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AIISTRACT 

A FINITE element analysis has been employed to investigate the growth of an initially spherical void 
embedded in a cylinder of elastic-plastic material. The boundary displacement of this cylindrical cell is 
regulated by the value of a parameter a which controls the radial shrinkage of the cell as it elongates. A large 
strain analysis was used and results for both strain hardening and strain softening (after an appropriate 
amount of hardening has taken place) have been obtained. The effects of different mean tensile stresses, 
equivalent strains and initial void volume fractions have also been included. The numerical work shows 
relationships between the mechanical and geometrical variables that may favour ductile fracture by void 
coalescence or by shear decohesion. 

NOTATION 

Kirchhoff stress tensor 

true stress tensor 

velocity of displacement vector, i.e. v = ir, 

load rate vector 

metric tensor 

Jaumann derivative 

covariant derivative 

deviatoric stress (= ‘~~j-fy~jg~#) 

equivalent stress [ = ($gilrgjlsijSk1)1/2] 

equivalent strain (= JIDe dr)_ a$‘) = JI@‘) dt 

De= ($+y’, 0:"' = (~,j~P)d~(P))l/2 

dj = Dj - @jgk’Dk,, d;(P) = Dj’P’_$j;#D$) = D;(P) 

7 Work completed whilst visiting the Department of Mechanical Engineering, Sheffield University, U.K. 
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strain softening modulus 
generalized time 
volume 
boundary area (with known applied force) 
convected derivative 
Young’s modulus and Poisson’s ratio 
cylindrical polar coordinates 
yield stress 
radius of the cell 
half length of the cell 
void radius (average) 
normalized void radius ( = a/Ro) 
void volume 
void volume fraction 
normalized axial displacement at the end of the cell (= AL,/L,) 
normalized radial displacement of the lateral boundary (= -AR,,/R,,) 
overall density of the cell 

superscript (p) refers to plasticity 
subscript (0) refers to the initial state 
CT, E macroscopic stress, strain 
(T,E microscopic stress, strain 

1. INTR~DU~TION 

THE THEORETICAL study of the micromechanics of ductile fracture began with the work 

of MCCLINTOCK (1968) on the enlargement of a cylindrical void in plastically deforming 
material and that of RICE and TRACEY (1969) on the growth of a spheroidal void. By 
analysing a single void in a spherical cell and a long circular cylindrical void in a 
cylindrical matrix GURSON (1977) developed approximate yield criteria and flow rules 
for porous (dilatant) ductile materials, showing the role of mean tensile stress in plastic 
yield and void growth. ANDERSON (1977) used a finite-element method to examine the 
deformation of a circular cylindrical cell containing a spherical void. He estimated the 
point of fracture by supposing that it occurred when the growing void touched the cell 
wall, and he showed that the mean stress on the cell decreased as the void grew. RICE 
and TRACEY (1969), GURSON (1977) and ANDERSSON (1977) all assumed the matrix 
material to be non-hardening. MCCLINTOCK (1968) included the effects of strain- 
hardening which cause an increase in fracture strain. NEEULEMAN (1972) made use of a 
large plane-strain finite-element computation to analyse the growth of a cylindrical 
void in an elasticPplastic medium with different initial void volume fractions. His 
results showed the growth of the void and the plastic zone around it with increasing 
overall strain and also demonstrated that overall softening ofthe cell increased with the 
initial void fraction. 

Recently, HANCOCK and MACKENZIE (1976) and HANCOCK and COWLING (1980) 
working with low alloy, quenched and tempered steels, HANCOCK and BROWN (1983) 
working with plain carbon steels and the BEREMIN group (198 I a, b) working with A508 
nuclear pressure vessel steel have all shown the importance of mean tensile stress in 
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accelerating void growth rates and decreasing the overall fracture strain. The 

relationship between 5,/a, and E, is exponentially decreasing. IRICIBAR, LE ROY and 
EMBURY (1980) and FISHER and GURLAND (1981) tested different spheroidized plain 
carbon steels and showed that the voids grew exponentially with strain. 

The criteria that have been suggested for the initiation of ductile fracture fall into 
three main groups. In most of them there is a (perhaps implicit) recognition of the role of 
mean tensile stress in promoting rapid void growth and accelerating fracture, as the 
experimental work just mentioned requires. 

(1) Critical void size criteria 

BEREMIN (1981a) claims that the critical void size varies only slightly with mean 
tensile stress although, of course, the rate at which this critical size is approached will 
depend strongly on it. Both MCCLINTOCK (1968) and ANDERSON (1977) suggest that 
fracture occurs when one of the semiaxes of the void reaches half of the cell size. 

(2) Damagejiinction criteria 

NORRIS, REAUGH, MORAN and QUINONES (1978) assume that fracture occurs when 
the damage accumulated over a characteristic microstructure length becomes critical. 
The function of HANCOCK and MACKENZIE (1976) involves the ratio of mean and 
equivalent stress and the equivalent plastic strain as the main variables. 

(3) Material instability criteria 

When the overall softening ofthe cell due to void growth within it exceeds the strain- 
hardening of the matrix the overall stress may attain a maximum and thereafter 
decrease as the deformation of the cell proceeds. ROUSSELIER (198 1) took this limit point 
on the stress-strain curve as the point of material instability. Softening also causes the 
overall density of material to decrease rapidly. Making use of these features, together 
with a strain localization technique in his finite-element mesh, he simulated stable crack 
growth in a three-point bend specimen. He used a damage parameter in his analyses as 
an internal variable of the material with the parameter being a function of the density 
and the initial void volume fraction. 

The work reported in this paper introduces both material strain hardening and 
strain softening, after a suitable amount of plastic deformation, into a simple model of 
void growth. The model has the same geometrical form as that used by ANDERSSON 
(1977). But, instead of having the lateral cylindrical boundary fixed, different amounts 
of radial contraction are assigned; the resulting axial and radial loading simulates 
different stress states. The large strain finite-element formulation of MCMEEKING and 
RICE (1975) was used for the numerical work. 

The effects on void growth of different mean stresses, equivalent strains and initial 
void volume fractions have been investigated. By allowing the matrix to harden 
indefinitely the achievable levels of stress within the cell at the point ofits instability are 
unbelielrably large. This effect is alleviated by allowing the matrix material to soften 
after a certain critical stress crc (which depends both on mean tensile stress and 
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FIG. 1. A quadrant of the axisymmetric unit cell used to model the growth of a void in elastic-plastic material. 

equivalent strain) has been reached. The resulting instabilities are similar to those of 
ROUSSELIER (1981) who used a damage function but the more straightforward 
mechanical interpretation of our work may allow an easier connection between the 
macro- and micro-response? of the material and provide a better tool for the analysis of 
experiment. A further advantage of the use of softening lies in the fact that the pattern of 
softening in the cell as deformation proceeds depends strongly on the mechanical and 
geometrical parameters of control, and different patterns can be seen to favour one or 
other of the fracture mechanisms of void coalescence or shear decohesion. A study of 
these patterns then suggests which combination of the control parameters favours 
which fracture mechanism. 

2. THE MODEL OF VOID GROWTH AND THE COMPUTATIONAI. METHOD 

We have analysed the deformation of a circular cylindrical cell with a spherical void 
at the centre; a quadrant of its section is shown in Fig. 1. The reaction of the body 
containing this cell is represented by the value of a parameter x which controls the 
radial shrinkage of the cell as it elongates. Specifically 

(1) 

The solution of the problem is obtained through the use of the up-dated Lagrangian 
formulation of MCMEEKING and RICE (1975), this solution being the velocity field that 
minimizes 

V”ljV’li) PiI/; ds. (2) 

An appropriate generalization of the classical Prandtl-Reuss equations leads to the 

1_ We follow GURSON (1977) in using the prefix “macro” to denote the average response of the cell and 
“micro” to denote pointwise variables within it. 
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FIG. 2. The finite-element mesh 

following constitutive relations. 

where 

E 
ggikgjl + gilgjk) + 

I 

(3) 

for plastic loading (when oe = ce,,, and %,/9t > 0) and 

ggikgjl + gilgjk) + & gijgkl 

1 

during elastic deformation or unloading from a plastic state (when 0, < gemax or 
%,/GSt < 0). We have replaced Eip) by E, and F, (p) by E, in our analysis because the 
difference is negligible and it makes the computation easier. 

Equations (2), (3) and the imposed boundary conditions were solved by the finite- 
element method. The quadrant shown in Fig. 1 was subdivided into 456 constant strain 
triangular elements with 260 nodal points,7 as shown in Fig. 2. The development of the 
solution is most conveniently expressed by taking the elongation W, as the generalized 
time r. The boundary conditions used in the computations are 

I+ = (A W,)L,, 

P, = 0, atz=L 

and 

ii = (AU,)&,, 

P, = 0, at r = R. 

(4) 

t This can be compared with NEEDLEMAN'S (1972) plane strain analysis that used 198 nodes in a quadrant 
subdivided into constant strain elements. Comparison of the results of this mesh with those of a coarser one 
indicates that the mesh of 456 elements is fine enough to produce acceptably accurate results. 
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The contraction of the cell is controlled by the value of c( [defined by (l)] which ranges 
between zero and 0.5. r = 0 corresponds to the fixed lateral boundary used by 
ANDERSS~N (1977) whilst x = 0.5 is approximately equivalent to incompressible 
behaviour of the embedding material. 

In most cases the complete computation takes between 260 and 340 increments Af 
(i.e. ABC), the maximum loading being reached between 120 and 200 steps. The 
maximum increment used in the computations is chosen within the range 2 x 10 4p33 
x 10m4 according to the value chosen for c(. For small values of x one must choose a 

maximum increment that is towards the smaller end of this range. (This is because small 
a corresponds to larger dilatations and hydrostatic tensions which encourage rapid 
void growth and rapidly changing patterns of stress and deformation.) Because there is 
considerable change from elastic to elastic-plastic behaviour in many elements soon 
after first yield, the increments during the first 40 steps are varied from &th of the 
maximum increment to the maximum increment itself at the 40th step. 

The computation within each increment At of time proceeds as follows. 
(a) Specify the value of the increment A W= of the normal&d axial displacement of the 

cell. 
(b) Within each element the tangent modulus to be used in the current load step is 

determined by the stress and strain conditions of that element at the end of the previous 
step. In particular, the inverse E/E, of the normalized tangent modulus is read from a 
predetermined Table 1 t as a function of EC. Linear interpolation is used for determining 
E/E, from this table. 

(c) The functional I of (2) can now be evaluated by numerical integration. Ensuring 
that its variation, subject to the boundary conditions (4) is zero produces a matrix 
equation for the unknown nodal displacements and the inversion of the matrix yields 
the solution. 

(d) In each element, the Jaumann derivative of Kirchhoff stress, the convected 
derivative of nominal stress and the change from nominal stress to true stress are 
calculated. The details have been given by LI (1983). The Jaumann derivative of 
equivalent stress is also calculated in order to check whether the element is plastically 
loading or unloading. 

(e) In each element the equivalent stress and strain are computed. 
(f) Nodal points are updated and the process (a)(f) is repeated for the next increment 

of time. 

TABLE 1. E,-(E/E,) E = 207 GPa, v = 0.29, (iv = 458 MPa 

& 0.010 68 0.030 76 0.040 90 0.050 120 0.065 142 0.080 154 

0.100 0.120 0.140 0.500 0.800 1.10 
236 340 440 450 460 470 

_____ 

c, > 1.10 E/E, = 470 + 40(~, - 1.10) 

t This is for material whose stress-strain record has been obtained (LI, 1983) by simulating the material 
response during necking of a bar of A533 B nuclear pressure vessel steel, and Table 1 represents these data. 
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The convergence of the solution was checked for many typical cases by halving the 
increment of time taken throughout that computation until acceptable accuracy was 
achieved for the macro-response of the cell. For example, the results of Fig. 10 are 
converged to within lo/, whilst those of Fig. 11 are within 557%. This discrepancy is 
because the strains of Fig. 11 are an order of magnitude less than those of Fig. 10. 

3. VOID GROWTH WITHOUT SOFTENING 

The above procedures were used to analyse void growth in a hardening elastic- 
plastic material whose stress-strain curve is represented in Table 1. 

Computations have been performed for four model geometries in which 

r. = 0.05,0.10, 0.20, 0.40, 

which correspond to initial void volume fractions of 

f0 = 0.833 x 10-4, 0.666 x 10P3, 0.533 x 10-2, 0.426 x 10-l. 

For the cases of r. = 0.05 and 0.10 the mesh sizes around the void were smaller than 
those shown in Fig. 2, but the total number of nodes was the same. 

The loading condition (1) gives an approximately proportional overall straining of 
the model cell. Deviations from proportional straining would occur if the loading 
displacement increment were too big. Whenever the straining is proportional the 
following relationships are true. 

E, = ln(1 + IV,), 

E, = In (1 + U,) = - cx& [since from (1) i, = -c&J, 

AR, 
~ = -U, = l-exp(-DIE,), 
R, 

2E; + E; l-2cY 
E, = ~ 

3 
= ~ EZ (mean strain), 

3 

R:L, 1 

k=(R,-ARJ2(L,+AL0) = [exp(-GZ)]2(1+Wz) Or 

1°C = (2a-l)E, = -3E,. 

Define the average axial stress on plane AB in Fig. 1 as c?, and the average radial 
stress on the cylindrical plane BC as a,. Then 

a, = 6,--a, (Ce = 5,) 

0, + 2a, 
6, = ___ 

3 
(mean stress). 
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(a) STRAIN-HARDENING MODEL 

lb) STRAIN-SOFTENING MOML 

FK. 3. The amount of void growth as a function of normalized elongation. 

Computed results for the variation of void growth Aw, with the elongation WZ are 
shown in Fig. 3(a). The results for r. = 0.05 and 0.10 coincide within the accuracy of the 

computations. The mean tensile stress 0, increases as the value of a decreases and the 
void grows faster. At the same elongation W,, initially smaller voids have a greater 
growth rate. The exponential shape of the curves shown in Fig. 3(a) is similar to the 
experimental results of IRICIBAR, LE ROY and EMBURY (1980) and FISHER and GIJRLAND 

(1981) for spheroidized steels. Our results are also in qualitative agreement with the 
theoretical predictions of MCCLINTOCK (1968). Figure 4 shows the size of the void as a 
function of equivalent strain and some results of M~CI~INTO~K (1968) are also shown. 
Although the qualitative form of the results are the same, the fact that the ordinate is 
logarithmic means that the differences between the points on each curve are large. The 
spread of these values between different values of CL exceeds, apparently, that for 
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CALCULATIONS 

(s=Q2,nkO.t21 

--MCCLINT~ 

(1968.FIG.8) 

(CIRCULAR VOID, 

FIG. 4. The change of average void radius with equivalent strain. 

differing hardening exponents. For purposes of comparison, the average hardening 
exponent of our material is 0.12. 

Figure 5 shows the relationship between @, and Cm for various void volume fractions 
and degrees of dilatation. High values of the maximum mean stress are associated with 
small initial void sizes and/or high dilatation, and the results shown all have the peak in 
Cm in excess of 7% of E. Furthermore, the local values of stress and strain within the cell 
can exceed even these. But stresses of the order of E/10 exceed the theoretical tensile 
strength of most materials. Also, it is commonly believed that steels in particular would 
already have initiated second order voids at the sites of fine carbides and other 
precipitates at these huge stresses (see HANCOCK et at., 1976, 1980; LAUTRI~OU and 
PINEAU, 198 1). We are convinced by these facts that the model of monotonic hardening 
often used to discuss metal plasticity is entirely inappropriate after some (materially 
dependent) level of stress/strain is reached in the matrix. The simplest remedy is to 
assume that the matrix softens. 

4. VOID GROWTH WITH SOFTENING 

The BEREMIN group (1981b) have suggested that voids nucleate around inclusions 
when the stress reaches a critical value 

The value of the parameter ,I is dependent on the shape of the inclusion and, for typical 
shapes, its value lies between 0.4 and 1.7 with a value of one for spherical voids. The 
second term in (5) is concerned with the role ofequivalent strain and so the formula can 
be regarded as the relationship between mean stress and equivalent strain that must 
exist as the void nucleates; (T, and 1 are material constants. 

Figure 6 shows some of the predictions of LI (1983) for the distribution of stress in the 
neck of a tensile round bar, and it can be seen that, just before fracture of the bar, the 
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FIG. 5. Computed values of mean tensile stress and mean strain for void growth in a matrix that does not 
soften. 

centre of the neck deforms so that 

Equation (5) (with i = 1) then predicts gc will have been reached before the value 

In the following calculations, it is assumed that oc/crY = 4. 
A simple way of taking softening into account is to assume as in Fig. 7 that the 

equivalent stress-strain curve has a softening branch AD besides the plastic loading 
path AB and the elastic unloading branch AC. The main difference between AD and 
AC is that passage along the softening path is irreversible. This kind of material 
response is in accord with the experiments of MACKENZIE, HANCOCK and BROWN (1977) 
who showed that there was a sharp drop in the loading stress after the initiation of 
macro-fracture in the tension tests. 

[The connection between softening and the load drop observed by Mackenzie. 
Hancock and Brown is somewhat subtle, in that our computer simulations (not 
reported here) of their experiments are unable to predict the load drop correctly 
without the incorporation of material softening. The point of material softening and 
that of the load drop are not the same on any scale of deformation or load chosen to 



Strain softening during void growth 95 

4 6/6Y 
1 AL/L=0.25 1 

_, LVR 
0 0.5 1 

FIG. 6. The distribution of stress in the mid-plane of a round necking bar at AL/L = 0.25. R is the initial 
maximum radius of the bar and L is the initial half length of the bar. 

measure the tensiIe test, but they will usually be close when measured by the global 
elongation.] 

We now assume that at any point A on the loading path where the critical criterion 
(5) is met, irreversible strain-softening occurs. Mathematically, if 

0, + (* + IJO, > CrC 

then the positive tangent modulus in the constitutive equation (3) is replaced by a 
softening modulus E, with negative sign, i.e. 

. (7) 

IRREVERSIBLE 
SOFTENING 

FIG. 7. Schematic equivalent stress/equivalent strain curve, showing unloading and softening branches 



96 Guo CHEN LI and 1. C. HOWARD 

ck0.2 a=0.4 oko.49 

--- lNlTbLVOlD~b:O.2) 

-CCURRE~SI~.(ATWz=0.113) 

FIG. 8. Void shapes at Wz = 0.113 (rO = 0.20). 

In the following calculations the normalized inverse E/E, of the softening modulus is 
taken to be 100. 

Our earlier computations show that there is no need to consider the case r. = 0.05 

since the overall response for that case coincides with that for yc, = 0.10 because the 
interaction with neighbouring voids is negligible for small initial void sizes. 

Figure 3(b) shows the void growth Aw, as a function of the normalized elongation 
W,. The void growth rate (for the same value of a) is larger than the corresponding one 
in Fig. 3(a) because the matrix is much softer. The shape to which the void grows 
depends on the value of the parameter c(, and its effect is illustrated in Fig. 8. Generally, 
the void grows radially when c( < 0.4 (i.e. in the case of high mean stress) and axially 
otherwise. 

The macroscopic axial and radial stresses for r0 = 0.20 are shown in Fig. 9. When 
(Y < 0.49 the points of instability are very definite and OZ and 5, reach a limit point at 
nearly the same generalized time. For (x > 0.49, however, the pattern is quite different. 

0 ai 

a=O.45 a=049,0498 

FIG. 9. Computed values of the macroscopic cell stresses as a function of elongation (rO = 0.20). 
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FIG. 10. Equivalent stress-strain curve ofa cell with a matrix that softens. 
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F4 
5 

The limit point of 5, occurs later than that for 5, and even becomes compressive if a is 
very close to 0.5. The effect on the axial stress is merely to flatten the curve. 

These stresses 8, and CI may be decomposed into the equivalent stress 5, and mean 
stress 5, and their variation with E,,, and E, for difierent r,, and cx are shown in Fig. 10 and 
Fig. 11. The corresponding limiting case of r. = 0 is also shown in solid lines. Softening 
of the matrix yields, as expected, enhanced softening of the 6,/E-E, and C? JE - E, 

curves. This can be seen by comparing the results in Fig. 11 with those of Fig. 5. Figure 
10 shows the 0, -E, curves for different void volume fractions and cell dilatations. For 
the same value of r. the loading part of each of these curves are coincident, and the 
unloading parts have approximately the same slope. These observations also apply to 
Fig. 11, which shows corresponding 5, -E, curves, but in a way which is less precise. 
This suggests that the behaviour of real ductile materials can be simulated on a 
computer by simple approximations to the shapes shown in Figs 10 and 11. The results 
of this work will be reported in another paper. 

Figure 12 shows the variation of the triaxiality parameter 5,/C, with E, at the point of 
instability, taking this to be the limit point on the 5, - W, curve shown in Fig. 9. For the 
same value of ro, high values of C? JC, at instability correspond to small values of E, and 
tl, and the value of c?,,,/C~ drops exponentially with increasing E,. Larger values of r,, 
depress the whole curve bodily towards the coordinate axes. These results are in 
qualitative agreement with the analyses of ROUSSELIER (1981) and the experimental 
work of HANCOCK and MACKENZIE (1976), HANCOCK and COWLING (1980) and 
LAUTRIDOU and PINEAU (1981). For r,, = 0.10 and CI > 0.48 the Cz- Wz relationship is 
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FIG. I I. Mean stress-strain curve of a cell with a miltrlx that softens. 

very flat, the original limit point widens to a quasi-plateau and there is no practically 
obvious peak point to be taken as the occurrence of instability. 

In Fig. 13 is shown the relationship between the void growth parameter &/w& and a 
normalized mean stress 6,/o,. The curves are terminated at the instability point. The 
results of the work of RICE and TRACEY (1969) are re-plotted by turning their Liju into 

/ b=QZQ0.40.0k6. 

0.49,0.495,Ok98 ) 

rro=OkO 

I 

I 
3. 
i% 
5 

FIG. 12. The triaxiality parameter c?,/c?;, vs equivalent strain at the instability point. 
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FIG. 13. The void growth parameter &/OS, vs normalized mean stress (the curves have been terminated at the 
instability point). 

~510, since 

ci, 3Li -=- 
0 a 

approximately for small increments. Rice and Tracey analysed the growth of a 
spherical void embedded in an infinite perfectly plastic medium. It is of some interest to 
note that our results for r0 = 0.10 predict a higher tensile stress than theirs even though 
our material softened after the attainment of the critical stress gC. This is probably due 
to the matrix hardening in our computations that exists before crC is reached. Both Figs 
4 and 13 make comparison between the present computations and results which have 
been extensively used to analyse ductile fracture. An important point to emerge is that 
the spread of our results is large and may even involve an order of magnitude of 
difference. If the real processes being analysed depend strongly on these variables the 
choice of the inappropriate curve will introduce significant errors of interpretation. 

The initiation of strain-softening in any of the constant strain finite elements was 
recorded during the computation. Three stages of this initiation are recorded in Fig. 14 
where W, denotes the value of the elongation W, at the instability point. For Y,, = 0.10 
and u = 0.498 the determination of W, suffered from the errors already discussed (i.e. 
the limit point on the aZ - W, curve widens to a quasi-plateau) so an approximate value 
of W, is chosen. The pattern of softening depends strongly on ro. When r0 is small and 
CI < 0.40 most of the matrix material has softened in the first stage of elongation. 
This early softening is suppressed as the value of LY or r0 increases. It then begins 
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a=O.40 
(Wm=CG96) 

a=0.47 
PNm=O.233) 

(a) To = 0.1 

aA 
IWm-0.042) 

a=046 
(Wm=0114) 

lb) r0=0.2 

a=QM a=0.40 
iWm=O.O26 1 IWm-0.050) 

a=O.45 
(wl=O.O82) 

FIG. 14. The initiation and development of strain softening tn the matrix 

later in generalized time and tends to localize, leaving a greater proportion of the 
matrix still hardening at the instability point. 

These results throw some light on the mechanical and geometrical variables that may 
control the way in which the material fails during ductile fracture. When I’” is small or if 
there is a high mean tensile stress (when r is small), the void growth rate is high since the 
void is surrounded by softening material. Fracture by void coalescence is therefore 
probable in this regime controlled by a critical void size or growth rate. On the other 
hand, with larger r. or small mean tensile stress (when c( is larger), the softening is 
localized and this would favour a failure by shear decohesion. 

Our computations show that the ability of the material to soften after some critical 
point has been reached may have a profound effect on the macroscopic behaviour of a 
cell consisting of a void growing in the matrix. The fact that the softening of the material 
enhances that of the cell does not, of course, need to be demonstrated by cxpensivc 
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computations, but the extent of it does and requires some comment. The maximum 
achievable stress (a,) on the cell is reduced by an order ofmagnitude when the matrix is 
allowed to soften in the way that we suggest, and this is a more realistic prediction for 
many engineering materials than that associated with indefinite hardening. 
Furthermore, the elongation to achieve a given increase of size of the void is reduced by 
a factor of about 3-5 when softening occurs in the matrix. Apart from the values chosen 
for CJ~ and i, these estimates for the change between hardening and softening behaviour 
depend on that chosen for the softening modulus E,. Comparison of Fig. 12 with the 
experimental results of HANCOCK and MACKENZIE (1976) and LAUTRIDOU and PINEAU 
(1981) shows that our choice may be reasonable at least for steels. 

Figure 12 can be regarded as a theoretical prediction of the kind of c?,,,/tic-E, damage 
function that is sometimes used in discussing ductile fracture. It clearly shows the 
influence of initial void volume fraction, and there is a hidden dependence on the 
characteristics of the matrix material (the computations reported here are for a material 
that hardens like A533 B nuclear pressure vessel steel and softens after cc = 40, with a 
modulus of E/100). This would now allow information about the size of the particles 
around which the voids nucleate to predict a definite damage function which could then 
be used to predict the ductile fracture characteristics of the material. 

Although we have taken ductile failure to occur at the point of instability of the cell 
the damage function could be controlled by other events which either precede or follow 
it. For example, the kind of bifurcation that occurs with the localization of flow within 
the matrix may be the controlling event in the formation of the damage function. This 
can readily be seen by examining the instability points of Fig. 3(b) which would have 
been preceded by some event of failure in the hardening matrix. There is a little evidence 
to support the hypothesis that, if the mechanical behaviour of the matrix material is 
correctly represented, the points of instability and of bifurcation (due to localization 
and shear decohesion) would be indistinguishable at least in load if not elongation. Our 
computations are, of course, tentative, and the particular softening we have included is 
based to a certain extent on guesswork. Further computation and, more importantly, 
comparison with experimental data is needed before these and other questions can be 
resolved. These observations make some connection between two of the different 
criteria of ductile fracture mentioned in the introduction. The other, the attainment of a 
critical size ofthe void, is less likely than the other two to be a universally valid criterion, 
at least on the evidence of our computations. Figure 3(b) shows that, for a given void 
volume fraction, the size of the void at which instability occurs drops exponentially 
with the elongation. For values of c( smaller than about 0.4 the point of instability can 
be taken at roughly the same size because the rate of void growth with elongation is 
very high and a void doubles its size during a very small increase in elongation. This 
suggests that the concept of failure at a critical size of void is likely to be confined to 
cases of moderate to high triaxiality. Our results have been obtained with one set of 
values (i = 1, oc = 40,, E, = E/100) of the parameters which control the softening of 
the matrix. Furthermore, different values of these will interact differently with the other 
mechanical and geometrical parameters that control the deformation of the cell. Our 
understanding of the effects of softening will be considerably enhanced when we know 
the effects of changing these parameters, and this will be the subject of a subsequent 
paper. 
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