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“The stationary two-dimensional (x, z) near wakes behind a flat-based projectile
which moves at a constant mesothermal speed (V) along a z-axis in a rarefied,
fully ionized, plasma is studied using the wave model previously proposed by one
of the authors (VCL). One-fluid theory is used to depict the free expansion of
ambient plasma into the vacuum produced behind a fast-moving projectile. This
nonstationary, one-dimensional (x, #) flow which is approximated by the K-dV
equation can be transformed, through substitution, 7==z/V., info a stationary
two-dimensional (x, z) near wake flow seen by an observer moving with the body
velocity {V,,). The initial value problem of the K-dV equation in {x, t) variables
is solved by a specially devised numerical method. Comparisons of the present
numerical solution for the asymptotically smail and large times with available
anajytical solutions are made and found in satisfactory agreements.

§1. Introduction

When a projectile or a spacecraft moves
rapidly in a rarefied, ionized medium (e.g.,
the upper ionosphere), the plasma disturbances
around the moving body can be studied con-
veniently as three separate problems: (i) the
sheath which refers to the zone of disturbances
wrapping up the front end of the body, (ii)
the far wake which designates the flow region
behind the body beyond a distance of several
body diameters and (iil) the near wake which
represents the plasma flow immediately behind
the body. This division was made'’ in con-
sidering the physical and mathematical charac-
teristics of the flow field herein. The plasma
sheath problem dates back 50 years to Lang-
muir’s electric static probe. The recent con-
tributions to the plasma sheath of a moving
body are given in ref. 1. It is of interest to note
the novel approach to the plasma sheath using
the Schroedinger equation {with WKBi-ap-
proximation) for mathematical advantages in
treating the self-consistent field-particle inter-
actions.!-%

In the far wake where the disturbances of
both particle and field distributions have been,
in general, considerably reduced in magnitudes,
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the Hnear perturbation techniques are ap-
plicable in treating the field-particle coupling
effects. As a result, the physics of the plasma
far wake behind a rapidly moving body are
also well understood.!” On the other hand,
the elucidation of the plasma near wake,
where the nonlinear coupling of particle and
field distributions must be admitted, has not
been effective. Farlier works on plasma near
wakes had been formulated predominately
on the basis of numerical iterations of the
particle trajectories for self-consistent fields.
Computations are cumbetsome and plagued
with mathematical instability problems."

An alternative approach to treat the plasma
near wakes, using one-fluid theory, was con-
ceptually proposed® to circumvent these dif-
ficulties. The purpose of the present note is to
complete such a fluid model pertaining to the
simplest geometric configuration.

In order to sharpen our focus on the essential
physics of the plasma near wakes, it s pos-

"tulated that the magnetic field effect is absent.

Tt is noted that an electrically conducting body
situated in a plasma will acquire an equilibrium
negative surface potential.?? In view of the
above discussion, the wake-filling fluxes may
be attributed to two primary causes: {i) deflec-
tion of the free stream plasma due to a nega-
tively biased surface potential field which tends
to produce an ion density peak on the axis of
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the wake. The magnitude of the peak depends,
among other factors, upon the intensity of
surface potential, and (ii) free expansion of
the ambient plasma into the wake-cavity.
During the expansion the ambient electrons,
because of their higher thermal speed than the
ions, move ahead of the ions initially until
an electrical field of charge separation acts to
equalize their motions. The advance of the
coupled electron-ion wave front is thus ambi-
polar in nature.

To expedite plasma wake study, models have
been constructed such that one of the two
contributing causes overwhelms the other.
For instance, with a sufficiently low surface
potential, the free expansion process becomes
predominant,’’ This will be assumed in the
present study,

it is admitted that a kinetic analysis by
means of the self-consistent Boltzmann-
Viasov equation and Poisson equation for the
particle and field distributions in a rarefied
plasma appears most reasonable. It poses,
however, many problems in computational
instabilities.”” Tt is noted that the fluid me-
chanical approach has been shown to be
effective because of the quasi-continuum nature
of rarefied plasma.*’ A wave model for the
mesothermal plasma near wakes using the
fluid approach was developed®+® in which an
analogy is drawn between the stationary pear
wake flow referred to by the body-fixed co-
ordinates and the free expansion flow seen by
an observer moving with a constant body speed
(V). The initial study®’ was made for the
simplest geometrical configuration, namely a
two-dimensional wake (¥, z) which is related
to the one-dimensional free expansion, ap-
proximated by the K-dV equation in (x, 1)
variables with t=z/V_. The solution of the
initial value problem of the K-dV equation
was, however, obtained only for small t which
is appropriate only for a partial near wake
closest to the base. The extended study of the
full near wake which ends where the inward
moving plasma streams meet on the wake axis
is undertaken herein.

§2. The Wave Model

Consider a flat plate of width L (in x-direc-
tion) and of infinite length (in y-direction)
moving along its normal (in z-direction) at
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Fig. 1. Near wake model

speed V,, through a fully ionized plasma
(Fig. 1). The speed V_ is mesothermal, ie.,
much greater than the ion thermal speed and
yet much less than the electron thermal speed,
(VET jm« V « kT, /m,). Immediately be-
hind the plate, a cylindrical region, with a
cross section equal to the area of the plate,
becomes momentarily ion-free. The nonsta-
tionary {ree expansion of ambient plasma into
the cylindrical cavity proceeds until collision
occurs between the two plasma fluxes filling
the cavity from opposite directions. In the
coordinate system fixed to the body, the near
wake flow is stationary and can be approxi-
mated®’ and resolved into a transverse expan-
sion and a longitudinal drift with velocity V..
In other words, the near wake structure (e.g.,
the ion density n(x, z)), In successive cross
sections at a different distance (z; downstream
from the plate, corresponds to successive
stages of nonstationary filling of the cavity by
the ambient plasma, n(x, f}, where t=2z/V,,.
It has been shown®® that the ion wave dis-
turbances moving with Mach number (defined
relative to the ion-acoustic speed) slightly
greater than unity in a uniform, magnetic field-
free and collision-free plasma can be represented
in terms of the Korteweg-de Vries equation:®

where 5 depicts jon density (s}, electric potential
(&) or ion velocity (v). Note that the simplified
from (1) with coefficients of unity on front of
each term can always be obtained by rescaling
with x—xb'? and n—njab™'"* where a and
b denote the coefficients of the convective and
dispersive terms, respectively.®’ The quantities
x, t, n, ¢ and v have been normalized with
Debye length A,={(kT /dre’n )'?, plasma
period t;==Ay/C;, ambient ion density ng,
electron potential ¢,=kT./e and ion acoustic
speed C;=(kT,/m,Y'/*, respectively.
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In the present near wake problem in which
the focusing effect of the free stream plasma
due to surface potential is neglected, the flow
field bounded between the plane and the
downstream station where the inward ion waves
from the opposite edges of the plate meet can
be formulated as the initial value problem
of eq. (1) with the following conditions:

0 0, for x<0, 5
=0 {1, for x>0, @
which depicts the initial ion density step at
the start of implosion. It is of interest to
estimate the time elapsed from the start to the
reflection of the ion waves at the wake axis,
namely Z/2C;, which in dimensionless variables
becomes At~ L/24, For a typical artificial
carth satellite in the upper ionosphere, At is
of the order of 50 which indicates the time range
of interest in the solution of the above men-
tioned initial value problem. A special numeri-
cal algorithm which can be considered as an
extension of MacCormack’s method”® s
presented herein (see §5) to treat the problem
of interest.

§3. Special Solution at £« 1

Washimi and Taniuti® obtained solution
of the linearized K-dV equation, which is ap-
propriate at f«1,
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with the initial conditions (2) as follows:

wwo=" Ao @
where 4i(¢) is the Airy function
. 1= o? d
Az(f)x:}; ,(o cos (oc<§+ —3~) o {3

An elementary analysis of the comparative
order of magnitude of the terms of the K-dV
equation can be made to establish the validity
range of the linear solution (4). Let At~ 0(g),
Ax must be O('%) in order that the first and
the third terms of eq. (1) have the same order
of magnitude. If # is O(1), the order of the
nonlinear term in eq. (1) becomes O(e~ /%)
which is smaller than that of the first or the
third term. It is thus concluded that the solu-
tion of Washimi and Taniuti® is a good ap-
proximation provided ¢ is small, The results
of our numerical integration (see §5) for both
t=0.15 and t=0.60 of eq. (3) are shown in
Fig. 2 with dots and crosses, respectively as
wellas those of eq. (1), with circles and triangles,
respectively, along with the solid curve plot
of eq. (4). The deviations of the solid curve for
t=0.60 from the numerical solution of eq. (1)
are apparent.

§4. Asymptotic Selution at 1

Gurevich and Pitaevsky'!® obtained the
asymptotic solution of the initial value problem

. »
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Fig. 2. Solutions of K-dV equation at small £, — Analytical
numerical solution Jegs. (3) and @D » =0.150),

B R 0 1

XA

solution (4), o (¢==1.125), A{r=0.600)
X (¢==0.600) numerical solution feas. (1} and (2)].
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Fig. 3, Solutions of K-dV equation at =50, —— Numerical solution [eqs. (1) and (2] {mesh sizes: dx==0.5,
Ar=0.0075), o Numerical sofution {egs. (1) and (2)] (mesh sizes: Ax==0.25, 4r=0.00375), — Asymp-
totic solution feq. (6)].
(1)-(2) for t>>1 in the form of a quasi-stationary  apparent variance between them suggests

wave:
2a L[ a\'?
n=z dng [(g’;ﬁ) (x— Vt)] +y, (6}

where dn, is the elliptic Jacobi delta function
with modulus 5; @, y and ¥ are slowly varying
functions of x and ¢ through variables s:

2

as=g y=—(1—5%),

2 s*H1—s5K(s)
T3 E@()—-(0—-5D)K(s)’

1
=§{1+s2), )]

1+5?
3

= ®)
with K and F denoting the full elliptic integrals
of the first and the second kind, respectively,

The comparison of our numerical solution
(see §5) with the asymptotic solution® for
t=>50 is shown in Fig. 3 with the former in a
solid line and the latter in a dotted Hne. The

that =50 is not large enough to comply with
the asymptotic condition. In the numerical
integrations, mesh sizes of both Ax=0.25
{circles) and Ax=0.50 {solid line) are used
with no noticeable differences in results.

§5.

Numerical Solution at Intermediate
Yalues of ¢

It has been shown (sece §2) that in the present
modeling study of the plasma near wakes
using the K-dV eguation, the typical range of
interest for the f-variable is 050, The previous
solutions®>*1® of the K-dV equation are,
therefore, not adequate for the present purpose.
The extended MacCormack method”-%:1Y js
herein further modified to treat the present
initial value problem (1)-(2). The predictor
and corrector in the MacCormack method can
be written as follows; .

At : At At
(L Lt I ~D =B gy et 3= 3 = M ) s O s b = 20, )
At
TT?%—Z___???-E-I_QZE -F-l(nné—l_njil ﬁ(dx)3(nji]i+3nn+l_3nu+l ?f;+;.)
At
+#(Ax)2(71:11+7f:+1_2’11+1)= (IO)
and also, with slight variance, used in ref. 8 for
= 1 (1 _i_n,ﬁz) (11 various flow problems. The numerical solution
/ 2 Lo for £=1.125 using spatial mesh sizes: Ax=
respectively. 0.2, 0.25 and 0.5 are shown in Fig. 4. The

The effectiveness of the present numerical
algorithm using (9), (10} and (11} has been
tested in some limited extent in §3 and 4 and

excellent agreement between the results from
different mesh sizes reveals the convergent
property of the present numerical approach.



. Fig. 4. Numerical solutions of K-dV equation at ¢=1.125 with different mesh sizes,
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+ Solution Jegs. (1)

and (2)} (Ax=0.2, 4¢==0.0015), o Solution legs. (1) and (2)] (Ax=0.25, 4¢==0,00375), % Solution [egs.

(D) and (2] (dx=-0.5, 4r==0,0075).

The profile of ion density a(x, z) in the near
wake can be identified with n(x, t) with ¢
replaced by z/V,. The profiles of electrical
potential ¢(x, z) and ion velocity in the near
wake can be calculated in terms of the ion
density using the formulations provided in
ref. 6.

It is of interest to reiterate that the main pur-
pose of the present paper is to give a thorough
discussion on the conceptual innovation of
wave model of the mesothermal near wakes—a
fundamental ionospheric aerodynamic problem
yet to be elucidated. This, of course, stems from
the inherent difficulties of treating the non-
linear coupling of plasma particles and field.
It is a fortunate coincidence that the KdV
equation is shown to be suitable for the wave
analogy of near wakes. Since a solution to
KdV equation for an extensive time domain
is needed for the present purpose, a numerical
algorithm of proven convergency® is used.
It goes without saying that there are thany
alternative schemes for the numerical solutions
of the KdV equation in the literature from
which we would like to cite one'? that gives
rigorous mathematical considerations of sta-
bility criteria for the numerical schemes

advanced therein.
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