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Abstract. The non-axisymmetric and nonlinear solutions of the magnetostatic equations are given in 
three-dimensional space of spherical coordinates (r, 0, ~p). These solutions are applied to the large-scale solar 
magnetic field. Their basic features are similar to a dipole field near the polar regions and the polarity 
reverses near the equator. These features agree with observations for the large-scale solar magnetic field. 
The solutions can also be applied to investigating the connection between the structure of the magnetic field 
and the density distribution of the corona. It is shown that the tops of the closed magnetic field associate 
with density enhancements. 

Similar results may apply to the large-scale configuration of the stellar field. 

I. Introduction 

It is believed that the solar corona and the large-scale solar magnetic field are three- 
dimensional, that is, their configurations deviate obviously from the axisymmetric ones. 
The non-axisymmetric interplanetary magnetic field associates with the non-axisym- 
metric large-scale solar magnetic field. Observation at low resolution gives the large- 
scale mean magnetic field of the Sun seen as a star. A magnetic neutral line runs 
generally north- south in low and middle latitudes and often east-west at high altitudes. 
Several large-scale regions of alternating polarity near the equator are separated by the 
neutral line (Wilcox and Howard, 1968; Svalgaard et al., 1974, 1975; Svalgaard and 
Wilcox, 1978; Levine, 1979). 

Many theoretical models have suggested that, based on the approximation of potential 
field, the line-of-sight component of the photospheric magnetic field is used to determine 
the large-scale coronal field by the harmonic expansion of the Laplace equation 
(Altschuler and Newkirk, 1969; Newkirk and Altschuler, 1970; Altschuler et al., 1977; 
Riesebieter and Neubauer, 1979). On the other hand, if a magnetic dipole rotates 
obliquely in a vacuum, the polarity-reversal regions of the magnetic field will be formed 
near the plane perpendicular to the rotating axis. This idea is applied to the three- 
dimensional structure of the heliospheric magnetic fields (Satio et aL, 1978; Kaburaki 
and Yoshii, 1979). In the solar or stellar atmosphere, the magnetic field is coupled with 
the plasma. Therefore, the magnetostatic equilibrium should be studied, and the 
connection between the structure of the magnetic field and the density distribution may 
be obtained. 

Recently, we have analyzed the non-axisymmetric magnetostatic equilibrium for a 
sunspot-like magnetic field (Hu et al., 1983a, b; Hu, 1983), and nonlinear models are 
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also suggested for a small-scale field in the cartesian coordinates (Low, 1983). In this 
paper, similar approaches are applied to the large-scale solar magnetic field in spherical 
coordinates. The basic nonlinear theory and the general solution in spherical coordinates 
are given in the next solution. A special solution is suggested in Section 3. In Section 4, 
an example is given. The configuration of this magnetic field has polarity reverses near 
the equator and is similar to a dipole field near the polar region. In the last section, we 
discuss the coupling relationship between the magnetic field and the plasma. 

2. Nonlinear Theory 

The magnetostatic equations are 
L 

1 
- -  ( 7 x B )  x B - V p - p g = 0 ,  
4~z 

(2.1) 

v .  B = o ,  (2.2) 

p = p A T ;  (2.3) 

where B, p, p, T denote the magnetic field, pressure, density, and temperature, 
respectively; ~ i s  the gaseous constant; and g is the gravitational acceleration in the e r 
direction in the spherical coordinates (r, 0, q~). 

According to Equation (2.2), the magnetic potential function ~ may be introduced as 

r sin 0 80 ' ~r 

where the azimuthal component of the magnetic field is not included. In this case, the 
4) component of Equation (2.1) reduces to 

tO 
- -  ( S u p + B g + B ~ ) = O .  

Then we have 

8zrp(r, O, cp) + B~(r, O, (a) + B2(r, O, 4?) = 2a(r, 0), (2.5) 

where a is an arbitrary function of r and O. Substituting (2.5) into the 0 component of 
Equation (2.1) for canceling the pressure p, we obtain 

Br orB~ OB o tOa(r, O) 
+ B o  - (2.6) 

Or O0 O0 

According to definition (2.3), Equation (2.6) becomes 

3~h &p tO 1 tO~ tO 1 = - r  2 sinO - -  

tOo tOt si; o tOo sinO 

aa(~ O) 
(2.7) 
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The solution ~(r, 0, ~p) may be solved from Equation (2.7) when the distribution a (r, 0) 
is given. The pressure and density may then be obtained from relation (2.5) and the 
r-component of Equation (2.1), respectively, 

The configuration of the magnetic field depends critically on the distribution a (r. 0). 
For example, the dipole field is 

Bo = ~S # (2 cos 0, sin 0, 0) (2.8) 

which may satisfy Equation (2.1) with the condition 

7Po = - Po g. (2.9) 

In this case, Equation (2.4) is satisfied. However, formally, if we use (2.8), Equation (2.6) 
or (2.7) requires 

a(r, O) = ao(r ) - 3#2~ sin20, (2.10) 
. 2r 6 

where 

ao(r) = po(r) + 24# (2. i l )  
r 6 

This simple example implies that the function a (r" O)/4n is associated with the thermo- 
dynamic and magnetic pressure, and should be given reasofiably. 

Equation (2.7) may be considered as a first-order differential equation for function 
(1/sinO)(Ot~/Or), and its characteristic equation is 

dr dO d[( i /s in 0) O~/Or] 

~ / ~ 0  - - ~/a~r - - r z sin 0 Oa(r, 0) /00 " (2.12) 

The former two relations give 

r 0,tp) = c i ,  (2.13) 

where cl is an integration constant. The latter two relations give 

_1 d ( 1  O ~  2 = r 2  Oa(r,O) dO. (2.14) 
sin 0 Or / O0 2 2 

We put the function a (r, 0) as 

1 dal (0) 
a(r, 0) = ao(r) + (2.15) 

2r 2 dO 

In this case, Equation (2.14) reduces to 

(1 0 )2 
= a 1 (0) + c2. 

sin 0 Or 11 
(2.16) 
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According to both integral relationships (2.13) and (2.16), the solution of Equation (2.7) 
will satisfy the condition 

( t 3~  2 = sin2Oal(O) + sinZ0rl(~,  ~p), (2.17) 

where F~ is an arbitrary function of ~ and q~. For instance, if the function al (0) is 
adopted as 

a, (0) = 0 ,  (2.18) 

Equation (2.19) gives the general solution 

O(r, 0, d?) = V[rsinO + f(O, ~b), d?], (2.19) 

where F and f are arbitrary functions. Relationship (2.19) is the general solution of 
Equation (2.7) under conditions (2.16) and (2.18). Obviously, these conditions restrict 
the magnetic field in some special configurations. For example, the dipole magnetic field 
(2.8) is excluded in this special solution (2.19). However, some basic features of this 
special solution may apply to the large-scale solar magnetic field, and to the configuration 
of the stellar magnetic field. 

3. Large-Scale Solar Magnetic Field 

According to relationship (2.8), the potential function of the dipole field may be written 
a s  

~b ~ = #o sin2 0 (3.1) 

T 

We discuss the special solution of relation (2.19) as 

sin 2 0 
q, = q,o , ( 3 . 2 )  

r sin 3 0 + ro + e (0, cp) 

where q~0 and r o are constants. Therefore, the function f(O, (p) in general solution (2.19) 
is adopted as 

f(O, q~) = [r o + e(0, 4,)]/sin2 0, (3.3) 

the regularity distribution requires the condition for the positive constant ro 

r o > le(0, ~b)] . 

The function e(0, q~) is a periodic function of q~ with period 2re, and the condition of 
single value requires that 

e(0, q~) = 0 ,  e(rc, qS) = 0.  (3.4) 
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Then, the magnetic field could be determined if the function e(0, q~) is given. 
Substituting (3.2) into (2.3), we obtain the distribution of the magnetic field as 

Br - 0o [2ro + 2e(0, q~)- r sin30] c o s 0 -  sin0[c~e(0, ~b)/00] , (3.5) 

r 2 [r sin30 + r o + e(0, cp)] 2 

~/o sin 4 0 
B o - (3.6) 

r [ rs in30+ r o + e(0, q~)]2 

The distribution of the magnetic field near the polar axis is 

200  
B ~ , ~  + - -  , B o = O ,  ( 3 . 7 )  

- rZro  

and near the equator is 

n r  ~ r 

&(,r/2, 
c~O 

r2[r  + r o + e(Tz/2, ~b)]: 

Bo = ( 3 . 8 )  
r[r  + r o + e(rc/2, q~)]2 

Relationships (3.5), (3.6), and (3.7) show that the configuration of the magnetic field is 
similar to a dipole field near the polar region. Relationship (3.8) implies that the polarity 
of the field may reverse near the equator. This special solution combines both the 
properties of the dipole field near the polar region and the polarity reverses near the 
equator at the same time. 

From results (3.5) and (3.6), the equation of the magnetic force line may be written 
as  

dr 

[2r o + 2 e ( O ,  ~b) - r sin 3 O] cos 0 - - -  & s i n  0 
~0 

Equation (3.9) gives the solution 

r d O  
(3.9) 

sin 40 

Co ro + e(0, qO 
r - , (3 .10)  

sin 0 sin 30 

where C o is the integral constant. 
Substituting solutions (3.5) and (3.6) into (2.5), and using assumptions (2.15) and 

(2.18), we derive the plasma pressure as 

ao( ) A(r,O) (3 .11 )  
4~ 8rcr 2 [r sin30 + r 0 + e(O, ~b)] 4 ' 
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where 

A (r, 0) = sin 8 0 + [ sin 3 0 cos 0 + 
sin 0 Oe 2 2 

cos O (e + 2ro) . 
r 80 r 

Both terms in the right-hand side of (3.11) are decreasing when r is increasing. The 
pressure will be positive and a decreasing function of r, ifao(r)/4rc is decreasing no faster 
than the magnetic pressure BZ/81r and the initial value ao(ro)/4n is larger than the initial 
magnetic pressure B2(ro, O, q~)/Orc. 

The r-component of Equation (2.1) is 

bp Bo (OrBo OB~'] (3.12) 
P g -  Or ~nr \ ~r OO J 

By using relationship (2.5), we reduce the above equation to 

pg = _ __ __ 1 Oa 1 ( 8B r BoOBr B 2)  
+ - -  B r + - -  

4n Or 4r~ 8r r O0 

or  

1 8a 1 
pg - + LI(~O), (3.13) 

4n Or 4~zr 3 sin 2 0 

where the operator 

L,(O) - 1 e O s ~ 0  1 0 0 8 ~ 0  

r O0 OrO0 r Or O0 2 

cot0 80 8~ 2 (0O~ e - (0~k~2 + (3.14) 
r 2 \ O 0 , /  \ O r J  r Or 80 

Equation (3.12) or (3.13) shows the equilibrium condition between the gravity, the 
pressure gradient, and the Lorentz force. As the first term in the right-hand side of(3.13) 
is positive, it is not difficult to get a reasonable density distribution by adopting the 
function a(r" 0). By using cOnditions (2.15), (2.18) and solutions (3.5), (3,6), we obtain 
the density distribution 

p = r2 do~ ~k~ ~ - 2 sin 6 0 cos 2 0 + 
41rGM dr 47zGMr(r sin 3 0 + r o + e) g l 

+ 
sin 3 0 

r 
2(r~ + e)(1 + 4 c ~  & O2e 1 - -  c o s 0 s i n 0 + - -  sin a0 + 

80 802 

12 } + (2r o + 2e - r sin 3 0) cos 0 -  & sin 0 
8O 

(3.15) 
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where the solar gravity is expressed as 

M G  
g - ; (3. !6) 

F 2 

G is the gravitational constant,  and M is the mass of  the Sun. 

4. An Example 

Relationships (3.5) and (3.8) show that the polarity reverses near the equator require 
that the function e (0, q~) should be nonsymmetrical about the equator plane 0 = ~/2. 
Therefore, as an example, we choose an antisymmetric distribution, that is 

e(0, cp) = s(~p) sin(20) ; (4.1) 

and the periodic function s (~p) may be written, for example, in the form 

s(~p) = So sin(n~b), (4.2) 

where So is a constant  and n is an integer. Expression (4.2) means that the polarity of  
the magnetic field will reverse 2n times in the region near the equator. There are two 
sectors if n = 1, and four sectors if n = 2. 

18 | i ~ t i t 

L r / r  o = ~S in2O-O.2(2+Sin2O)  

16 - Sin~O 

14 

12 

10 

~=10 

6p / /  \7 
4! 

Fig, 1. 

0 1 1 I I I 
0 2 4 6 8 10 12 

r / r  o 

The profiles of  the magne t ic  force l ines near  the Sun or s ta r  in the p lane  n@ = 3~r/2 and  nor the rn  
hemisphere  0 _< 0 <  7r/2. 
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Using (4.1) and (4.2), we can rewrite Equation (3.10) of the magnetic force line as 

r _ ~ sin 2 0 -  so(b + sinm) sin20) , (4.3) 

r. sin 30 

where r. is a typical length, and ~ and b are nondimensional constants. Generally, 
Equation (4.3) describes a set of closed magnetic force lines because the term -sob is 
more important than the term 0~ sin 2 0 near the polar region. Figures 1 and 2 give the 

160 " I I 

- 0 . 2 ( 2 + S i n  2 O) 

140 S i n 3 0  - 

120 

Fig. 2. 

I00 

80 

60 

40 

20 

,,--40 

0 I 
0 20 40  60 80 

r/r o 

The profiles of  the magnetic force lines for a greater distance from the Sun or star in the plane 
nq~ = 3n /2  and northern hemisphere 0 < 0 < ~/2. 

magnetic force lines in the northern hemisphere 0 < 0 < re~2 near the solar surface and 
at a greater distance, respectively, for the case 

37~ 
s in (nqS)= - I  or r a p = - - .  (4.4) 

2 

Figure 3 gives both profiles satisfying condition (4.4) and the condition 

sin(nq)) = 1 or nq~ = re/2 (4.5) 

for a = 3. For comparison, the dipole field is also given in the same figure. Because the 
function e (0, (p) is not symmetric to the equator plane 0 = zc/3, neither is the magnetic 
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I I 

3Sin20-0.2 (2-Sin 2 0 ) ~ .  r / r ~  ~ ~ N 

/ \ 
i / 

/ \ 
/ i 

/~/ f  3Sin 0 -02 (2  Sin20); 
- . / ,  o = Sin~O 

/ i ./ j 
�9 / i 

0 I I 
0 I 2 3 

r / r o 

Fig. 3. The profiles of the magnetic force lines in the planes nq) = ~/2 and 3~z/2 for c~ = 3, and the lines 
of the dipole magnetic field. 

force line. For example, the profile for case (4.4) in the southern-hemisphere 
~z/2 _< 0 _< rc is just the mirror reflection of the profile for case (4.5) in the northern- 
hemisphere and vice versa. The profiles will be different for a different azimuthal angle 
qS, and will construct a complicated configuration in three-dimensional space (r, 0, q)). 

0 

0 

re~2 

7r 

0 

Fig. 4. 

i i I i i I i ~ I i i 

I I I I I I I I I t I 

~/2 'rr 3';'r/2 2"~" 

The zero line of the line-of-sight component of the magnetic field B z. 
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Substituting assumptions  (4.1) and (4.2) into (3.5) and (3.6), we have 

4'0 2ro cos 0 + 2s(4') sin 0 - 3r cos 0 sin 2 0 
B y  ~ - -  

r [r sin 3 0 + r o + s (cp) sin 20] 
(4.6) 

4'o sin 40 
B o = - -  (4.7) 

r [ r s in30  + r o + s(40 sin20] 2 

Near  the equator,  relationship (3.8) is 

24'os(q~) 
B r = 

r ~ ( r  + t o )  ~ ' 

Bo - 4'0 (4.8) 
r(r  + ro) 2 

These  relationships show clearly that  B r is positive near  the north-polar  0 ~ 0, is negative 

near  the south-polar  0 ~ re, and has polarity reverses near  the equator. The line-of-sight 

componen t  of  the magnetic field is 

B z = B, s in0 + B o c o s O .  (4.9) 

F rom (4.6) and (4.7), the condition of  zero B t is 

2ro c o s 0 -  r sin2 0cos  0(3 - sin0) + 2s(q~) s in0 = 0 .  (4.10) 

Figure 4 gives the zero line of  B~ for the case that  s((p) is expressed as (4.2) and s o = r o 
is much larger than r. The zero line may  run roughly n o r t h - s o u t h  in middle and low 
latitudes and e a s t - w e s t  at high latitudes if function s (q~) is adopted as a step function. 

This large-scale feature agrees with observat ions (see, for example, Svalgaard and 

Wilcox, 1978). 
Now,  we discuss the thermodynamica l  parameters .  The function ao(r) may  be chosen 

a s  

ao(r) - 47rP~ , (4.11) 
r m 

where Po is a positive constant  and the index m > 1. Then, relationship (3.11) gives the 
pressure distribution. 

The constant  P0 satisfies the condition 

p(r ,  O, ~b) = Po 4'~ A(r ,  O) (4.12) 
r m 8rcr 2 [ r s i n 3 0 + r o e ( O , ( o ) ]  4 

The constant  Po satisfies the condition 

~o z A 2 
- ( 4 . 1 3 )  

Po > 8rEr2_ m (to - So) 4 ' 
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where: 

;So 2r0 )5  
A 2 = l +  + - - + 1  

\ r .  r. 

and the constant m satisfies the inequality 

l < m < 2 .  

Similarly, the density distribution may be obtained from (3.15) as 

(4.14) 

m Po ~ b2 
p(r ,  O, ~) - 

G M  r m -  i 4~zMGr [r sin 3 0 + r o + s(c~) sin 2 0] 4 

x 1 - 2  sin 6 0 cos 0 + _ _ 2  sin 3 0 [ro( 1 + 4 cos 2 0) + 2s(tp)sin20] + 
l r 

2 [(2ro - r sin 3 0) cos 0 + 2s(~) sin 012~ 
+ r  ~ J 

(4.15) 

The Equation (2.3) of state gives the temperature distribution as 

T(r,  O, (o) p (r ,  O, (o) , (4.16) 
p(r,  O, 4)  

where p (r, 0, q~) and p (r, 0, ~p) are given in (4.12) and (4.15), respectively. Obviously, the 
temperature is also decreasing when r is increasing. 

5. Discussion 

The solutions of magnetostatic equations in three-dimensional space (r, 0, tp) are given 
to describe the large-scale features of the solar or stellar magnetic fields. The coupling 
of the magnetic field and the plasma is considered by solving the nonlinear magnetostatic 
equations, and the nonlinear solutions are more complicated than the linear field or the 
simplified dipole field. The basic features of these nonlinear solutions agree qualitatively 
with observations. 

The non-axisymmetric solutions can be applied to investigate what connection exists 
between the magnetic fields and the density structure of the corona. For example, the 
magnetic field near the equator is given as (4.8), where the boundaries of the sectors are 

sin(n~b) = 0 or ntp= 0, n .  (5.1) 

Therefore, the tops of the closed magnetic fields (loops or arcades) are located at n~b = 0 
and rc above the zero line of B r. On the other hand, the density distribution near the 
equator may be given by (4.15) as 

p r, 2 ,  - + .(5.2) 
G M r  m - I  4 ~ G M r ( r  + t o )  4 ~ ._] 
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Relationship (5.2) shows that conditions n o = 0 and rc correspond to the density 
enhancement for the fixed r near the equator. The plasma density is larger at the tops 
of the closed field than otherwise. This conclusion agrees with observations (see, for 
example, Newkirk and Altschuler, 1970). This conclusion can also be seen from 
relationship (2.5). As a (r, 0) is independent of azimuthal angle qS, the larger the magnetic 
pressure, the smaller the plasma pressure. For afixed 0, for example 0 = re/2, the plasma 
pressure at the tops of the closed field is high if the magnetic pressure is weak there. 

Near the polar region, relationship (4.15) gives the density 

m Po 20~ 
p(r, 0, q~) = ~ r m - 1  r c M G r 3 r  2 (5.3) 

Comparing (4.2) and (4.3), the plasma density near the equator is usually larger than 
the density near the polar regions. Furthermore, from (4.12), the pressure distribution 
far from the Sun may be written approximately as 

p(r, 0, q~) - Po 0o 2 1 + cot20 (5.4) 
r m 8 Tcr 6 sin 40 

The above expression is not accurate near the polar region 0 = 0 and re. The function 
(1 + cot 20)/sin 40is minimal at the equator plane 0 = re/2, and increases when ] 0 - ~/2] 
is increasing, that is, the pressure is highest at the equator. This feature is similar to the 
properties of the plasma sheet, and may describe the acceration disk near the equator. 

In relation (4.1), the function e (0, q~) is antisymmetric about the equator. Therefore, 
the configurations of the fields still have some properties of symmetry. Of course, the 
function e (0, ~p) may be without symmetry, and then the field is not symmetric. As an 
example, we can make 

e(0, qS) = s(~b)0k(rc- 0)', (5.5) 

where k and I are positive constants. Function (5.5) is symmetric only in the case k = 1 ; 
otherwise, the distributions in the northern hemisphere are different from the ones in 
the southern hemisphere, and so is the magnetic flux. The solar magnetographic data 
show that a 7 ~o difference exists in the total flux values between the two hemispheres 
(Howard, 1974). 

These non-axisymmetric configurations may also apply to the stellar magnetic fields, 
although the major interest of the present paper is solar physics. Near the polar regions, 
the nonlinear stellar magnetic field may have a larger gradient than the dipole field, and 
the force lines will be more concentrated and extensive there. This means that there is 
a stronger radio source if high-energy electrons are ejected into the polar core. 

It should be pointed out that a nonlinear solution is a special solution of the 
magnetostatic equations, and cannot easily satisfy a given boundary condition at the 
solar or stellar surface. Moreover, assumptions (2.15) and (2.18) limit the solutions to 
some special configuration. Dipole field (2.10) is excluded from the solution based on 
assumptions (2.15) and (2.18). Furthermore, the dynamical influences of solar wind and 
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stellar wind should be considered further. However,  the configurations given by the 

present paper describe some basic features produced by the coupling between the 

plasma and the magnetic field, and can compare with observations of  the large-scale 

solar magnetic field. The coupling relations are important  for understanding the 

connections between the configuration o f  the magnetic field and the structure of  plasma 
parameters. 
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