obtains the following algebraic equations 
for an, bn (n = 0, ..., m ) :  

m 
z [dIz0-  2a, 120Jn+2(0) E;;-Hy, - (1  --a A )  G ~ i l a n  

n-0 

m 

n-0 

roo roo 

The set of linear algebraic equations (A l ) ,  (A 2) can easily be solved numerically; 
the accuracy of calculation can be achieved simply by using fine regions of integration 
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in the quadrature of Ffn and Efn by a Gaussian method. The present numerical 
procedure has been tested for a one-component gas, and the result agrees with that 
obtained by a refined method in Sone & Onishi (1973) with five-figure accuracy (for 
m = 7) .  
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