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On the condition that the distribution of velocity and temperature at the mid-plane of a mantle plume has been
obtained (pages 213-218, this issue), the problem of determining the lateral structure of the plume at a given depth is
reduced to solving an eigenvalue problem of a set of ordinary differential equations with five unknown functions, with
an eigenvalue being related to the thermal thickness of the plume at this depth. The lateral profiles of upward velocity,
temperature and viscosity in the plume and the thickness of the plume at various depths are calculated for two sets of
Newtonian rheological parameters. The calculations show that the precondition for the existence of the plume,
87/L <1 (L = the height of the plume, 8, = lateral distance from the mid-plane), can be satisfied, except for the
starting region of the plume or near the base of the lithosphere. At the lateral distance, 8,, the upward velocity
decreases to 0.1-50% of its maximum value at different depths. It is believed that this model may provide an approach

for a quantitative description of the detailed structure of a mantle plume.

1. Introduction

A mantle plume is understood to be a hot,
narrow, upwelling flow in the Earth’s mantle,
accompanied by an efficient transfer of mass and
energy from depth to the upper layers of the
Earth. Mantle plumes may play an important role
in mantle dynamics and plate tectonics (Morgan,
1971, 1972). It has been suggested that the origin
of sea-floor spreading and plate motion is due to
special two-dimensional plumes beneath mid-oc-
ean ridges. The origin of the surface hot spots and
linear island chains may be due to cyclindrical
plumes. R. Meissner (1981) suggested that the
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development of continental margins is a conse-
quence of two-dimensional plumes intruding a
variable viscosity tectonosphere. The thermal and
mechanical structure of mantle plumes must be
known for an understanding of the dynamical
processes of the Earth.

Essentially, no fluid—dynamical description of a
mantle plume has been attempted so far. Only the
numerical experiments of Parmentier et al. (1975)
have yielded plume-like structures in cylindrical,
base-heated, variable-viscosity Newtonian flows.
Although an analytic similarity solution was given
for a two-dimensional mantle plume by Yuen and
Schubert (1976), a plume-like structure of upward
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velocity in a Newtonian plume could not be found,
because the preconditions under which the similar-
ity solution exists were not in existence (Li et al,,
1983).

Newtonian (or Nabarro—Herring) creep with a
linear constitutive relation seems to be the domi-
nant process in regions of very high temperatures
and very low stresses (Vetter and Meissner, 1979).
An upwelling flow of mantle plumes certainly
belongs to regions of high temperature in the
asthenosphere. We formulate an analytic theory
for the structure of a two-dimenstonal plume in a
medium with Newtonian rheology. Based on this
theory, the parameters of mantle plumes, such as
temperature, velocity, viscosity, plume-thickness,
and their distributions, are calculated.

2. Mathematical analysis

The general hydrodynamical equations are used
to describe the motion of mantle material. For
flows in a Newtonian two-dimensional mantle
plume, the hydrodynamical equations can be sim-
plified according to Yuen and Schubert (1976),
and Li and Guan (1979) as

(U /9x) +(3V/3y) =0 (1)
(3/0y)[r(dU/03y)] +pga(T—T,)=0 (2)
U(3T/3x) + V(3T /8y) = k(92T /9y?) (3)

where the x-axis is vertically upward, the y-axis is
horizontally to the right, U and V are velocity
components in x- and y-directions, respectively. T
is temperature, T, is the ambient mantle tempera-
ture, p is the density, u is the viscosity, g is the
gravitational acceleration, a is the coefficient of
expansion, and k is the thermal conductivity. y =0
is the mid-plane of the plume or the axis of
symmetry (i.e., the boundary of the upward flows
of two neighbouring cells). The zero point of the
coordinate is the point where the axis of symmetry
intersects the base of the lithosphere. Let us con-
sider only the flows in the region y > 0, x < 0.

In eq. 2 the viscosity is expressed as follows
(Yuen and Schubert, 1976)

p=(T/2B) exp[(E* + P,(x)V*)/(RT)]  (4)

where E* is the activation energy of the thermally
activated deformation process, V* is its activation
volume, R is the gas constant. P, is the static
pressure and B is a constant. In the present paper
the calculated results are given for two sets of
Newtonian rheological parameters, and their val-
ues are given as follows (Yuen and Schubert,
1976):
Newtonian I

B=24x10"*cmsK g™,
* =11 en® mol™!, E* = 95 kcal mol " !;
Newtonian II
B=18x10"*cmsKg™!,
V* =9 c¢cm® mol ™!, E* = 104 kcal mol ~!.
On the condition that the velocity U, and temper-
ature T, at the mid-plane of a plume have been

found, let us introduce two-dimensionless func-
tions

U/U, =T - T,.)/(T,— T )=p(n) (5
where 1 =y/8,(x) is a new dimensionless inde-

pendent variable, and 8, is the thermal thickness
of the plume at depth x. It is evident that

g(0)=1,p(0)=1,p(1)=0
Substituting eq. 5 into eq. 2, we obtain

() 1) Tl ) 4y ()

rlp(n)x] U, (x)
where n = pga.
Let
0(n) =f0np(n)dn
Then
Q'(n)=p(n) (7)

From eq. 1 the following equation can be ob-
tained

V= - [%Sr(x) + Uw(x)@%x)}f:g(ﬂ)dn

dé .
HU G g(n) ®)
Let

sy = [Te(nen )



then

f'(n)=2g(n) (10)

From eq. 1 we obtain

p'(n)= k(lewf%Tw) ( iﬁ“’ - ddf:" )p(n)g(n)
Us: dT,
T XT.-T) dx =g(n)
(S ore us, T ()
(11)

Let
p'(n)=R(n) (12)
p"(n)="R(n) (13)

Then egs. 10, 6, 7, 12 and 11 can be rewritten as
follows

df/dn=g (14)
dg/dn=—{[n(T, - T)8:]/(rU.)}Q  (19)
dQ/dn=p (16)
dp/dn=R (17)
4R __ UpE (4T, dT,
dn k(T——T)( dx)p
us: dr,
k(T -T,) dx ¢
dau, dé,
—;(Ksz F U )fR (18)

The boundary conditions are
f(0)=0, g(0)=1
0(0)=0, p(0)=1 (19)
R(0)=0, p(1)=0

This set of egs. (14-19) provides an eigenvalue
problem for a set of ordinary differential equa-
tions with five unknown functions, with an eigen-
value being relative to the thermal thickness of the
plume, 8,(x), and its derivative about x. Because
there is a term dd,/dx in eq. 18, we must first
find 8,(xy) as an initial value of §,(x), in order
to solve egs. 14-19.

Integrating eq. 18 for n over the region (0, 1),
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we have
U &2 (dTw dT)
= F o d
p'(1)—p'(0) (T, —T.) | dx fpg n
Us: dT,
k(T,~T,) dx fg K
dau, s,
G v —)
1
Xfp’fdn (20)
0

Taking note of [}p’fdn= — [;pgdn, from eq. 20,
we can obtain

d_8%_l 2 (dT d7, )+ 2 (dUw)
e U,

dx T,—T,\ dx dx dx
2 dT, .,
"I 4 —c |82+, (21)
where
1
=f(1)/ [ pgdn (22)
0
1
=R(1)/ [ pgdn (23)
0

The coefficient C, and C, can first be estimated
from the solution of a constant viscosity plume (Li
and Guan, 1979). Substituting eq. 21 into eq. 18, a
solution of egs. 14-19 can be found using a New-
tonian iteration method and an “optimum search
method” for the eigenvalue. From the solution
obtained, new coefficients C, and C, can be esti-
mated again. This process is repeated until a stable
value for the coefficients C, and C, is obtained.
On the condition that 8,(x,) has been found,
[8,(xo+ Ax)—8,(xy)]/Ax can be used to take
the place of d8;/dx in eq. 18. Then the solution
of egs. 14-19 at any depth can be obtained using
the above-mentioned method.

3. Numerical results for the structure of the plume

Numerical solutions of eqs. 14-19 have been
obtained for the Newtonian I and II plumes. The
values for the physical parameters of the Earth’s
mantle were adopted as follows: p=3.3 g cm™3,

g=10° cm s7%, a=35%x10"% K™}, k=10x
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Fig. 1. Lateral profiles of the dimensionless temperature in a
Newtonian I plume for different values of x /L.

1072cem’s™ ', and n=0.1155 gecm2s 2K~
Figures 1 and 2 show the thermal structure of
plumes for Newtonian I and II rheological param-
eters, respectively. At any depth the temperature
decreases monotonically from its maximum at the
centre of the plume to the ambient mantle temper-
ature. We can see that for the same value of y /8,
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Fig. 2. Lateral profiles of the dimensionless temperature in a
Newtonian II plume for different values of x /L.
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Fig. 3. Lateral profiles of the viscosity in a Newtonian I plume
for different values of x /L.

the greater the depth, the lower is the dimension-
less temperature.

The lateral viscosity profiles with parameters of
x/L for the Newtonian I and II plumes are shown
in Figs. 3 and 4, respectively. For all lateral viscos-
ity profiles the minimum is at the mid-plane and
the maximum is at the boundary of the plume. For
profiles at greater depth, the maximum of the
viscosity is only slightly larger than the minimum.

10221

v/ 61

Fig. 4. Lateral viscosity profiles in a Newtonian II plume for
different values of x /L.
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Fig. 5. Lateral viscosity profiles in Newtonian I and Newtonian
II plumes at x /L = —0.5.

However, for profiles at a shallow depth, the maxi-
mum is 2-3 orders of magnitude larger than the
minimum. Figure 5 shows a comparison between
the viscosity profiles of Newtonian I and II plumes.
For the same point of the plume, at x/L = —0.5,
the viscosity of the material with a Newtonian II
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Fig. 6. Lateral profiles of the dimensionless upward velocity in

a Newtonian I plume for different values of x /L in the region
—041to0 —-0.2.
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Fig. 7. Lateral profiles of the dimensionless upward velocity in

a Newtonian I plume for different values of x /L in the region
—09to0 —04.

creep law is at least one order of magnitude larger
than that for Newtonian 1.

Figures 6-9 show the upward velocity of a
plume as a function of the dimensionless distance
from its centre. The upward velocity also decreases
monotonically from its maximum at the mid-plane
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Fig. 8. Lateral profiles of the dimensionless upward velocity in
a Newtonian II plume for different values of x /L in the region
—0.5 to —0.24.
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Fig. 9. Lateral profiles of the dimensionless upward velocity in
a Newtonian II plume for different values of x /L in the region
—0.76 to —0.5.

to its boundary value U, (x), where U, (x)= Ulx,
8,(x)] is an important parameter of a plume.
According to the definition suggested by Yuen
and Schubert (1976), when U, /U, < 0.5 then 8,
can be considered as the thickness of the plume;
when U,/U, > 0.5 then there are no plume-like
structures of the upward velocity. For example, in
Fig. 6 for x/L= —02, U, /U, =705 > 0.5, then
at this depth for Newtonian I rheological parame-
ters there are no plume-like structures of the up-
ward velocity. The results obtained in the present
work show that for Newtonian I rheological
parameters in the region of a dimensionless depth
from about —0.22 to —0.90, and for Newtonian II
in the region from about —0.24 to —0.76, the
condition U,/U, < 0.5 can be satisfied. In the
regions outside those mentioned above, there are
no plume-like structures of the upward velocity
because the change in flow-direction takes place
near there. Comparing Figs. 7 and 8 it is seen that
U/U, goes through a minimum at x/L= —04
for Newtonian I viscosities. For a Newtonian II
rheology the minimum is at ~ x/L = —0.5.

Figures 10 and 11 show a comparison between
the lateral profiles of temperature and upward
velocity for the Newtonian I plume at x /L = —0.4,
and for the Newtonian II plume at x/L = —0.5,
respectively.
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Fig. 10. Lateral profiles of the dimensionless upward velocity
and temperature in a Newtonian I plume at x /L = —04.

Figure 12 shows the thickness of the plume. At
the same depth, the thickness of a Newtonian II
plume is larger than that of Newtonian I. For both
Newtonian I and II plumes it can be seen that the
larger the depth, the larger is the thickness of the
plume.
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Fig. 11. Lateral profiles of the dimensionless upward velocity
and temperature in 2 Newtonian II plume at x /L = —0.5.
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Fig. 12. Thickness of the plume versus dimensionless depth,
x/L.

4. Conclusion

The mantle plume is the rising part of a mantle
convection cell. Its existence was found from in-
vestigating the structure of convection cells, but it
is difficult to find its detailed structure in this way.
The boundary-layer approach for a mantle plume
on the other hand, as suggested by Yuen and
Schubert (1976), makes it possible to estimate the
structure of a plume independently. Based on this
idea we have formulated an analytical solution by
which the lateral profiles of temperature, upward
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velocity, viscosity and thickness of the plume at
various depths can be obtained for Newtonian
temperature- and pressure-dependent rheologics.
Hence, it is believed that the present model pro-
vides an approach for a quantitative description of
the detailed structure of a mantle plume.
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