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NECKING IN UNIAXIAL TENSION 
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Summary--Applying two theories in plasticity (flow theory and a modified deformation 
theory), the necking of a cylindrical bar in uniaxial tension is analysed. The development of 
finite strain in the bar is handled by the up-dated Lagrangian description and the governing 
variational equation is solved by using a finite-difference discretization in the axial direction 
coupled with a polynomial representation of the radial fields. The accuracy of the solution is 
ensured through the use of Lagrange multipliers which enforce stress-free lateral boundary 
conditions. The computation proceeds by adjusting the plastic moduli of the material so that 
its force-displacement record agrees with that of an experiment. The comparison between the 
thinning of the neck predicted by the simulation and that measured experimentally provides a 
check on the constitutive assumptions used in the computation. Finally, the development of 
stress within the neck is presented. 

NOTATION 
r ii Kirchhoff stress tensor 

true stress tensor (also called Euler or Cauchy stress tensor) 
nominal stress tensor (or Lagrange stress tensor) 
velocity of displacement vector, i.e. V~ = 
strain rate tensor, D~i = (112)(Vjj~ + V~jj-) 
load rate vector 
metric tensor 

Jaumann derivative 

covariant derivative 
generalized time 
volume 
boundary area (with known applied force) 
unit normal vector of the boundary area 
convected derivative 
Young's modulus and Poisson's ratio 
cylindrical polar coordinates 
the maximum initial radius of the bar 
half length of the bar 
the minimum current radius of the bar 
radial and axial displacements 
equivalent strain rate 
equivalent stress 
equivalent strain 
yield stress 

superscript (p) refers to plasticity. 

INTRODUCTION 

In order to analyse ductile fracture, one needs a proper description of the plastic 
response of the material under conditions of large strain. Once a particular theory has 
been chosen (e.g. von Mises flow theory or a deformation type of theory) the required 
constitutive response is uniquely specified by the result of a simple test, usually taken 
to be the uniaxial tensile test. Since the stress and strain within the neck are highly 
non-uniform the raw results of the test cannot be used directly to interpret ductile 
fracture and one has to resort to a computer simulation[l]. Such a simulation beyond 
the point of necking will provide information on the fields of stress and strain as they 
develop within the neck. This is very important to an attempt at modelling ductile 
fracture and may enable the analyst to formulate criterion for the onset of ductile 
fracture, when he compares his computations with experimental observations on the 

tName in Chinese phonetic spelling with surname first. Presently at Department of Mechanical 
Engineering, the University of Sheffield, Sheffield, England. 
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failure of  the bar. These reasons,  and others,  have prompted  research workers  in the 
past to compute  the necking of a bar. References  [1-4] provide a r6sum8 of previous 
work in this field. 

Both Norris e t  al.[1] and Saje[3] solved two-dimensional  problems using finite- 
difference methods.  Chen[2],  as here, used a compound  method with an axial 
finite-difference representat ion coupled with a radial polynomial  expansion,  whilst 
Needleman[4]  made use of  a finite-element method.  Both Chen and Norris e t  a l .  

introduced an artificial taper  into the bar  in order  to initiate necking, and Chen 
concluded that the results would differ only slightly if the size of the imperfect ion at 
the centre of  the bar was small. Saje assumed the two ends of  a perfect  bar to be 
cemented to rigid grips. Need leman  analysed a per fec t  bar with both shear-free  ends 
and cemented  ends. In the case of  shear-free  ends, he used a bifurcation criterion to 
start necking. The works  of  [2-4] were per formed in Lagrangian coordinates ,  whilst 
Norris  e t  a/ .[ l]  used a spatial description. 

The present  work uses the up-dated Lagrangian approach  (for which Hill[5] and 
McMeeking and Rice[6] provide the basic variational equations).  The representat ion 
of the field of  veloci ty is similar to that of  Chen, but with more  terms in the radial 
expansion,  an extension which calculations suggest is necessary  in order to achieve 
the desired accuracy.  Fur thermore ,  in order  to ensure a reasonable representa t ion of 
the s t ress-free lateral sides, it is necessary  to enforce  that condition through the use of 
Lagrange multipliers. The  simulation is for  A-533 Grade  B Class l nuclear pressure 
vessel steel, the exper imental  data being taken f rom Ref. [1]. 

Finally, the question of whether  flow theory or deformat ion  theory is a more 
appropr ia te  representat ion of plastic flow (to which the recent  development[7 ,  8] of  
corner theory may provide some answers)  is addressed by performing the com- 
putations with both flow theory and a modified deformat ion  theory. 

VARIATIONAL EQUATIONS OF EQUILIBRIUM 
According to Hill [5] and McMeeking and Rice [6], ensuring that the functional 

[ @t D i i  - txii(2DaDitg u ds  

takes an extremum is equivalent to satisfying the equilibrium equations 

~ t  - glkDki - ~kDki i "l'iili (2) 

together with the boundary conditions 

[ ~ -  t r"Dd - ~ " D , '  + t / ' V i [ ,  ] n, = [ :~. (3) 

We shall see later that rapid computation requires a simple possible representation of the field of 
velocity, but this may result in some of the boundary conditions not being as accurately satisfied as one 
would wish. The remedy adopted in this work is to force the correct behaviour on those side conditions that 
would otherwise be inaccurately obeyed through the use of appropriate Lagrange multipliers. This may be 
expressed symbolically in the following way. 

Suppose that we wish to impose k side constraints of the form 

K~(ai) = O , i =  1 . . .  k , ] =  1 . . .  q (4) 

and k < q where K ~ are functions of a t, which are the nodal values of a discrete representation of the field 
of velocity. Then the functional 

IA = I - AiK i (5) 

is such that an extremum with respect to the velocity field and the Lagrange multipliers Ai produces both 
the equations of equilibrium (2) with the boundary conditions (3) and the side conditions (4). 

CONSTITUTIVE RELATIONS FOR FINITE STRAIN 
The constitutive relations used in this work are derived from conventional infinitesimal-strain elastic- 

plastic relations, through the use of the following principles. 

(a) Stress is taken to be true (or Cauchy) stress. 
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(b) The infinitesimal strain increment is taken to represent the strain rate. 
(c) The increment of stress in the small strain case is interpreted as the Jaumann derivative of Kirchhoff 

stress. This eliminates any possibility of rigid body motion entering the constitutive relations. 
(d) Stress, strain and their increments are written as mixed tensors, so that their relationship can retain 

the same form as in Cartesian coordinates. 
The total strain rate can be decomposed into an elastic and a plastic part as 

D i = D/~<'+ DI (pl. (6) 

For flow theory, the constitutive relations are 

• 1[ 
D S ' = E  ( l + v ) @ t - z ' / S s  @t J 4E;; '  or;" 9 t  

whilst for a type of modified deformation theory.+ they become 

a[(2_.~ < l+.v"~[gr/_ls.ig"rl<'~+9 ( ) l  l 

S/S~' ~,~ ] 
ere" ~ t  J 

where 

(7) 

(8) 

• i I i l i ~ i g t l  O.t i s ;  = o-, - 7 4 ' o - / =  m - 

9tr¢ 3 -i 5~rl 3 9~i "ii 
9---/-= 2-~, ~) --~-t=2"~@, gi~giISil 9--"-i- 

(2 ,<,, ,,,,)'" (~ )"' DI~I = 3 dj di = gitglid~elid~) 

"2 xl/2 

• • ! i kl di(p, = O~(, , _ 1  8/gk, O,~, = D~,e>, d / =  D / - ' ~  ,5~g D~,, 

E,pl = 90", / ~p) = 9(r, / 
t ,  9t D, ,E,, 9t / D, 

E,,=gJ~, 

f;o fo'O,, e e  = • d e ,  = t (el 

. ~o- e _ 1. when o-, = o-,~ and ~ > O (plastic loading) 

a = 9~r, 
0, when (r, < mm.x or - ~ -  < 0 (unloading). 

Ele In the relations above, o-, is the equivalent stress, e, is the equivalent strain, while ~pb E~p~ are the plastic 
tangent and secant moduli. It should be noted that E(,. p) is the ratio of the Jaumann derivative of equivalent 
stress 9cr,./gt and the plastic equivalent strain rate D~ ~, it is not equal to the slope of the plastic equivalent 
stress-strain curve. 

Transformation between contravariant, covariant and mixed tensor components allows eqns (7) and (8) 
to be expressed as 

9 T  kl 
Dii = Ciik, ~ ( 9 )  

tEssentially the same type of modification to deformation theory was used in Ref. [10]. 
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I r l + v  ] 9 S,jS~I 
Ciikt = -~ [ ~ ( gikg~t + gitgjk ) -- v g ,g  u j + a ~ 2 4Et, o', 

in flow theory and 

Ciikt = -~l [l---~'~ (gikgjt + gitgik)-- ug,igkt] + a [ (2 ~,~-- 

in modified deformation theory. 
The inverse form of (9) is 

where 

÷ . l  , 9 , ,  
[2(g'~g" gltgi'!-3giJgu)+ 4t-ESt~--~,! tr,. j 

~ T  ii 
5~-"-i- = Lii~t Du (10) 

F "3 
E ] 1. ik ~t . . . . .  3.~ S°S ~1 ] 

L'ikt= ~ L 2 'g  g + g,tgj,)+ ~ g,g~t_ 2ov" (1 .2(1+.  - " ~ - u )  E',,') J 
in flow theory and 

2 [ E[E,, I ti u 3 (I _ E t ~  SiiSk'~ l 

in modified deformation theory. Both are for the case of plastic loading. During elastic deformation or 
unloading from a plastic state, 

Lii~a E F1 il, i t  + U giigt~ 

The symmetric tensor of moduli U jkt is simpler in form than that (in equations (2.14) and (2.18)) of 
Needleman and Tvergarrd because there is no necessity for forming derivatives of the metric tensor in the 
up-dated Lagrangian formulation since all quantities are stated at their current value. 

In the following application of the constitutive relations shown above E'~, p} is taken as E,, and E, is used 
in place of ~ }  because the difference is negligibly small and it makes the computation easier. 

NECKING ANALYSIS OF CYLINDRICAL BAR 

In Fig. 1, a cylindrical bar with an initial axi-symmetric concave profile is shown. Both before and after 
deformation, the same cylindrical polar coordinates r, 0, z( = I. 2, 3) are adopted. Non-zero velocities are 

v,= 8, v,= ¢¢ 

whilst V2 = 0, because of the axi-symmetric character of the problem. 
The strain rates can be expressed as 

D .  = -~r , D,.2 (] 
r 

(11) 
D. aCC DI, l (a{J+ off'~ 

= a--~" = ~ \ ~  7 7 , 1  

The axi-symmetric version of (10) gives the constitutive relations in incremental form as 

~ t  = LIIDll + LtzD:2 Lt3D. + 4,- 2LI4DI3 

~;t- = LorD. + L22D,2 + L23D._, + 2L24DI3 
(12) 

9"1'3 i 

~ '  -- L I , D l l  + L23D22 + L.D~: ,  ~ 2L34Dt3 

~rl3 = Lt4Du + L2~D22 + L34D33 ~ 2L44DI, 
~t  
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FIG. 1. An axi-symmetric specimen. 
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Substitution of (12) into (I) yields 

'ffi{ I -- ~ ~ Lll Di I" + L,_~_D,.2: + L,D332 + 4L4~Dts ~- 

+ 2LrDuD: :  + 2 L I s D . D ,  + 4LI~D.DI~ + 2L~D:,D33 

+ 4L~D,_,.DI3 + 4L34D, D I s -  2[o'u (D.  2 + Di3 ~) + or.,:(/),.: 2) 

+ o'.( D, "3 + Ds"3 ) + 2 o', s( D, , + D . )  Dt s ] + o', . [ (-~r ) " + (-~r )" ] 

+ o'2., (-'~-)" + o' ,  [ ('~-~-)" + ( -~-)" ]  +-2o':3 t-~r  -~-z'a(J a U +  "~-r--~-z}lOl/V a l ~ , /  

2rrr dr dz. (13) 

The second integral term of (1) has disappeared from (13), since at the two ends of the bar only the 
displacement rate is given and there is no controlled loading rate. Boundary conditions can be expressed as 

I.~'(r. L. t) = fr0(t) at z = L 

l,t/(r, O, t) -- 0 at z = 0 

aO 
and - ~ -  (r, z, t) = 0 at z = 0, L. 

(14) 

The last boundary c6ndition implies shear-free surfaces at the middle section and at both ends of the bar. 
For z = 0 it is rigorously equivalent to the shear-free condition, while at z = L the final computation gives a 
shear stress as little as 10 -~s of the axial stress ~.  

For the purposes of numerical work it is convenient to normalize the physical variables in the following 
way. 

- I z _ r ;- L + A L  L 1=--~-~ ,  ~=y, , =-- -C- ,  p =-~ 

~o = ,0=-#, --E 'L'= '~"=-E 

~rlj - E ,  rlj E ,  t~j = E ,  ~i~ = E ,  Eii = E 

(13) and (14) now become 

2 / p - \ a ~ /  + ( 2 E ~ - ~ . - ~ . )  
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+')'- l Ob 8C + 80  olO 2C23 U 8~",_,}/~,,, ~ U 8/..~ 

(15) 

and 

~ '  = i~'o(t)  at  ~7 = 1, 

I~ '=0  at .~=0. 

8b 
- - = 0  at zT=0.1 8g 

(16) 

In order to improve the accuracy of the computation, Lagrange multipliers are added to approximately 
satisfy the lateral side conditions of 

6 . .=0 ,  dl3 = 0. 

For the sake of simplicity, the following side constraints K ~ are substituted for the above conditions and 
are imposed on the necking part of the bar only 

~ ; t  Jr=r, = (LI IDI I  + LI..D2_" +/~I3D33 + 2Lt,D,3) I.=r, = 0. 

~t '  It=R, = (EI4DI' + L24D22 + 1.3.~D33 + 2E~O,3) ],=r, = 0 

where R~ stands for the outer radius of the bar at each discrete section plane.t 
According to (5) the functional for solution is 

07) 

(18) I, = I , - ~ - , ~ R . -  ~ - ~ F  ,°R,. 

The following relations between different stress rates or derivatives are needed in the computation 

~',I = @d~ ~ - 2(6. .D. + 6.13D.3), 

~',, = ~ - 2(6.z, Dv), 

~. = ~ - 2(6.33D. + 6.uDt3), 

~'D = ~ -- (O'll Ol3 + ~,3D. + 6.13Dll + 6.33Du) ;.,vt 

(19) 

and 

/ 180X 
= +/6..n,, + 

~2: = ¢'zz + a :D : :  

L,=" 

T,, = ,~, + (~,,p --~- + 6.,~D.). 

_. I_ M ~ + _  1 0 0 \  

(20) 

*This condition involves only the first term of (3), but it is quite satisfactory because the stresses on the 
boundary calculated without the side constraints are just about 2% of the maximum stress in the neck and, 
anyway, the first term is numerically dominant in (3). 
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The relations between the components of true stress and nominal stress are 

+ l O O  
e,, =(l + D,,)~,, ~ -Tf.. ~' 

022 = (1 + D:2)"Fz2 

~ .  = p - ~ -  T~3 + (1 + D . ) ' r .  

a~ 
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(21) 

NUMERICAL COMPUTATIONS AND RESULTS 

A solution is sought in the form of a three term expansion in the radial coordinate, namely 

= U,([, t)F+ U,([, t ) P +  U3(~, t)#, 

= W,(£ t) + W.,(~, t)F + W3(~, t)P. 
(22) 

The functions Uj and W i (j = 1, 2, 3) are held, at each value of the generalized time t, by their values 
( Ui)~ and ( Wi)~ at the ith axial section of the bar; the n sections of the bar are taken to be all equal in length. 
Along the radial direction of each section plane, m nodes are recorded for numerical integration. The 
computation within each increment At of time proceeds as follows. 

(a) Specify the value of the increment A W0 of the normalized axial displacement at the end of the bar. 
In the present computations W0 is taken to be the generalized time t. 

(b) At each nodal point the plastic moduli to be used in the current load step are computed from the 
assumed relation between equivalent stress and strain and the values of these quantities at the end of the 
previous load step. In particular, the inverse lIE,, of the tangent modulus is read from a table similar to 
Table 1 as a function of ~, whilst the normalized secant modulus at each node point is taken as 

¢.s, = ~ .  E¢ 

If the material is unloading or elastic, the moduli are the elastic ones. 
(c) The functional IA of (18) can now be evaluated using the trapezoidal rule for the integrations and a 

three-point finite-difference formula for the axial derivatives. The variational relationships 

aL =o, ...oL =o 
a( u~), a( wj), 

subject to the discretized version of the boundary conditions (16), al low a matr ix equation for the unknowns to 
be formulated, and the inversion produces a solution of the form 

W,, + "" ~ " l~l~., k (Uj)~=(alj)iA o [tazDflt^~ [(a3i)i]~A~ 2~, 
- O) ( Wi)~ = (bq)d ~ Wo + [(bz~)~]tA k + [(b3~)i]kA(~ 2) (23) 

in terms of the known displacement increment and the, as yet, unknown Lagrange multipliers. The 
summation variable k ranges from 1 to I where l is the number of plane sections on which the side 
conditions (17) are forced. 

(d) The substitution of (23) into the side conditions (17) produces a system of equations that can be 
inverted to give the A~" and A~' in terms of A tl,'0, These values may then be fed back into (23) and (22) to 
complete the solution for the field of velocity. 

Table 1. e, - (l/Et,) E --- 207 GPa, v = 0.29 

c o.ozo o.o3o 0.040 o.oso o.o6s o . o ~  

1/~: te  68 76 90 12o 142 154 

~'e O. ~.00 0 . 1 2 0  O.140 0 . 5 o o  0 . 8 0 0  1 . 1 0 0  

l / E r e  236 340 440 4 ~  460 470 
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(e) The Jaumann derivative of Kirchhoff stress ~rJ~t may now be calculated from (11) and (12), then 
the Jaumann derivative of equivalent stress is 

and, finally, the convected derivative of nominal stress may be found from (19) and (20). 
(f) During the increment At the nominal stress changes to 

T:, = T,, + ~.~t. 

The new values of true stress 6-~ i are calculated from (21)o taking into account the change of area at each 
node. 

(g) At each point the equivalent stress and strain are computed. 
(h) New equal axial sections are set up and new radial integration nodes introduced. The values of the 

stress and plastic moduli are interpolated onto the new node points, and the process (a)-(h) is repeated for 
the next increment of time. 

The total time of the simulation is divided into about five or six sections. At the end of each section, the 
computed load are compared with those of the experiment[l]  under simulation. If there is any significant 
disagreement, the relation between the total equivalent strain and the tangent moduli is adjusted, the data in 
Table 1 are renewed, and the results are re-computed. This process is repeated until the agreement is 
reached. A check is made with the experimentally measured thinning at the neck. 

This computational method was used to study the necking of a cylindrical bar with an initial 
axi-symmetric concave profile. Both flow theory and modified deformation theory were used as the plastic 
constitutive model. Experimental data[l]  for specimen 2499R was simulated in the computation. The 
material was specified as A-533 Grade B Class 1 nuclear pressure vessel steel[l]. The half length of the 
specimen was 26.67mm, with maximum radius 6.41 mm and minimum radius 6.35mm. The current 
normalized length [ was divided into 24 equal parts with I I nodes along the radial direction of each section. 
Starting from z = 0, 10 sections were subjected to the side constraints in {17). 

The computed simulation of the equivalent stress-strain curve is shown in Fig. 2 (in which the difference 
between total strain and plastic strain is neglected). Unloading during necking takes place after E, - 0.1. The 
results of Fig. 2 can alternatively be expressed in terms of the inverse values of the normalized tangent 
modulus, and these are listed in Table I. Linear interpolation is used for determining /~,., from this table. 

The complete computation takes a little more than 300 steps of increment At (i.e. AW0). which is made 
to vary with the total elongation I,~'0 according to the data of Table 2. The convergence of the solution was 
checked by halving the increment of time. The whole computation then took about 600 steps to attain 
ff¢0 = 0.25. The values of stress, necking radius and unloading area, obtained in the two computer runs. are 
shown in Table 3 and it is seen that the solution has effectively converged in 300 steps. 

The maximum magnitude of the calculated radial stress and shear stress at the lateral boundary in the 
necking region is about 10 -4 of the axial stress and 10 -3 of the radial stress on the axis. This occurs when 
the elongation W0 = 0.25, just before fracture happens. Before that stage, the values of the lateral boundary 

2 l ~ i l 

2 2 ' -  

2.0- 

1 . B  - ~ . ~  

l "&  

1 I ~ MODIFIED DE~R~TION 
THEORY 

1-2 
- - - -  BY ,'NORRIS ET,aL 11) 

,.o I I I I I I I i 
0 l ~ 0 l 2 0 l 3 0 "  4 0 " 5 0 " 6  0 "  7 0 " B 0 9 

FiG. 2. Computer simulation curve of equivalent stress vs equivalent strain. 
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Table 2. W0 - A g/0 

0.22 - 0.35 i - 50 

0.35 - 4.3 200 

4.3 - i0 150 

10 - 20 75 

>20 50 
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radial and shear stresses are much smaller. It is concluded that the lateral free surface conditions are 
correctly represented in the computations. 

Fig. 3 shows the relationship between the normalized current minimum radius rolR and the normalized 
axial elongation ALIL. Fig. 4 shows the variation of axial load ratio F/Fma, with AL/L. At different stages of 
necking, the border lines between the domains of plastic loading and unloading are obtained by using each 
of the two plasticity theory and can be seen in Fig. 5. From the trend shown in these figures it may be 
concluded that, with the same value of tangent modulus E,, the thinning of the neck calculated according to 
modified deformation theory is larger than that according to flow theory. Also, the unloading rate of the 
former is larger than that of the latter. However, when AUL exceeds 0.16, the predictions of deformation 
theory depart from the experimentally observed thinning and the only way agreement could be matched 
would be to adjust Table 1 appropriately. Therefore, the computation based on modified deformation theory 
was terminated when AL/L reached 0.18. The results thus obtained are then compared with those based 
on flow theory using the same value of tangent modulus. 

The distribution of stress according to flow theory is shown in Fig. 6. The computed results demonstrate 
that just before, the specimen fractures the axial stress tends to zero within a small domain near ~--0.36. 
This is similar to that shown in Fig. 10 of [1], where it is stated that a small region is stressed by axial 
compression. A careful examination of Fig. 6 also shows that the hoop stress ~0 in the neck reduces as 
necking develops. This is the same tendency as that shown in Fig. 8 of [1]. On the other hand, Saje[3] states 
that this surface compression component decreases and may even become tensile. 

The results of different workers[l-4] over the last decade are compared with the present computations 
in Fig. 7. All the stress distributions are rather smooth. The present computations were also carried out 

r,/R 

O5 ~ 

. - - .  FLOWBy NORRIsTHEORYET AL [11 ------  MODIFIED OIF¢O~N4ATION 
THEORY 

~ ~  A L / L  
0 O~ 02  0 3  

FIG. 3. Relationship between the normaiized current minimum radius with the normalized 
axial elongation. 

O9 

O.') 

O,6 

0.5 
0.02 

rFmox 

~¢~ ---.q- • -,,..~ 

FLOW THEORY 1Fm~=79460 N) " - ~  , ~  

_ ----  -- MODIFIED CEFO~ATION THEORY ~ ' ~ = * *  ~ 1  
( Fro= = 79810 N ) .  N'x~" • ~ 

- - BY HORRI5 ET AL [1l ",~%~ 
N 

-- • EXPERIMENTAL DATA 1 I]  ( Fmox=79180 N ) 

I I t [ t I L I I I I / A L / L  
0.06 0.10 0.14 O.16 0.22 0.26 

FIG. 4. Variation of axial load ratio with normalized axial elongation. 
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0.140 

O. 186 

0.250 

steps 

300 

600 

3O0 

600 

300 

600 
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Table 3. 

~33ma~ (lO "2 ) ro/R 

0.398 0.878 

O. 395 O. 879 

0.491 0.776 

0.487 0.777 

0.755 0.566 

O .  7 5 0  O .  568 

unload/nq 
border 

e a,l~e 

s~lme 

" I -L' =0440 _ _  

_4 . 

(o) FLOW THEORY 

- - - - -  E>'JaERIMENTAL NI~_X, ING PROFILE [lJ 
,AT r,/R'-O.64(AL./L .~ O. 230 ) 

AL.o  

_ 

F:II'-AST I C 1 
LOA~NG UNLO,N:)I NG 

AL --O 0.~40 0.~5 

(b) MODIFIE.D DEFORMATION 
THEORY 

FIG. 5. Border line between plastic loading and unloading domains. 

2 ~,0 2; 

0 - - - - - ~ ' =  -- 0 

-10 0.5 r/R -1~ 0.5 r/R 

FIG. 6. Stress distributions at different stages of necking. 
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I I . i ~ - ' - -  I 

0 ' ~" 

I ' I ' i i 

0 0.5 f i r .  0 0-5 r / t o  1 

P~ESKNT f..At.~ ~ LATIt36G 

FIG. 7. Comparison of stress distributions by present analysis with those of other references 
tat ~ = 0). 

without using the Lagrange multipliers, with a saving of about one third of the computer time, but with 
somewhat of a loss of accuracy. The lateral boundary radial stress in the neck could attain about 2% of the 
maximum axial stress, instead of the order of 10 -4 when Lagrange multipliers were used, at if'0 = 0.25. At 
the same time, the peak axial stress shifted from the central axis. Saje [3] also mentions the peak of stress 
distribution moved away when coarser finite-difference grids were used. 

The equivalent stress shown in Fig. 2 is somehat higher than that obtained by Norris et al. [l], although 
the same computer simulation was used. It appears that this is due to the present computations being closer 
to most of the experimental data. Both Fig. 3 and Fig. 4 show that the results of Norris et al. fall away from 
the experimental data after necking happens (at ~, = 0.1). This is the point where the present simulated 
equivalent stress-strain curve diverges from that of Norris et al. 

CONCLUSIONS 

It  m a y  be  c o n c l u d e d  tha t  bo th  f low t h e o r y  and  modi f i ed  d e f o r m a t i o n  t h e o r y  m a y  
se rve  to s imu la t e  neck ing .  W i t h  the  s ame  r e l a t i o n s h i p  b e t w e e n  the t a nge n t  m o d u l u s  
and e q u i v a l e n t  s t ra in  these  two  theo r i e s  g ive  p r a c t i c a l l y  the  s ame  re su l t  b e f o r e  
neck ing  o c c u r s ,  whi l s t  a f t e r  n e c k i n g  the  l a t t e r  t h e o r y  y ie lds  a la rger  n e c k i n g  d e f o r -  
m a t i o n  wi th  a l a rge r  u n l o a d i n g  ra te .  F r o m  the  g o o d  a g r e e m e n t  o b t a i n e d  b e t w e e n  the  
c a l c u l a t e d  r e su l t s  and  the  ex i s t i ng  e x p e r i m e n t a l  da t a ,  it s e e m s  tha t  the  o n e - d i m e n s i o n a l  
d i s c r e t i z a t i o n  us ing  u p - d a t e d  L a g r a n g i a n  d e s c r i p t i o n  is an a p p r o p r i a t e  m e t h o d  fo r  
c o m p u t a t i o n .  T h e  v a l u e s  o f  the  n o r m a l  s t r a in  and  the  s t r e s s e s  a t  the  cen t r e  o f  the  bar ,  
g e n e r a t e d  b y  s i m u l a t i o n  s tud ie s ,  a re  n e e d e d  in any  a t t e m p t  to un rave l  the  de t a i l s  of  
duc t i le  f r ac tu re .  T h e  p r e s e n t  s imu la t ed  s t r e s s - s t r a i n  cu rve  and  o t h e r  a s p e c t s  o f  this  
w o r k  are  be ing  u s e d  in c o m p u t a t i o n s  of  duc t i l e  v o i d  g rowth .  
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