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Stability of flow of a generalized Newtonian fluid
down an inclined plane

By Fan Chun, Institute of Mechanics, Academia Sinica, Beijing, China

Introduction

The stability of a layer of triply non-linear fluid, power law fluid, and a
second order fluid flowing down an inclined plane has been considered by
Yih [1], Fan [2}, and Gupta [3] respectively. Gupta found that the critical
Reynolds number (Re).; depend on the elastic properties of the fluid, but the
second order fluid had a constant viscosity and hence the effect of variation
of apparent on (Re)., was not considered. In this paper, the same flow
problem is considered for a generalized Newtonian fluid.

Yih’s [4] perturbation technique is used in the following analysis.

Differential system governing stability

A layer of a generalized Newtonian fluid of thickness 4 flows down a
plane (Fig. 1) inclined at an angle f§ to the horizontal. The steady primary
flow is taken parallel to the x,-axis with the x,-axis normal to the plate

downwards, the origin being taken at the undisturbed free surface.
The equation of momentum and continuity are

Q(aui/ﬁtl + u; 6115/6)&':}) = atij/ﬁxj + 0 X; 5 (l)

6u,~/ax,- =0 s (2)

Figure 1
Definition sketch
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where @ is density, ¢, is time and X; are the components of force due to
gravity.

For a generalized Newtonian fluid, the relationship between the stress
tensor 7;; and the rates of deformation 7;;1s

T =—p, i + f (% Vst Tes) Vij 3

where j;; = 0u;/0x; + Ou;/0x;, and §;; is Kronecker delta, p, is pressure, f is
an arbitrary function with continuous derivatives. (Several examples are
given in Fig. 2.)

The primary flow is steady and unidirectional and the velocity depends
on x, only. Using a bar to denote various quantities for this flow, (1) gives

f@)a=-egsinfx,, )

—Qgcosf=p. ®)
We now superimpose small disturbances on the main flow and write
wy=u+d, u,=0, p=p+p, (6)

where the tilde denotes various perturbed quantities.
Substituting (6) into (3), expanding f in a Taylor series about #’2, and
neglecting quadratic terms in the perturbed quantities, we obtain

‘L'n=—p1+2faﬁ/ax1; 722=—p1+2.faij/ax2;
T = (f+ 202 f') (OD/0x, + 0u/Ox,) + & f, (7

where f, f” are respectively f(@'%), df(@'?)/d (i#'?).
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Substituting (6), (7) into (1), cancelling out the terms corresponding
entirely to the primary flow, and neglecting quadratic terms in the perturbed
quantities, we obtain

(aa _ od _)
o u +uv=

o1, 0x,
y on O (617+612)i o
H 2 g Gt B ) ®
ob ob o5 27
i —— p vz o O
9(@&“ 6x1)= 20 ) g
. 0% df oD
U2 )t T ©)
We introduce the following dimensionless variables
x = x,/d, y = X,/d, t=1t,u'(d);
u=a/a'(d)yd, v=0/i'(d)d;, p=p/o[i' (A d* (10a)
and the following dimensionless quantities
Re=o @ (d)d*f((@ (), U=a/u'(d)d. (10b)
By substituting (10a), (10b) into (4), we obtain
f=f@@p/v), f@@p)=+2af)U”, 11

where the primes of U’, U” denote differentiation with respect to y. Further,
(2) reduces to

Ou/0x + 0v/0y=0. (12)
We now introduce the stream function y and write

u=0wy/0y, v=-—0y/0x (13)
and write

y=o¢(y) explia(x—cn], (14)

where a (=2nd/2) is perturbation wave number, A is perturbation wave-
length, ¢ (= ¢, + i ¢;) is wave velocity, i is imaginary number.

Substituting (10a), (10b)—(14) into (8), (9), and eliminating p from (8),
(9), we obtain finally
iaRe[(U=c)(¢" —a®9) — U"¢]

=(¢"/U"Y" +2a*[(—=2y/U + /U ¢'T + (1/U") a* o+ (1/U")" a*p. (15)
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This equation is true for all / and hence is valid for any generalized
Newtonian fluid.
The boundary conditions at the bottom of the layer are:

u=0, v=0 at y=1
or
g1)=0, ¢(1)=0. (16)

The boundary conditions on the free surface are more complicated, since
they must be applied on the free surface, not merely at y =0. Let nd be the
dimensional deviation of the free surface from its mean position, so that

On/ot+ U(0) 0n/Ox =v=—ia ¢(0) exp[i a(x — c?)]
or
n=1[p0)/{c— U(0)} exp[i a(x —c 1)]. a7

At the free surface the shear stress must vanish, and the normal stress
must balance with the normal stress induced by surface tension, thus we have

[(f+ 22 f") (9D/8x, + ii/0x,) + &' flymn =0 (182)

and _ ; 5 -
14 . . v n
-_— et ———————— —— 4+ § =
d@@ra P @ @rRe oy " o
where S = Td/p[#’ (d)}?, T being the surface tension.
Equation (18a) and (18 b) may be written in term of ¢ as

¢ () + a® o(m) + U” (1) ¢(0)/[c — U(0)] =0 (192)

0, (18b)

and
{la(cot B+ a2 SRe) ¢ (0)/[c— U(0)]—aRe(U—c) ¢’ +aRe U'p
—i[( /Uy +(/U"Y & 9— (4y/U = 1/U") 2 ¢l}y=y =0. (19b)

Solution for long wave

Because we only consider the case of long waves, it is convenient to use
Yih’s method [4] and expand the eigenfunction ¢ and the eigenvalue ¢ in
power series of the small parameter a, thus

o=@, +ap, +F g, + ...

c=c,tactatc,+.... (20)

Substituting the foregoing series into equation (15) and boundary
conditions at the free surface (19a), (19b) and collecting terms to the zeroth-
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order in &, we have the following differential equation

(s /U")" =0 1)
and the boundary conditions at the free surface are

U’ () + U (mIUQO) + U ())[e,— U(0)]=0
or

6©=—U(1) (22)
and

{5 (m/U"T=0. (23)

The final result of equation (21) and the boundary conditions (16),
(23) is

e(N=U-UDHy+UQ1), 24)

where a multiplicative constant can be chosen to be unity without loss of
generality.

The first-order approximation is obtained by collecting terms of order a,
which yields the following governing differential equation

(p//U")" =iRe[(U~co) 95 — U” 9,] - 25)

Since only terms of first order in « are retained in the differential system,
boundary condition (19b) becomes

c0s B 9,(0)/[c,— U(0)] —Re(U—c,) gg+Re U'p+i(p7/U")=0. (26)

As to boundary condition (19a) care must be taken that ¢ suffers a
change in the second approximation, so that the proper form of (19a) is now

@ (m) + a gl () + U" (1) [0, (0) + a0, () [co = U(0) + ;] =0.  (27)

For a first order approximation #, <1 the terms of order 7, are
negligible, and so are the terms of order a? in boundary condition (27). The
final result of equation (25) with its boundary conditions (26), (27), (16) is

¢, =i{cot f—Re U"()[U' (1) + U(O)]} [U'(n + 2} Udy
0

where +iRe[G"(I) - G(D], (28)

G()=U() H[U"ﬁy v dydy} dydy.
00 00

The critical Reynolds number is

[1 +2f Udy/U’(l)J cot B
(Reyer = b

T 1 i Ty (29)
Wr+4r) fUdy+2fUrdy+ U ydy-Jf Uy dy dy
0 1] 1] 00
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If Re > (Re)er, ¢; is positive, and the flow is unstable. If Re < (Re)er,
¢; 1S negative, and the flow is stable.

Calculation and disnussion
In this paper, two kinds of generalized Newtonian fluid are considered.

1. Power series

fis givenby f=p + py ¥ + p 7 + p, 7°.
The dimensionless velocity gradient is

U+ MU+ MU+ MU =-y,
where

M, = us(e g sin )* d*/u®;

M, = ps(o g sin )* d*/u°;

M,=u.(ogsin B)° d®/u .

U(») has not, in general, analytical expression, numerical computation is
needed.
For |M,| < 0.2, M, = M, = 0, we obtain an approximate value as follows

(Re)er = (— 1+ M, — 3M)2(5/2 + 46 M,/T — 2399 M2/294) cot 3.

The result agrees with that of Yih [1].

Numerical computation has been carried out. The critical values of
(Re)/cot B for various values of M,, M,, M, are given in Tablel and
illustrated in Fig. 3.

Fig. 2 shows that constitutive equation of power law fluid of n=1-1.3
bear similarity to that of power series fluid of M, =0-0.8; M,=M,=0. It

10 11 12 13n
Re)er
cot%?
301 @

x = X
The critical Reynolds number (Re)./cotf as e

function of dimensionless parameter M.

M,, M,, M, are respectively © 0.1, 0.05, 0.05; © 0.3, 29
03,0,306,06,0, ©08,04,02, ®08,-02,0.

——~~ values of power-law fluid,

----- approximate values of Yih, 18 . ) ! 3
various values of M, with M, = M, =0. 0 0.2 04 06 0.3 M,
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Table 1
Values of (Re).,/cot 8 for various values of M, , M,, M,.

M, 010 020 030 040 050 060 070 080 0.10 030 0.60 0.80  0.80
M, 0 0 0 0 0 0 0 0 0.05 0.30 0.60 040 -0.20
M, 0 0 0 0 0 0 0 0 005 0 0 020 0

&:);—2.55 263 269 275 279 283 28 290 263 283 298 300 284
co

can also be seen from Fig. 3 that there exists a similarity between the
stability characteristic of power law fluid of n=1-1.3 and that of power
series fluid of M, =0-0.8; M, = M, = 0.

2. Solution and calculation for viscoplastic fluid
We write the constitutive equation of a viscoplastic fiuid as
Ty = — P 8+ M| (3 st P1) V21"V 4 0o/ Dot Vs |V} Pis
for % Tt Tts = Te (313a)

1

'j’ij =1{ for 5 Tst Tts = T‘Z) . (31 b)

where m is modulus index, » is power law index, 7, is the yield stress.
Equation (31) has been found to describe adequately the rheological behavior
of emulsion used in film coating and thus the present work might be of
interest to the film industry.

As is usual in solving viscoplastic flow problems we need to consider two
layers one where (31a) is applicable and the other where (31b) is applicable.
The interface is where -;— Tt Tts = T2.

On non-dimensionalising all quantities, as above, we define the Reynolds
number to be Re=[ogsinfd(1-0)/m]*"d/gsinp, where @=1,/0gsinfd.
The steady velocity distribution is

UO)=——[1 =0 —(y— O™ Y1 -0 at yz 0,
1+n
n

U(y) =—2— (1 -

N=17,0-90 at y=6.

Superimposing small disturbances of the form given above, using (31b)
we find that the interface is given by y=© + 5, where # is defined by
kinematic condition to be # = [p(@)/{c — U(O)}] exp[i a(x — ¢ 1)].

At the interface we assume:

(a) The total velocity components must be continuous;

(b) The stresses must be continuous.
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Figure 4

The critical Reynolds number (Re)/cot § as a
function of power law index » for various values
of dimensionless yield stress 8.

Using foregoing interface condition and bottom condition (16), proceed-
ing as in previous section we obtain the critical Reynolds number to be

(Re)er = (1 +n)Bn+2) (1 +n+n0)/(1 — O)[2(1 + n)* + (4n+3) nO] .

Fig. 4 shows the critical Reynolds number as a function of power law
index n for various values of dimensionless yield stress @. It can be seen from
Fig. 4 that (Re)./cot B increases (more stable) with increasing @ for any
fixed n. Thus the effect of plasticity is to stabilize the flow.

The analysis of this paper is restricted to the case of two dimensional
long wave (wave number a < 1), and small perturbation amplitude (7 < 1).
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Summary

The analogue of Orr-Sommerfeld equation is derived for a generalized Newtonian fluid.
Based on this equation, the stability of such fluid flowing down an inclined plane under gravity is
studied. The critical Reynolds number is given as a function of dimensionless steady flow
velocity U(y) and the slope of the plane, and is computed for several fluids.

Résumé

On a étudié le probléme de stabilité de I'écoulement d’un fluide Newtonien généralisé sur un
plan incliné.
(Received: May 8, 1981; revised: December 9, 1981.)



