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Abstract. The statistical correlation between an eruptive prominence and the coronal transient associated 
with this prominence implies that there should be a relationship between these two kinds of dynamical 
processes. This paper analyzes the dynamical effect of a plasma 'piston' in the corona, consisting of an 
eruptive prominence and/or a magnetic flux region (loop or arcade, or blob) in front of the prominence. 
Ahead of the piston, there is a compressed flow, which produces a shock front. This high-density region 
corresponds to the bright feature of the transient. Behind the piston, there is a rarefaction region, which 
corresponds to the dark feature of the transient. Therefore, both the bright and dark features of the transient 
may be explained at the same time by the dynamical process of the moving piston. 

Two local solutions, one perpendicular and one parallel to the direction of solar gravitational field, are 
discussed. The influence of gravity on the gas-dynamical process driven by the piston is discussed in terms 
of characteristic theory, and the flow field is given quantitatively. For a typical piston trajectory similar to 
the one for an eruptive prominence, the velocity of the shock front which locates ahead the transient front 
is nearly constant or slightly accelerated, and the width of the compressed flow region may be kept nearly 
constant or increased linearly, depending on the velocity distribution of the piston. Based on these results, 
the major features of the transient may be explained. Some of the fine structure of the transient is also shown, 
which may be compared in detail with observations. 

I. Introduction 

The coronal transient is an important phenomenon of solar activity in the corona. It was 
first observed in the coronal measurements of the white-light coronagraph aboard 
Skylab and OSO-7 (MacQueen et al., 1974; Howard et al., 1976) and more recently 
aboard the Solar Maximum Mission satellite (Chipman, 1981). These observations have 
shown that the dense plasma corresponding to the observed bright feature of a transient 
propagates outward with nearly constant (or slightly accelerating) velocity in the typical 
time of tens of minutes, and that transients are correlated statistically with eruptive 
prominences and flares (Munro et aL, 1979). During the past few years, observations 
made with a ground-based coronameter have supplied information on the initial process 
in the lower corona (Fisher and Poland, 1981; Fisher etaL, 1981), showing that the 
transient associated with an eruptive prominence begins as a depletion in the corona 
which corresponds to the observed dark features. The observed morphologies of coronal 
transients vary widely; some of them appear as loops or arcades, others as clouds or 
blobs (MacQueen, 1980). 

Many physical mechanisms have been suggested (see, for example, the review of Rust 
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et al., 1979). The basic approaches may be classified into three kinds: numerical experi- 
ments, local analysis, and special solutions applied to explain the transient process. 

The numerical approach assumed that there exists pulsed increment of a thermo- 
dynamic parameter (pressure or density, or temperature) or an increment of the 
magnetic field in a local region, which may be associated with some energy release, e.g., 
from a solar flare. As a result of the non-equilibrium of the initial condition, the coronal 
plasma is driven outward and a shock-wave front forms easily. The bright feature of the 
transient may be explained by the density increment behind the shock front (Nakagawa 
et al., 1975, 1978; Steinolfson and Nakagawa, 1977; Wu et al., 1978; Dryer et al., 1979). 
The advantage of the numerical computations is that they can show the evolution of the 
two-dimensional configuration. However, the computational results depend on many 
conditions which must be assumed in computation. 

Those who employ local analysis confined their interest to the local region near the 
top of the configuration, Therefore, the problem reduces to one dimension and time 
dependent. Anzer (1978) discussed a loop-like magnetic flux tube with two feet fixed 
at its base, driven by the Lorentz force. Mouschovias and Poland (1978) suggested a 
twisted magnetic field tube driven outward by the magnetic pressure gradient. Pneuman 
(1980) analyzed the transient processes associated with an eruptive prominence, and 
determined that the propagation velocity approached constancy at large distances and 
that the width of the loop or arcade increased linearly with the time and distance; both 
results fit observations qualitatively. Recently, Yeh and Dryer (1981) pointed out the 
influence of plasma pressure on the moving process of a transient loop, and suggested 
that the transient is driven by the magnetohydrodynamic buoyancy force. Because of 
its simplicity, local analysis may give a very clear physical picture of the propagating 
process of the transient. However, all the models consider that the magnetic force is the 
major driving force; thus a local approach must assume some configuration of an 
evolving magnetic field. 

Recently, Low et al. (1982) considered a two-dimensional model of a magnetic field 
emerging into the corona, and compared their results with the observations of the 
depletion feature in the initial process of the transient. However, the propagating process 
is not very clear, as the velocity field is difficult to discuss. An unsteady two-dimensional 
similarity solution was applied to the transient process (Low, 1982), as a first step 
toward analyzing the evolution of the complete two-dimensional processes between the 
magnetic field and the moving plasma. Because the solution is a special one, however, 
the relationship between this special mathematical solution and the observed physical 
process of coronal transient is not very clear. 

The purpose of the present paper is to discuss the influence of an eruptive prominence 
on the transient process. If we consider a magnetic flux tube propagating in a medium 
of compressible plasma, there are gasdynamical processes on both sides of the flux tube, 
similar to those of a moving piston. Here, we must include the gravity of the Sun. 
Stanyukovich (1960) discussed some special solution for the unsteady motion of a gas 
in a gravitational field, for example, by assuming constant gravity or a polytropic index 
7 = 3. The characteristic relationships ofone-dimensional unsteady flow with gravitation 
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were discussed by Thompson (1972) and Nakagawa and Steinolfson (1976). We will 
apply characteristic theory to analyze the transient process. 

2. Physical Picture 

Statistical analysis shows that over 70% of coronal transients are associated with an 
eruptive prominence (Munro et al., 1979). Eruptive prominences occur mainly in the 
lower levels of the solar atmosphere, and transients propagate into the outer corona. 
Pneuman (1980) discussed the relationship between these active phenomena in detail, 
and suggested that the mechanism which precipitates the prominence eruption also 
produces the transient. In this paper, we consider the influence of the eruptive 
prominence on the transient process. It seems that the prominence eruption may be a 
driving mechanism, compressing the plasma ahead of it and producing a depletion 
region behind it. The compressed plasma corresponds to the region of observed high 
density and appears as a bright loop or cloud in white light. On the other hand, the 
depletion region in the lower corona manifests itself as the dark feature of the transient. 

From the point of view of energy, the energy of a large eruptive prominence may be 
sufficient to supply a transient. For example, if we adopt an eruptive velocity of 
vep = 400 km s- 1, the density of the prominence is Pep = 5 • 101~ cm -3 and the typical 
volume of the prominence is Vp = (101~ cm) • (5 • 109 cm) • (2 x 108 cm) (see, for 
example, Allen, 1973; Tandberg-Hanssen, 1974). Thus, the kinetic energy of this 
eruptive prominence is roughly 

PepVffp Vp ,~, 1030 ergs. (2.1) 

The kinetic energy estimated in (2.1) is only a typical value; it may have a deviation of 
one to two orders of magnitude. However, the typical energy of a transient associated 
with an eruptive prominence is (see MacQueen, 1980) 

E t ~ 0.9 • 1030 ergs. (2.2) 

Therefore, the energy of both the eruptive prominence and the transient associated with 
it may have the same order of magnitude. If the kinetic energy of the eruptive prominence 
is smaller than that of the transient, the plasma pressure of Lorentz force will drive the 
transient. In this ease, the dynamical effect, locally, of the motion driven by this force 
is similar to that of the eruptive prominence, if the magnetic field is frozen with the 
plasma in the local region. Consequently, we will analyze the dynamical effect for a 
moving 'piston' of plasma, which may be an eruptive prominence, a magnetic flux region 
or tube, or both. The dynamical process of this plasma piston in the corona is similar 
to the gasdynamic process of a piston moving in a shock tube (see Dryer, 1981 ; Maxwell 
and Dryer, 1981). 

The velocity profiles of an eruptive prominence and its associated transient are given 
typically from observations as in Figure 1 where the solid line is the trajectory of the 
eruptive prominence and the broken line is the trajectory of the associated transient. The 
morphology of the evolutionary process for the transient is described schematically in 
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Fig. 1. 
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The evolutionary morphology of a transient associated with an eruptive prominence. 

Figure 2 (Low et aL, 1982). Combining the results from both figures, we may surmise 
that as the prominence moves along its trajectory (solid line in Figure 1) a rarefaction 
flow propagates backward in the region to the left of the trajectory. This region 
corresponds to a depletion of density and manifests itself as the dark feature of the 
transient in Figure 2. In the classical problem of a plane piston, there is a compressed 
region ahead of the piston with uniform flow parameters, forming a shock front where 
it contacts the quiet region. But, because of the influence of gravity, the parameters in 
the compressed region will change with time and distance. Therefore, a high-density 
region will propagate outwards ahead of the depletion region, and will be manifested 
as the bright feature of the transient as shown in Figure 2. The dynamical processes 
produce these regions of density increase and density depletion at the same time, and 
may be applied to explain the major features of the transient processes. 
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3. M a t h e m a t i c a l  D e s c r i p t i o n  

In principle, the transient process has a configuration of at least two dimensions. So, 
it should be described as an unsteady two-dimensional flow, as in the approaches that 
use either numerical experimentation (Wu etal., 1978; Dryer etal., 1979) or some 
special solution (Low, 1982). However, the local analysis method could clearly shed 
light on the mechanism of the dynamical process and the essential physical picture. We 
will first discuss the flow features in the regions near the top and the base of the 
configuration, respectively, then show the two-dimensional evolution of the transient. 

~t Transient 

Solar Surface 

= Z o 

t 
SUN ~ X 

Fig. 3. The coordinate system dopted in the text. 

We use the Cartesian coordinate x, y, z, whose origin is at the center of Sun and whose 
z axis intersects the top of transient, as shown in Figure 3. Some symmetry is assumed 
here. The gasdynamical equations near the z axis may be written as 

ap ~pw 
- -  + = 0 ,  (3 .1 )  
0t 0z 

p + w - p (3.2) 
~Z Z 2 ' 

8 p + w 0 (3.3) 
t~t ~zz ' 

wherep and p are plasma pressure and density, respectively, w is the velocity component 
in the z direction, M is the mass of Sun, and G is the gravitational constant. 
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The equations at level z = z o (near base), where the z component of the velocity is 
zero, may be written as 

~o ~pu 
-'- + = O, (3.4) 
Ot Ox 

p + u = - - -  , (3.5) 

+ u ~xx = 0,  (3.6) 

where u is the velocity component in the direction of the x axis. In above equations, the 
solar gravity is not important when we consider motion parallel to the solar surface. The 
difference between Equations (3.1)-(3.2) and (3.4)-(3.6) is that the influence of solar 
gravity is present near the top region and absent near the base region. It is clear, then, 
that the flow field near the base may be discussed approximately in terms of pure 
gasdynamics without gravity, which has been studied extensively (see, for example, 
Landau and Lifshitz, 1959). We use this idea to discuss the solution near the base level, 
and then the region near the top. 

4. Dynamical Features Near the Base 

Observations show that the transient expands to both sides at the base of the lower 
corona. Figure 4 gives one set of observed results along, the baselength, denoted as 
square marks (Low et aL, 1982). The trajectory at the top of the transient is denoted 
as circles in the same figure. It may be imagined that the expansive velocity of the bright 
front at z = Zo is nearly constant, as shown by the broken line in Figure 4. 

1.0 

hi 

Z 

0:5 if) 

Fig. 4. 

I I I [ [ I I I ~ 

p , "  

O I I I I I I I I 
18'20 30  40  50  19~O0 IO 20 50  4 0  50  

TIME 

Tra jec tor ies  of  a t r ans ien t  at  the top  and the base  length on 5 August ,  1980. 



THE DYNAMICAL PROCESS OF A CORONAL TRANSIENT, I 379 

t4 

t3 
t2 

Fig. 5. 

S_ P- 

-x 0 

P+ S+ 

+ E~ I+ 

• 
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The flow characteristics are given in Figure 5. Here, the lines xoP+ and - x o P _  are 

the trajectories of pistons corresponding to the two legs of the transient at z = zo, and 
xoS+ and - x o S _  are the fronts of shock waves. There are two flow regions II+ and 
II_, respectively, in front of the pistons on each side. The flow parameters in region I+ 
or I_ are given by the conditions in the quiet corona (ignoring, for simplicity, the 
background solar wind): that is 

v I = 0,  Pl = Pquiet . . . . . . .  DI = Pquiet corona, 

where the values of the quiet corona are taken at level z = z o. According to the 
gasdynamic theory of the piston, the flow field can be determined completely if the 
parameters at the position of the moving piston and in the quiet region are both given. 
For example, if the piston velocity vp is constant, the velocity of the shock front may 
be given as 

v s -  vp+ a2+ �9 (4.1) 
4 

and the solutions in region II are: 

VII = Vp, (4.2) 

2/h 
Pn = P, + - [(G - vp) z - a2] ,  (4.3) 

7 + 1  

1 
p .  = p, , (4.4) ( ? 7 -  1 2 ai 

7+ 1 ?+ l \ G - v p /  

where the subscription II corresponds to both regions II+ and I I .  Obviously, the 
density in region II is larger than the density in region I. 

Behind the moving piston, there are three regions III+,  IV+, and V+ or I I I ,  I V ,  
and V_ ; the boundary between regions III and IV is a characteristic line. The parameters 
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in region IV are given by the condition of quiet prominence behind the eruptive 
prominence, which may be different from the condition in region I. The flow in region III 
may be considered as Riemann flow, and the solution in region III may be obtained as 

]VIII] = 2 t - -  atv ' (4 .5)  
7 + 1  

I)2/(~- l) 
Pill = PlV 1 7-- 1 [~)II__~I. , (4.6) 

2 alv / 

P i l l  = P l v (  1 ~--  1 IVlI I [ )  2~'/(y- 1) (4 .7)  

a , v  J " 

Relation (4.6) shows that the density distributions in regions III+ and III_ obey the 
principles of rarefaction flow and correspond to the depletion process. If the velocity 
of the piston is large enough, there may be a region with uniform parameters between 
regions III and II behind the moving piston (as discussed in the gasdynamics). 

The rarefaction flows produced by piston P+ and P ,  respectively, will come into 
collision after time t3, as shown in Figure 5. 

According to the above discussions, the evolution of the density distribution produced 
by a pair of moving pistons in the lower corona may be shown in Figure 6. Ahead of 
the pistons is the compressed region II, which corresponds to the bright feature of 
transient propagating into both sides near the base. The width of the bright region II 

Fig. 6. 
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increases linearly with time if the piston velocity is constant; the faster the piston 
velocity, the narrower the compressed region. Behind the piston is a rarefaction flow 
propagating toward the plane x = 0, with the sonic velocity alv. The depletion density 
region between the piston and the quiet corona region IV will grow gradually. All these 
features agree qualitatively with the observations. 

5. Dynamical Features Near the Top 

Now we discuss the flow features in the local region near the top. The gravity of the 
Sun has an important influence on the flow near the top because its order of magnitbde 
is larger. According to the theory- of dimensional analysis, there are two typical velocities, 
that is, 

_z and x ~ M  
t z 

Therefore, the Riemann flow and Riemann invariants do not exist in general, but there 
are some special similarity solutions (see, for example, the gasdynamical solution by 
Sedov, 1959; Stanyukovich, 1960; and the MHD solution by Low, 1982). On the basis 
of discussions in the last section, it seems that these special similarity solutions can be 
applied to certain flow regions of the transient process, but it is difficult to describe the 
complete process. Local analysis although simplified, is better for understanding the 
physical mechanism. 

The relationship between the eruptive prominence and the transient associated with 
it shows schematically in Figure 7. The eruptive prominence initially has a small velocity 
and then accelerates while the velocity of the transient is compressed by the accelerated 
piston, a strong shock wave will form ahead of the piston. This process may be analyzed 

Fig. 7. 

EruNive 

Z 
Relationship between an eruptive prominence and a transient associated with it. 
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by the characteristic theory of  hyperbolic equations. The hyperbolic Equations 

(3.1)-(3.3)  have three characteristic lines. These lines and the relationships among them 
may  be expressed as (see Appendix I) 

dz 
- - =  w +  a ,  (5.1) 
dt 

2 G M  
dw + - -  da  - dz"  (5.2) 

7 -  1 z 2 ' 

d z  
- w - a ,  ( 5 . 3 )  

dt 

2 G M  
d w - -  d a -  dz"  (5.4) 

7 -  1 z 2 ' 

d z  
- -  = o ,  ( 5 . 5 )  
dt 

d(p /pr )  = 0 ;  (5.6) 

where isotropy is assumed in (5.2) and (5.4). 

Consider  a special characteristic line where the velocity is zero along it. In this case, 
(5.1)-(5.4)  may  then be written as 

d z  
- •  ( 5 . 7 )  

dt 

2 G M  
- -  d a  = - T - -  d t .  ( 5 . 8 )  
7 -  1 z z 

From the above relations we have 

2 G M  
- -  a d a  = - - -  d z ,  ( 5 . 9 )  
7 -  1 z 2 

o r  

a 2 G M  
- -  - const.  (5.10) 

7 - 1  z 

On the other hand,  the m o m e n t u m  equation (3.2) gives the condition of  static equilibrium 
a s  

Op G M  
- p - -  ( 5 . 1 1 )  

~Z Z 2 
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This may be rewritten as 

2a ~a a 2 31ns GM 
- ( 5 . 1 2 )  

~ , - 1 0 z  7 - 1  ~z z 2 

Equation (5.9) is the same as (5.12) in the case of an isotropic fluid. Therefore, the 
characteristic line (5.1) and (5.2) may be the boundaries between the flow region and 
the quiet corona. 

Now we discuss the flow feature. If we introduce the non-dimensional parameters 

w a z t 
w * - - -  , a* , z * = - - ,  t * -  . 

where Zo is the solar radius, then the characteristic fines and relationships are 

dz* 
- w* + a*  ( 5 . 1 4 )  

dt* 

2 dr* 
dw* + da* - (5.15) 

- 1 z .2 

The gravity term in the right-hand side of Equation (5.15) is positive for dr* < 0, and 
negative for dt* > 0. If the velocity does not change greatly, the local sonic velocity, and 
hence the temperature, will decrease along line (5.1) and increase along line (5.3) as 
dt* > 0. The former may apply to the compressible flow and the latter to the rarefaction 
flow. In general, the velocity will also change along the characteristic fines. Similar to 
the cases of usual gasdynamics, there exist three typical flows by the break-up of an 
initial discontinuity: two shock waves propagating in opposite directions; one shock 

Fig. 8. 
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wave and one rarefaction wave propagating on each side, respectively; and two 
rarefaction wave propagating on both sides, with or without a vacuum region between 
the two wave fronts (see, for example, Landau and Lifshitz, 1959). However, the profiles 
of the parameters in the case including gravity are different from those in the case 
without gravity. 

For a typical piston problem in gravity, the characteristic line and flow field may be 
determined by the characteristic method (see Appendix II), if the conditions at the 
piston are given. For example, Figures 8, 9, and 10 give the characteristic line of (5.1), 
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Fig. 9. Profile of the sonic velocity in the compressed region. 
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the distribution of the sonic velocity, and the plasma velocity, respectively, where the 
sonic and plasma velocities at the moving piston are taken as constant: i.e., 

w* = 0.1, a* = 0.375. (5.13) 

This case corresponds to the starting process of an eruptive prominence and the 
compressed flow produced by it. Similarly, the parameters of rarefaction flow are given 
in Figures 11, 12, and 13, respectively, for the same conditions at the piston as given 
by (5.13). 

These figures show clearly the influence of solar gravity on the characteristic lines and 
relations. For the compressed flow, the characteristic line (5.1) is nearly linear but a bit 
curved, as shown in Figure 8, and both the sonic velocity and the plasma velocity 
decrease in the propagating process, as shown in Figures 9 and 10, respectively. In the 
case without gravity, the parameters remain constant. As the plasma velocity decreases 
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Fig. 13. Profiles of the plasma velocity in the rarefaction region. 

to zero, the interface of the quiet corona and the compressed flow may sometimes be 
a weak discontinuous surface instead of a shock wave. In general, if the interface is a 
shock front, the strength of the shock wave will be weaker compared to the one without 
gravity, because of the decreasing velocity. In the case of the rarefaction flow, the sonic 
velocity increases, as shown in Figure 12, and the plasma velocity decreases as the fluid 
flows downward. The basic features of the rarefaction flow here are similar to those in 
the case without gravity; however, the quantitative relations are changed. 

From the above discussions, it can be seen that the basic flow features with the 
influence of gravity included are similar to those for the case without gravity as given 
in Figures 5 and 6 in the last section. Observations show that the velocity of a 
prominence, and thus the piston of moving plasma, is not constant, as given in Figure 1. 
It is nearly constant at the initial period and then increases. According to gasdynamic 
theory, the characteristic lines will converge and then cross each other to form a shock 
front, which is manifested as the bright features of the forward part of the transient. For 
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quantitative discussion, we assume a piston velocity 

v* = 0.1 + 0. l t*,  (5.14) 

a* = 0.375. (5.15) 

The distribution of characteristic lines is given in Figure 14, which agrees quantitatively 
with the results on in Figure 7. Therefore, based on gasdynamics, the bright feature of 
transient corresponds to the compressed flow and the shock front ahead of the moving 
piston, and the darker feature of transient corresponds to the rarefaction flow behind 
the moving piston. This physical picture agrees with the results given by observations. 

6. The Structure of the Moving Plasma Piston 

In the above discussion, the piston of moving plasma was treated as a solid plane, and 
the plasma density on both sides of the piston was determined. In fact, the piston 
discussed here consists of layers of moving plasma. The prominence plasma has a 
typical thickness of 10 4 km, which will increase when the eruptive prominence moves 
and expands outward in the corona. Furthermore, the eruptive prominence often 
emerges into the solar active region, where the magnetic field is usually stronger and 
closed. When this occurs, the magnetic field is pulled, and a magnetic flux layer forms 
ahead of the eruptive prominence. Therefore, the piston of moving plasma may be 
considered typically to have a structure which consists of at least two layers, the 
magnetic flux layer (arcade or loop) and the eruptive prominence itself. 

There are three boundaries, that it, the interface between the compressed flow and 
the region of the compressed magnetic field, the interface between the region of the 
magnetic field and the eruptive prominence, and the interface between the eruptive 
prominence and the rarefaction flow. According to the frozen condition, there is no mass 
exchange between the eruptive prominence and the region of the compressed magnetic 
field or the rarefaction region. Therefore, the boundaries are a tangential discontinuous 
surface, and we have the relations 

P l I  + - -  B21 Be2m 
87"C =Peru -t- 8re , at the first interface (6.1) 

Pem "k ~ = Pep + --8n ' a t  the second interface (6.2) 

Pep + ~ =PlII q- ~ - -  , at the third interface (6.3) 

where the subscription e m  a n d  ep  correspond to the region of the compressed magnetic 
field and the eruptive prominence, respectively. As the strength of the magnetic field and 
the temperature are different in different regions, the density will discontinuous across 
these interfaces. The magnetic field in the quiet corona is much weaker than the one in 
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the region of the compressed magnetic field, so we obtain generally 

P~ "~ Pem + B~,, , /8n, at the first interface. (6.4) 

This relation shows that the density in the region of compressed magnetic ftuxjust ahead 
of the eruptive prominence is lower than the density in the quiet corona if the temperature 
has not changed greatly. Thus, in front of the eruptive prominence, there is a darker 
region corresponding to the region of compressed magnetic flux. The stronger the 
magnetic field, the darker will be the region. As discussed in the last section, ahead of 
this darker region is a bright region which corresponds to the compressed region 
produced by the moving piston. 

The density is high and the temperature is low in the prominence. According to (6.2), 
the pressure in the prominence will be larger than the pressurepe m if the magnetic field 
is stronger in the region of emerging magnetic flux. The third interface which divides the 
eruptive prominence and the rarefaction flow is also a tangential discontinuous surface, 
and the density will jump from a high value in the prominence to a small one in the 
rarefaction flow across the interface. However, the strength of the discontinuity may 
decrease because of the effect of expansion in the prominence; that is, the prominence 
density will be small toward the rarefaction flow. Therefore, the structure of the moving 
plasma may be treated as having at least two layers. Considering this structure and the 
results in the last section, the density distribution for a transient process along the 
z direction is given in Figure 15. This profile agrees qualitatively with observations. 

Some theoretical models of coronal transients are based on the concept of an 
emerging magnetic flux driven by the Lorentz force. The kinetic features, especially the 
acceleration process, of a transient may be described by this approach. However, the 

w I w ~  
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Fig. 15. The structure of the moving plasma piston, consisting of the eruptive prominence and the magnetic 
flux region. 
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region of emerging magnetic flux corresponds to the region of lower density as shown 
in the relation (6.1), and the basic feature of the transient is the propagation of the 
high-density loop, which is difficult to explain if the gas-dynamical effect in front of the 
emerging flux is excluded. 

The present paper suggests that a coronal transient is driven by a piston of moving 
plasma, which consists of an eruptive prominence and a magnetic flux region or tube. 
The gasdynamical effect is the same whether the driving force is the eruptive prominence 
or the Lorentz force acting on the magnetic flux tube. Furthermore, the Lorentz force 
in the moving flux tube may be induced by the eruptive prominence. However, it seems 
preferable to consider that the eruptive prominence may be the driving source of the 
transient associated with it. 

7. Discussion 

Observations from space and on the ground are yielding more and more information 
about coronal transients, especially about their initial process and fine structure. It has 
become evident that the coronal transient is a complex dynamical process, including 
both compression and depletion. The purpose of this paper has been to discuss the 
physical picture and the major mechanism, and to suggest that a piston of moving 
plasma, consisting of an eruptive prominence and a magnetic flux region, may be the 
driving force for the transient process. Furthermore, we analyzed the dynamical effects 
of the moving piston, which produces a compressed region ahead of it and a rarefaction 
region behind it. On this basis, the bright features and dark features of the transient 
process may be explained at the same time. Moreover, the dynamical process also sheds 
light on the fine structure of the transient, which may be compared with observations. 

Figure 14 describes clearly the bright feature. The bright transient is located between 
the piston and the shock front at any particular time; it is nearly constant in case (5.14), 
and will increase linearly in case (5.13). The width of compressed region depends on 
the velocity distribution of the piston; however, this width is much smaller than that of 
the rarefaction region. Therefore, observations will give a configuration with a narrow 
bright front and a broad dark region behind it. As the strength of the shock wave is weak 
at the initial period and increases gradually, the bright front is not very clear at the 
beginning, but as the brightness increases, it becomes clearer. Figure 14 shows also that 
the velocity of the shock front is also nearly constant, or slightly accelerating. These 
features agree well with observations. 

It will be pointed out that the velocity of the bright transient given in present paper 
corresponds to the velocity of the shock front, which is different from the velocity of 
the piston (the magnetic loop or eruptive prominence) itself. Therefore, the acceleration 
process of the bright transient is associated with formation and propagation of the shock 
front, instead of the moving piston itself. 

Statistical correlations show that there are at least two kinds of transients, one 
associated with an eruptive prominence and the other associated with a solar flare. We 
have discussed only the former case. Whether a similar mechanism may be applied to 
the latter should be studied further. 



390 WEN-RUI HU 

A p p e n d i x  I .  C h a r a c t e r i s t i c  R e l a t i o n s h i p s  

The gasdynamical Equations (3.1)-(3.3) may be rewritten as 

? -  1 aw aa aa 
- - a - - + - - + w - - = O ,  

2 az at az 
(A.I-1) 

aw aw 2a aa a 2 1 as GM 
- - + w - - +  - -  

at az ? - 1  az ? - 1  s az z 2 
(A.I-2) 

as as 
- + w  - - = 0 .  
at & 

(A.I-3) 

where we define 

s = (p /pO  ~ (A.I-4) 

and the sonic velocity 

= ( , p ] 1 / 2  (A.I-5) 

a \ P /  

Discussing the initial value problem, we give the distributions of the parameters at the 
curve 

z = Z(t)  (A.I-6) 

a s  

w(z, t) = w[z ( t ) ,  t] ,  a(z, t) = a[Z(t) ,  t ] ,  s(z, t) = s[Z(t) ,  t] , (A.I-7) 

so then, we have the relation 

a d a 
- Z ' ( t )  - -  . ( a . I - 8 )  

at dt az 

along curve (A.I-6), and d / d t  is the differential along the curve. Using the relation 
(A.I-8), the basic equations (A.I-1)-(A.I-3) reduce to 

? -  1 aw aa da 
- -  a - -  + ( w -  z ' )  . . . .  , ( A . I - 9 )  

2 az az dt 

aw 2a aa a2 1 1 ds dw GM 
- - -  + z '  z 2 , ( A . I - 1 0 )  (w z') az 7 - 1  az ~ - 1  s - w  dt dt 

0s ds 
(w - z') (A.I-11) 

az dt 
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The characteristic line is the line that the flow field near the line cannot be determined 

if the initial conditions are given at the line. Therefore, relatinships (A.I-9) and (A.I-10) 

gave first and second characteristic fines and (A.I-11) gives third one. Substituting the 
characteristic conditions into Equations (A.I-9)-(A.I-11), we obtain the characteristic 
relationships. These results may be written as follows: 

z' = w + a ,  (A.I-12) 

2 a GM 
dw + - -  da = - -  d l n s -  - -  dz,  (A.I-13) 

7 - 1  7 - 1  z a 

Z' = w -  a ,  (A.I-14) 

and 

2 a GM 
dw - da d ins - - -  dz (A.I-15) 

7 - 1  7 - 1  z 2 

Z t ~-- W ,  

ds = 0 ,  

The third relations (A.I-16) and (A.I-17) are those of the stream line. 
The relationships (A.I-13) and (A.I-15) may be rewritten as 

(A.I-16) 

(A.I-17) 

and 

2 ~ G M d z  a ( w + a )  ds ( w + a )  d w + - -  da + - -  - - -  (A.I-18) 
7 - 1  / Z 2 7 - 1  

"~ G M d z  a(w - a) ( w - a )  dw 2 da + - - =  - -  ds (A.I-19) 
7 - 1  J z 2 7 - 1  

respectively. The terms in the right-hand side of both equations are zero if the entropy 
remains constant everywhere. 

Appendix II. The Characteristic Relations of Finite Difference 

I f  the velocity of a piston is given, the trajectory of the piston is a given curve in plane 
(z, t), which may be written as 

z* = z*(t*). (a . I I -a)  

I f  the sonic velocity is also given at curve (A.II-1), the characteristic lines and the flow 
field near the trajectory (A.II-1) may be calculated. For two near points Ao(z* , t*) and 

Al(Z*, t*  ) at curve (A.II-1), the characteristic line (5.1) passing A o crosses the 
characteristic line (5.2) passing A I at point A2(z*, t*) as shown in Figure 16. The 
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Fig. 16. 

t* ~ z*--z;(t*) 

A3(Z~'t~~I(z2 lz) 

Z* 

Schematic diagram of the finite differences between characteristic lines and relationships. 

position o f A  2 may be determined by (5.1) and (5.3) as 

(w* + a*)t*  - (w* - a*) t*  + (z* - z*)  
t* = , (A.II-2) 

(w* + a*)  - (w* - a*)  

zr 
z*(w~ + a*)  - z* (w* - a*)  + (w~ + a*) (t* - t*) (w* - a*)  

(w* + a*)  - (w* - a*)  (A.II-3) 

For  the characteristic relationships (5.2) and (5.4), the parameters of  the flow field at 

A 2 are 

w* = - ~ \ z #  + z*~ J + + 7 -  1 /  + 7 -  1,/ , (A.II-4) 

7-1(At*o+At*a'] 7-1(_~ a* ] 7-1(~* 
a * = 4 - \ Z * o 2  z * ~ J + ~  - + 7 -  l J - ~ -  7 - 1 , /  

(A.II-5) 

where 

A t *  = t* - t * ,  At*l = t* - t* ,  

1 , 1 , Z~*o = ~(z2 + z * ) ,  z~*, = ~(z2 + z * ) .  

Step by step, the above relations give the flow field to the right o f  the trajectory of  the 
piston, which region corresponds to the compressed flow. 
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Similarly, the flow field to the left of the piston trajectory may also be given. For the 
crossed point A3(z*, ~ )  as shown in Figure 16, we have 

z *  - z *  + ( w *  + a *  ) t *  - ( w *  - a o ) t  d 
t *  = ( A . I I - 6 )  

(w~ + al*) - (w~' - a*) 

Zo*(W* + a*) - z*(wo* - a*) + (w* + al*) (w* - ao*) (t* - t*) 
z* : (A.II-7) 

(w* + a*) - (w~' - a*) 

and 

a~ 7 - 1 ( A t * ~  Ate1"] ( a f  7 - 1  ) ( ~  7 - 1  ) 
- -  + + + w t  , 

4 \ z  . 2  z * 2 J  4 4 

(A.II-8) 

: - \ z #  + + ' 7-  17 7 -  l /  
(A.II-9) 

where 

At~o  - t *  - t * ,  A t *  = t *  - t * ,  

1 ~ 1 :g 
Z~0 = ~(Z 3 "}- Z~) ,  Z~gl : ~(Z 3 "]" L~I ) . 
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