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Abstract Stress and strain distributions and crack opening displacement characteristics 
o f  short cracks have been studied in single edge notch bend and centre cracked panel 
specimens using elastic-plastic finite element analyses incorporating both a non strain 
hardening and a power law hardening behaviour. J contour integral solutions to describe 
stress strain conditions at crack tips for short cracks differ from those for long cracks. The 
analyses show that ( i )  short cracks can propagate at  stress levels lower than those required 
fo r  long cracks and (ii) ii two-parameter description of crack tip fields is necessary for 
crack propngation. 
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Nomenclature 

Crack length x, Y 
A unit of length = 0.27 J#oys  61 
Strain rate tensor fP 
Young's modulus 1. 

Rice's path-independent contour integral / I  
Mode I stress intensitv factor I' 

E J  0 r 
Equivalent stress intensity kictor = J ' F T ~  Oij  

Spccimcn length 
Load 
Polar co-ordinates 
Stress deviator 
Crack f x e  displacement 
Velocity rate vector 
Specimen width 

fJ M 

Lagrangiaii rectangular co-ordinates 
Crack tip opening displacement 
Equivalent plastic strain 
Single parameter for fracture 
Shear modulus 
Poisson's ratio 
Equivalent stress 
Cauchy stress tensor 

6 P L  
Bendingstress = -- ~ 

4 ( W  - u)2 

Hydrostatic stress = (cl + cr2 + a3)/3 
Yield stress in uniaxial tension 
Circuinferential stress 
Through thickness stress 

INTRODUCTION 

CRACK BIRTH in components usually begins at a very small surface defect or the root of a 
notch or second phase particle. When such a crack is born, it will be a very short 
crack [ 1). 

Much work has been published concerning large scale plastic deformation of long 
cracks. McClintock [2] and Rice and Johnson [3 ]  have studied slip-line configurations 

*Currently at the University of Sheffield, U.K. 

249 



250 W A N G  T Z U  CHIANG and K J M I L L E R  

around cracks and notches. McMeeking 141 and McMeeking and Parks [ S ]  have shown 
that finite strain effects are important over a distance of about 2 or 3 times the crack 
opening displacement. Shih [6] calculated the crack opening displacement and found a 
relationship between COD and the J-integral. But all of these studies were concerned 
with long cracks. Now short cracks in fatigue exhibited a different crack growth behav- 
iour than long cracks [7]. Hammouda and Miller [S] have pointed out that short cracks 
will grow even below the threshold stress intensity factor range AK,,,,. This type of 
behaviour requires to be quantified in mechanical terms and hence the present work 
outlines in detail the stress and strain fields for short cracks. 

Short cracks differ from long cracks either because (i)  the net section stresses are so 
high that they exceed 0.40,, and the crack tip plastic zones are so large that LEFM 
parameters do not characterize the elastic-plastic stress field ahead of the crack with 
sufficient accuracy; or (ii) the crack itself is so small, say less than 0.25 mm [9] that 
LEFM parameters cannot quantify the fracture process zone at the crack tip. This 
typically occurs when a crack is embedded in a single crystal on the surface of a body. 

This paper examines short cracks for case (i) above and compares solutions with those 
obtained on long cracks. Using a finite element method based on finite strain formula- 
tion of plastic flow theory, one can obtain the complete stress and strain fields. Fracture 
criteria, based on a combination of critical stress or strain, are then discussed for crack 
initiation. In addition, fatigue crack growth for short cracks is discussed in relation to  the 
plastic zone and the plastic strain field. 

ANALYSES 

The variational equations presented in [lo] and [ 1 11 are, 

6 U  = Jv f ( l ) .  v dV + ls, p"' . 9 ds,  

and 

- O i j ( 2 d i k d j k  - vk,i  v k , j )  d v ,  ( 2 )  i 
where 

v = the virtual velocity fields, 
f ( l )  = the convected derivative of the body force vector, 
p'') = the convected derivative of the surface force vector, 
N i  = the non-dimensional Cauchy stress deviator, 

S i j  = the Cauchy stress deviator, 
g* = 1 + A'(CP)/3p,  

N i j  = S i j I J S k i s k l ,  

A'(6,) = dA(c,)/dc, where A@,) is the scalar function which characterizes the plastic 
stress-strain relation. 
1 ;  at Se = A(<,) and Nijdij > 0 
0; at all other conditions. 

a = {  
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Equation (1) is equivalent to the equilibrium equations of stress rate fields for large 
deformation theory employing up-dated Lagrangian co-ordinates. The finite element 
analyses are based on equation (1). Eight-noded isoparametric elements with 3 by 3 
Gauss points are employed in the calculations for centre cracked panels (CCP) and single 
edge notched bend (SENB) type specimens. The material behaviour is modelled by a 
power-law relationship of the form, 

(Te = f J y s ( E p / ~ p o ) n  (3) 

where (T, is the equivalent stress, cry, is the yield stress, EP is the equivalent plastic strain 
and Ep,, is the equivalent plastic strain at first yield. 

The calculation uses an incremental tangent modulus procedure and contains approxi- 
mately 20&300 load increments. 

The, f i r i r t c ,  dernrnt mesh 

The finite element mesh employed is shown in Fig. 1 in its undeformed configuration. 
In zone C the 8 elements connected to the crack tip are degenerated to triangular 
elements. The smallest length of the elements at the crack tip range between 
0.0005 - 0.001 mm which is only 5-10”/, of the short crack length of 0.01 mm. The a/W 
ratio is 0.005. 

The total mesh contains 398 nodes and 115 plane strain isoparametric elements. For 
the three Doint bend specimen only one half of the specimen is used because of symmetry. 
For the centre cracked panel, only one 

ZONE B 

quarter of the specimen is used. The mesh is 

S E N 0  
specimen p’2!Jbp 

p/2 
IWI 

ZONE C 

Fig. 1. SENB and CCP specimen configurations together with finite element idealization 
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formed automatically and the mesh can be easily changed. Also shown in Fig. 1 is the J 
integral path. 

Results 

Calculations were carried out for plane strain conditions and both a non-hardening 
and a power-law hardening material. Material properties were v = 0.3 and 
o,,/E = 1/300. For the power-law hardening material the hardening coefficient n was 
made equal to 0.2. All results are expressed in the Lagrangian co-ordinates (X,  Y),  of the 
undeformed configuration. 

Cruck prof i le  crud hlunrrd-tip ~hcrpr~ 

As the load increases, the sharp crack will first become a very narrow slit and then 
progressively blunted. Crack profiles for a hardening material are shown in Fig. 2 for (a) 
SENB and (b) CCP specimens respectively. 

Generally speaking, the crack profile contains an inclined but straight face for the 
three point bend specimen at low stresses that is similar to long cracks. One can 
visualize this inclined face to be obtained by rotating the crack faces around a centre 
some distance ahead of the crack. At higher stresses, equivalent to short cracks, this 
straight face is reduced in length. For the centre cracked panel, the crack face profiles are 
more akin to ellipses. 

In this study the crack tip opening displacement, a,, is taken at the intercepts of the 
two 45 '  lines drawn back from the tip of the deformed profile, see Fig. 3, which shows 
that the blunted crack tip shape for hardening materials is similar to the results of 
McMeeking [4], but there are some differences. The blunted crack tip shape of a long 
crack is more like a half circle but for the short crack the opening displacement increases 
more rapidly on the flank. 
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Fig. 2. Crack profiles for a hardening material: (a) SENB specimen; (b) CCP specimen 
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-I.Ob - 0.5 b 0 0.5 b 

Fig. 3. Blunted crack tip profiles for a hardening material. 

Using the expression 

6, = J/ay, (4) 
McMeeking shows that for aYJE = 11300 and n = 0.2, the value of u is 0.27 whilst for the 
present work u = 0.264. 

Plastic zones 

As the load increases, the plastic zone develops around the crack tip; see Figs 4 and 5. 
When the equivalent stress intensity factor 

is 4.12 MN m-3i2 the plastic zone size is about 1.5 times the crack length for the SENB 
specimen. When the value of K I P  is equal to 7.22 MN mP3l2 the plastic zone size is 
projected back to the free boundary AB. 

For the CCP specimen, the plastic zone develops more rapidly as compared to the 
SENB specimen. When the value of K,,  is equal to 3.69 MNm-3'2, the plastic zone size 
is about 2 times the crack length. The plastic zone will surround the whole crack in a 
CCP specimen at K I ,  = 4.34 MN m-3'2  as shown in Fig. 5. When plasticity is so exten- 
sive it will not be possible for the J integral to characterize the behaviour of short cracks. 

B 

A 
Fig. 4(a) 
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Fig. 4(b) 

Fig. 4(c). 

Fig. 4. Plastic zone shapes for a SENB specimen and a hardening material. Note the hatched 
area is plastically deformed but is too small to show the integration points: (a) 

K,, = 4.12 M N  m - 3 1 2 ;  (b) K,, = 7.22 M N  m - 3 ' 2 ;  (c )  Enlargement of (b) close to the crack tip. 
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Fig. 5. Plastic zone shapes for a CCP specimen and a hardening material. Note the hatched area 
is plastically deformed but too small to show the integration points: (a) K , ,  = 3.69 M N  m '; 

(b) K,, = 4.34 M N  m - 3  2 ;  (c) enlargement of (b) close to the crack tip. 

Stress und plastic strain distribution at the crack tip 

In Fig. 6(a), the true stress.cr, is plotted against the distance from the crack tip for a 
hardening material. The Mtance is normalized by the J-integral. The dashed lines are 
the small scale yielding tesults for the long crack obtained by McMeeking [4]. The solid 
lines are derived from the present work. It is clear that when r/b < 1, our results are 
higher than those of McMeeking. This is because McMeeking did not analyse a sharp 
crack but stil&ed a narrow slit, therefore the hydrostatic stress could not be maintained 
at the notch-like surface. However when r/b > 1, the value of 0, for a short crack is lower 
than those given by McMeeking. 

The equivalent plastic strain EP is shown in Fig 6(b). The results for the short crack are 
higher than for the long crack, when r /b  > 1. This cannot be attributed to  different 
boundary conditions between the narrow slit employed by McMeeking and a sharp 
crack tip. In fact, using a narrow slit instead of a sharp crack will cause a decrease in 
hydrostatic stress and hence increase the plastic strain E P .  The main reason why the 
plastic strain is higher for a short crack, is because the plastic zone size itself is large. As 
previously mentioned, when the K,, = 7.22 MN m-3'2, the plastic zone size is projected 
back to the free boundary AB and is about 9 times the crack length and so crack tip 
plastic flow is enchanced. 

According to the J integral theory, plots of the stress distributions near the crack tip 
versus X / ( J / a , )  should be independent of geometrical configuration and load level. This 
is nearly true for the SENB specimen and a long crack, but this is not the case for a short 
crack. The relation between stress ratio crH/crys and nondimensional distance X(J/cr,,) is 
shown in Fig. 7 for various loading levels. It is seen that the stress distributions are 
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Fig. 6. Stresses and strains a t  a crack tip in an SENB specimen and ii hardening material its ii 

function or non-dimensional distance from the crack tip when ci.oYS/J = 76.4. (a) stress ratio 
o,,/nYs; (b)  equivalent plastic strains. 

dependent on geometrical configuration and loading level. As the value of J increased, 
the deviation from the small scale yielding results for the long crack became more 
distinct. 

In Fig. 8 the true stress of, is plotted against K , ,  (equivalent to the J-integral) for 0 = 0. 
I t  is clear, that the stress o(, for the bend specimen is higher than the centre cracked 
panel. This is because the bend specimen has a higher triaxial stress. When K , ,  is low the 
stress distribution is not geometry dependent but at higher values of K, ,  this is not the 
case. 

The relations between stresses and strains for a hardening material are shown in Fig. 9. 
The curves are very similar to uniaxial tension curves. As the plastic strain EP increases, 
the stress will increase and at some point will reach a maximum value before gradually 
decreasing with intense plastic strain. In this figure, stresses are also shown as a function 
of normal strain E~,. 

In Fig. 10, the stresses oZ, ( T ~  are plotted against EP for a hardening material. According 
to perfect plasticity theory, the hydrostatic stress oo is equal to oz for the plane strain 
problem. Because perfect plasticity theory ignores elastic deformation, for the general 
case of an elastic-plastic material differences are observed. However the present work 
shows that, not only for a non-hardening material but also a hardening material, the 
triaxial stress oo is nearly identical to oz at large plastic strains. 
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Fig. 7. Stress ratio o(,,cry5 vs X.a,,;J a t  0 = 0: (a)  a non-hardening material: ( b )  k t  hardening 

material. 

The normal stress (T,, and shear stress T ~ ~ ,  in the direction of H = 56 is plotted against 
the plastic strain tP in Fig. 11. The maximum shear stress is an important parameter for 
fatigue crack initiation and growth and it should also be noted that in the final stages of 
ductile fracture, rupture usually occurs in a direction of maximum shear stress. For the 
short crack the maximum shear stress ( T ~ ~ ~ ) , , , , ,  in the present study occurs when H = 56'. 

However in Fig. 12(a) where the normal stresses (T(,, crz and or at d = 45" are plotted vs 
the plastic strain EP it is remarkable that all normal stresses are nearly identical at large 
plastic strains which indicates that this plane also is the plane of maximum shear stress. 
I t  follows that on planes not inclined at 45" (see Fig. 12(b) where H = 56') to  the crack 
tip, the maximum shear planes are not coincident. For example the maximum value of 
shear stress is at 8 = 56"; but the radial plane is not the plane of maximum shear. Hence 
the plane, 0 = 45", may be more important in fatigue crack growth than the plane 
0 = 56". 
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Fig. 8. Stress ratio n,,/ors vs equivalent stress intensity factor for a hardening material 

Figure 13 shows the true stress at the crack tip as load increases for both a long and 
a short crack. This indicates that the J contour integral can not uniquely define the stress 
at the tip of short cracks. In this figure the a/W ratio is 0.5 and 0.005 for the long and 
short crack respectively. 
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Fig 9 Crack tip stress/strain relations of a hardening material 
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Fig. 10. Relationships of uO/uYa and uzJov, with strain at 0 = 0 for a hardening material. 
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Fig. I I .  Stress ratios o~~,o).* and T, , , ,o~~ vs equivalent plastic strain for ii hardening material and :i 

CCP specimen at 0 = 56' when r = 0.000373 mm. The dashed line gives the shear-stress at 45 
for the same load. 

FRACTURE CRITERIA 

Siyyle pcirmtefrr crituriu 

From a micromechanics viewpoint, fracture criteria should be solidly based on 
realistic physical models which simulate the relevant fracture mechanisms. However, the 
development of quantitative fracture analyses based on micromechanisms is difficult. The 
study of fracture mechanics therefore aims to describe the stresses and strains in the 
vicinity of a crack tip and also to provide fracture criteria accounting for different 
fracture mechanisms if at all possible. 

For a long time, a single parameter such as J or 6 has been most attractive. However, 
after intensive investigation, no single parameter is universally applicable. The J-integral 
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Fig. 12. Comparison of crack tip stress ratios as plastic strain increases in a C C P  specimen and ii 
hardening material whcn r # a  = 0.0373: (a) 0 = 45 : (b)  0 = 56 . 
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Fig. 13. True stresses ahead of a crack tip as a function of J integral. 
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and crack tip opening displacement 6 ,  are useful with certain restrictions, but the restric- 
tions include a strong function of the specimen configuration and the loading system that 
induces large scale yielding. 

I t  is clear that one single parameter is not sufficient to characterize the crack tip 
stress-strain fields, e.g. [ 12, 131. Indeed if there was a single parameter i that could 
characterize the crack tip fields, one could arrive at the relation: 

( 5 )  oi j  = . f i j  (Y, 0; j.), 
c i j  = gij  ( r ,  0 ;  ;.), 

C,, = 11 ( r ,  0 ;  ;.). 

The functions, f i j ,  yl j  and h should be independent of geometrical configuration and 
loading condition but because the plastic strain E ,  is always increasing with i. increasing 
it  follows that: 

(8) 

The function H is dependent on ro  and one can choose any value of r0 in the dominant 

Here E*, is the plastic strain E P  at r = ro  and 0 = 0. Substituting equation (8) into 

i = H ( r ,  0; E*,); when r = ro,  0 = 0, 2. = H(E*,). 

region. For a given ro,  the function H should be uniquely defined. 

equations ( 5 )  and (6) one obtains: 

cTij = Fij ( r ,  0; .*,), 

E . .  = G i j  (r, 0 ;  C*,). 
1.l 

The functions of F i j  and Gij are, therefore, independent of specimen geometry and load- 
ing manner. From the above expressions one can conclude that the plastic strain EYp is 
also a single parameter which can characterize the crack tip fields. However, acording to 
the present work this is not true for large scale yielding. So there is no single parameter 
which can dominate the crack tip stress-strain fields. 

Two ptrrir1~1rtrr critrricl 

Several investigators have proposed two parameter criteria, Mackenzie, Hancock and 
Brown [ 141 proposed the critical plastic strain E,( criterion, where the critical strain E r  is 
dependent on the stress state which can be characterized by a second parameter (T~/(T,. 

Here o', is the equivalent stress and oo is the triaxial stress. They carried out a series of 
experiments to determine the relation between E,r and oo/oc,. 

Generally speaking, ductile fracture involves three distinct processes : void nucleation, 
void growth and finally coalescence between voids. All of these processes are governed by 
plastic deformation. As pointed out by McClintock [2] the triaxial stress has very im- 
portant effects on void growth. Furthermore, Thomason's [ 151 theory reveals that triax- 
ial stress plays an important role in the microscopic necking between voids. So it is 
reasonable to choose plastic strain Cp and either ratio co/oys or gO/oe  as the two par- 
ameters to represent fracture behaviour. The present work shows some features of these 
two parameters. From Fig. 10 once can conclude that the stress deviator S, is approxi- 
mately equal to  zero at 8 = 0 because the normal stress oz is nearly identical with the 
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triaxial stress oo. On the crack line: 

Since the equivalent stress CT', can be directly determined from the equivalent plastic 
strain E P  it is clear that the stress state at 0 = 0" can be described by the two parameters 
E P  and go. It can be seen from Fig. 12 that the stresses of,, oz, oo are nearly identical at 
0 = 45 for large plastic strains EP. Hence, the stress state at 0 = 45' can also be de- 
scribed by the two parameters oo and E P .  

If  crack initiation is due to  coalescence between a main crack and voids along the line 
0 = 0. then one can choose go, E p  at which 0 = 0 as the two governing parameters. 
However, if crack initiation is due to decohesion or void coalescence along the plane 
0 = 45 , then one can choose oo and E P  at 0 = 45' as the two governing parameters. 

CONCLUSIONS 

1. The plastic zone develops rapidly at short cracks and local plastic flow is much 
easier than in the case of long cracks. 

2. The equivalent plastic strain for a short crack is greater than the equivalent plastic 
strain of a long crack at the same value of the equivalent stress intensity factor. This 
is why a short fatigue crack will grow below the threshold stress intensity factor 
determined from experiments on long cracks. 

3 .  A single parameter is not sufficient to characterize crack tip stress-strain fields. 
4. The plane radiating at 8 = 45' from the crack tip is the plane of maximum shear 

stress but ( T ~ ~ , ) , , , ~ ~  occurs when €' = 56". 
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