
Journal of Applied Mathematics and Physics (ZAMP) 0044-2275/82/002181-08 $ 3.10/0 
Voi. 33, March 1982 �9 Birkh~iuser Verlag Basel, 1982 

Stability of flow of a generalized Newtonian fluid 
down an inclined plane 

By Fan Chun, Institute of Mechanics, Academia Sinica, Beijing, China 

Introduction 

The stability of a layer of triply non-linear fluid, power law fluid, and a 
second order fluid flowing down an inclined plane has been consid~ed by 
Yih [1], Fan [2], and Gupta [3] respectively. Gupta found that the critical 
R@nolds number (Re)or depend on the elastic properties of the fluid, but" the 
second order fluid had a constant viscosity and hence the effect of variation 
of apparent on (Re)or was not considered. In this paper, the same flow 
problem is considered for a generalized Newtonian fluid. 

Yih's [4] perturbation technique is used in the following analysis. 

Differential system governing stability 

A layer of a generalized Newtonian fluid of thickness d flows down a 
plane (Fig. 1) inclined at an angle fl to the horizontal. The steady primary 
flow is taken parallel to the xl-axis with the x2-axis normal to the plate 
downwards, the origin being taken at the undisturbed free surface. 

The equation of momentum and continuity are 

~(~u~/~t~ + uj 8uJ~xj )  = ~z~j/~x~ + ~ X~ , (1) 

~u/~x~ = 0, (2) 

Figure 1 
Definition sketch 

x2 

xl 



I82 Fan Churl ZAMP 

where 0 is density, t 1 is t ime and X~ are the components  of force due to 
gravity. 

For a generalized Newtonian fluid, the relationship between the stress 
tensor ro and the rates of deformation ~j is 

(3) 

where pij = ~u~l~xi + ~ui l~x~,  and 6~j is Kronecker  delta, pl is pressure, f is 
an arbitrary function with continuous derivatives. (Several examples are 
given in Fig. 2.) 

The primary flow is steady and unidirectional and the velocity depends 
on xz only. Using a bar to denote various quantities for this flow, (1) gives 

f(~,2) ~, = _ 0 9 sin fl x2, (4) 

- ~o g cos 1~ = P .  (5) 

We now superimpose small disturbances on the main  flow and write 

ul = ~ + ~2, u2 = 0, Pl = P + P ,  (6) 

where the tilde denotes various per turbed quantities. 
Substituting (6) into (3), expanding f in a Taylor series about z7 '~, and 

neglecting quadratic terms in the per turbed quantities, we obtain 

r~ = - p~ + 2f~6/Sx, ; rz2 = - p~ + 2 f~ f~ /~xz ;  

z~z = ( f  + 2 fi,2 f , )  (afJ/Sx~ + OtT/Ox2) + ~' f , (7) 

w h e r e f f  are respectively.f(zT'~), df(~'2)/d (a'2). 

Figure 2 
The relationship between the stress z and the rates of 
deformation ~ for the power-law fluid and the power 
series fluid. 
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Substituting (6), (7) into (1), cancelling out the terms corresponding 
entirely to the primary flow, and neglecting quadrat ic  terms in the perturbed 
quantities, we obtain 

~(.~_ ~ ) 8fi ~2~ 

- , 2  , + - -  + ( f + 2 u  f ) -7 - -7o+  ( f + 2 ~ ' 2 f ' ) ,  (8) 
a x ~  

+ u  = 
( f -  2 ~'~.f') - -  

Ox2 8xl ~x2 

-,z , a ~  d f  a~ 
+ ( f + 2 u  f ) ~ - 7 4  - -  

dx2 ~x2 cx~ 
(9) 

We introduce the following dimensionless variables 

x = x J d ;  y = xz/d; t = t 1 ~' (d) ; 

u = ff/~'(d) d; v =O/~ ' (d)  d; p =f i /~[~ ' (d)]  2 d 2 (10a) 

and the following dimensionless quantities 

Re = ~ fd(d) d2/f([~'(d)]2), U =  ~ /~ ' (d )  d .  (10b) 

By substituting (10a), (10b) into (4), we obtain 

f = f ( [ ~ t ' ( d ) ] O ( y / U ' ) ,  f ( [~ ' (d ) ]0  = ( f +  2 ~ ' 2 f  ') U" ,  (11) 

where the primes of  U', U" denote differentiation with respect to y. Further,  
(2) reduces to 

~u/Ox + ~v/~y = 0 .  (12) 

We now introduce the stream function ~v and write 

u = O ~ v l a y ;  v = - a g / l a x  (13) 

and write 

~v= ~0(y) exp[i e (x  - c t)] ,  (14) 

where e (= 2zr d/2) is perturbat ion wave number ,  2 is perturbation wave- 
length, e (= cr + i c 0 is wave velocity, i is imaginary number.  

Substituting (10a), (10b) - (14)  into (8), (9), and eliminating p from (8), 
(9), we obtain finally 

i ot R e [ ( U -  c) ( ( '  - ~2 ~o) - U" ~o] 

= (~o"/U")" + 2e2[( - 2 y / U '  + 1 /U")  ~o'1' + (1/U")  ~' ~ + (1 /U")"  ~2(p. (15) 



184 Fan  Chun  ZAMP 

This equation is true for all f and hence is valid for any generalized 
Newtonian fluid. 

The boundary conditions at the bottom of  the layer are: 

o r  

u = 0 ;  v = 0  at y = l  

~o'(1) = 0, ~0(1) = 0 .  (16) 

The boundary conditions on the free surface are more complicated, since 
they must be applied on the free surface, not merely at y = 0. Let r/d be the 
dimensional deviation of the free surface from its mean position, so that 

~q/~t + U(O) ~ l ~ x  = v = - i ~ ~0(0) exp[i 0~(x - c t)] 

o r  

r/= [~0(0)/{c - U(0)) exp[i ~(x - c t)]. (17) 

At the free surface the shear stress must vanish, and the normal stress 
must balance with the normal stress induced by surface tension, thus we have 

[ ( f +  2fi 'z f  ') (~f)/~xl + ~a/~xz) + ~ ' f ]~ - ,  = 0 (18 a) 

and 
p f ~v ~2r/ 

e[a,(a)]2 d 2 p +  + = 0  (lSb) f ( [ a '  (d)] 2 Re ~y S ~ , 

where S = Td/o[~t' (d)]", T being the surface tension. 
Equation (18 a) and (18 b) may be written in term of  ~o as 

r + ~z ~0(r/) + U"(r/) ~0(0)/[c - U(0)] = 0 (19a) 

and 

{[~(cot fl + ~z SRe)]  ~0(0)/[c- U ( 0 ) ] .  ~ R e ( U -  c) ~o' + ~ R e  U'~o 

- i[(~o"/U")' + (1/U") '  o~ 2 ~0 - (4y/U'  - 1/U") ~2 r = 0. (19b) 

Solution for long wave 

Because we only consider the case of  long waves, it is convenient to use 
Yih's method [4] and expand the eigenfunction ~0 and the eigenvalue c in 
power series of the small parameter ~, thus 

c =  Co + ~ q + ~2 c2+ . . . .  (20) 

Substituting the foregoing series into equation (15) and boundary 
conditions at the free surface (19a), (19b) and collecting terms to the zeroth- 
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order  in ~, we have the following different ial  equa t ion  

(~o'/U")" = 0 (21) 

and the boundary  conditions at the free surface are 

+ + u ' ( 1 ) ] / [ C o  - u(0)] = 0 
or 

co = -  U'(1) (22) 

and 
[q~o' (t/)/U"]'  = 0 .  (23) 

The final result of  equat ion  (21) and the bounda ry  conditions (16), 
(23) is 

~Oo(Y ) = U(y) - U ' ( 1 ) y  + U ' ( 1 ) ,  (24) 

where a multiplicative constant can be chosen to be uni ty  without  loss of  
generality. 

The first-order approximat ion  is obta ined by collecting terms o f  order  e, 
which yields the following governing differential  equa t ion  

(~o;'/U")" = i R e [ ( U  - Co) ~0o" - U" ~0o]. (25) 

Since only terms of  first order  in e are re ta ined in the differential  system, 
boundary  condit ion (19 b) becomes  

cos fl ~0 o (0)/[c 0 - U(0)] - Re (U - co) ~o o + Re U' ~o + i(~o~'/U")" = 0 .  (26) 

As to boundary  condi t ion (19a) care must  be taken that  c suffers a 
change in the second approximat ion,  so that  the p roper  form of  (19 a) is now 

~o o' (t/1) + ~ ~o' 1' (r/1) + U" (q0 [q~o (0) + �9 ~ol (0)]/[c o - U (0) + e cd = 0 .  (27) 

For  a first order  approximat ion  t/1 ~ 1 the terms of  order  t h are 
negligible, and so are the terms o f  order  e~ in bounda ry  condit ion (27). The 
final result of  equat ion (25) with its bounda ry  condit ions (26), (27), (16) is 

I 11 cl = i {cot fl - Re  U' (1) [U' (1) + U(0)]} U' (1) + 2 1 U dy 
0 

where + i Re [G ' (1 )  - G(1) ] ,  (28) 

1 
G ( y ) = U ' ( 1 ) S  I U " I f y U " d y d y  d y d y .  

O 0  O 0  

The critical Reynolds n u m b e r  is 

[l+2iUdy/U'(1)]cotfl 
( R e ) e r  - ~ ~ a ~ ,  ( 2 9 )  

[U'(1)]z+4U'(1) I Udy+2 ~ UZdy+ I U'Zydy-~ ~ U'2ydydy 
0 0 0 O 0  
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If Re > (Re)e~, ci is positive, and the flow is unstable. If Re < (Re)er, 
c~ is negative, and the flow is stable. 

Calculation and disnussion 

In this paper, two kinds of generalized Newtonian fluid are considered. 

1. Power series 

f i s  given by f = / z  + / q  ~z +/% ~, +/z, ~o. 
The dimensionless velocity gradient is 

U" + M~(U')  3 + M2(U' )  ~ + M3 (g ' )  7 = - y ,  

where 

M1 =/z3 (0 g sin ,8) 2 dV/.z3; 

M2 =/Zs(O g sin ,8)4 d4/,us; 

M3 = ~, (O g sin ,8)o d6//.z7. 

U(y )  has not, in general, analytical expression, numerical computation is 
needed. 

For ]Mll < 0.2; M2 = M3 = O, we obtain an approximate value as follows 

(Re)cr = ( -  1 + M1 - 3M~)2 (5/2 + 4 6 M J 7  - 2399MxV294) cot ,8. 

The result agrees with that of  Yih [1]. 
Numerical computation has been carried out. The critical values of  

(Re)cr/Cot/~ for various values of M~, M2, M3 are given in Table 1 and 
illustrated in Fig. 3. 

Fig. 2 shows that constitutive equation of power law fluid of  n = 1 - 1.3 
bear similarity to that of  power series fluid of  MI = 0-0 .8 ;  M2 = M3 = 0. It 
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Figure 3 2.6 
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Table 1 
Values of (Re)Jcot ~ for various values of M~, M2, M3. 
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M 1 0.10 0.20 0.30 0 .40 0.50 0.60 0 .70 0.80 0.10 0 .30 0.60 0.80 0.80 
Mz 0 0 0 0 0 0 0 0 0.05 0 .30  0.60 0.40 -0.20 
M~ " 0 0 0 0 0 0 0 0 0.05 0 0 0.20 0 

(Re) e~ 
2.55 2.63 2.69 2.75 2 .79 2.83 2 .86 2.90 2 .63 2.83 2.98 3.00 2.84 

cot ]? 

can also be seen f rom Fig. 3 that  there  exists a s imilar i ty  be tween the 
stability characterist ic  o f  power  law fluid of  n = 1 -  1.3 and that  o f  power  
series fluid o f M  1 = 0 - 0 . 8 ;  Ms = M3 = 0. 

2. Solut ion a n d  calculat ion f o r  viscoplastic f l u i d  

We write the const i tut ive equa t ion  o f  a viscoplast ic f luid as 

for  1 > -g Zst zts = z~ , (31 a) 

~ij = 0 for  -g zst rt~ = ~ .  (31 b) 

where m is modulus  index, n is power  law index,  z0 is the yield stress. 
Equat ion  (31) has been  found  to descr ibe  adequa te ly  the rheological  behav io r  
of  emulsion used in film coat ing and thus the present  work migh t  be o f  
interest to the film industry.  

As is usual in solving viscoplast ic flow prob lems  we need to consider  two 
layers one where  (31 a) is appl icable  and the o ther  where  (31 b) is applicable.  

1 The  interface is where  2 z,t rt ,  = zo ~ �9 
On non-dimensional is ing all quanti t ies,  as above ,  we def ine the Reynolds  

number  to be R e = [ 0 g s i n f l d ( 1 -  O ) / m ] Z / n d / 9 s i n f l ,  where  O =  ro /Ogs in f ld .  
The  steady velocity d is t r ibut ion  is 

n 
U ( y ) =  l + n [ 1 - O - ( y - O ) a / n + l / ( 1 - O )  w ]  at y > - O ,  

n 
- - ( 1 - O )  at y ~ O  U ( y )  = 1 + n - " 

Super imposing small d is turbances  o f  the fo rm given above,  using (31 b) 
we find that  the interface is given by  y = O + r/, where  r/ is def ined by 
kinemat ic  condi t ion  to be r /=  [~0 ( O ) / { c  - U(O)}] exp [i e (x - c t)]. 

At  the interface we assume: 
(a) The total velocity componen t s  mus t  be cont inuous;  
(b) The  stresses mus t  be continuous.  
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Figure 4 
The critical Reynolds number (Re)or/cot fl as a 
function of power law index n for various values 
of dimensionless yield stress O. 
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Using foregoing interface condi t ion and bot tom condit ion (16), proceed- 
ing as in previous section we obta in  the critical Reynolds  number  to be 

(Re)er = (1 + n ) (3n  + 2)(1 + n + n O ) / ( l  - O)[2(1 + n) 2 + (4n + 3) n O ] .  

Fig. 4 shows the critical Reynolds  number  as a function of  power  law 
index n for various values of  dimensionless yield stress O. It can be seen from 
Fig. 4 that  (Re)er/cot fl increases (more stable) with increasing O for any 
fixed n. Thus the effect of  plasticity is to stabilize the flow. 

The analysis of  this paper  is restricted to the case of  two dimensional  
long wave (wave number  e ~ 1), and small per turbat ion ampl i tude  ( r / ~  1). 
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Summary 

The analogue of Orr-Sommerfeld equation is derived for a generalized Newtonian fluid. 
Based on this equation, the stability of such fluid flowing down an inclined plane under gravity is 
studied. The critical Reynolds number is given as a function of dimensionless steady flow 
velocity U(y) and the slope of the plane, and is computed for several fluids. 

R~sum~ 

On a Ctudir le probl~me de stabilit6 de l'~coulement d'un fluide Newtonien gCnCralisr sur un 
plan indinr. 
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