文章编号: 0258-7025(2006)07-0977-04

球墨铸铁材料对激光的吸收率

崔春阳¹,吴 炜²,虞 钢¹,郑彩云¹,甘翠华¹,宁伟健¹

(中国科学院力学研究所¹技术发展部,²非线性力学国家重点实验室,北京 100080)

摘要 球墨铸铁因其优良性能而被广泛用作模具材料。对球墨铸铁冲压模具的激光表面处理已成为改善其耐磨 性、提高使用寿命的重要方法。一定激光参量下吸收率的大小又直接影响到表面处理的质量。因此,确定球墨铸 铁材料对激光的吸收率十分必要。通过热电偶测温,计算机数据采集系统进行定点温度采集,并结合数值模拟方 法,对吸收率进行了标定,即首先根据预置的吸收率计算,预测被测点处的温度响应,并与实测响应比较,不断修正 吸收率值,使预测温度响应和实验值吻合,由此获得吸收率。采用这种方法获得了球墨铸铁材料在大气条件下对 激光的吸收率为23.3%。为激光处理球墨铸铁材料时工艺参量的选择和优化提供了一定参考。

关键词 激光技术;表面处理;吸收率;数值模拟

中图分类号 TG 164.2 文献标识码 A

On Laser Absorptivity of Ductile Iron

CUI Chun-yang¹, WU Wei², YU Gang¹, ZHEN G Cai-yun¹, GAN Cui-hua¹, NIN G Wei-jian¹

(¹ Division of Technology Sciences, ² State Key Laboratory of Nonlinear Mechanic, Institute of Mechanics, The Chinese Academy of Sciences, Beijing 100080, China)

Abstract Ductile iron has been as the materials for stamping and drawing dies due to its good mechanical properties. In recent years, laser surface modification of dies of ductile iron has been an important method to improve its wear resistance and useful life. With laser surface modification, absorptivity influences the surface modification straightly under certain laser parameters. So it is necessary to determine the laser absorptivity of ductile iron. The temperature is measured by thermal couple and treated by computer data-acquisition system. Meanwhile, the numerical simulation is to determine the absorptivity. The simulative temperature response at a certain point can be obtained through predictive absorptivity and compared with that of experiments until the simulated one is coincidence with experimental one. In the result, the absorptivities of ductile iron under atmosphere is 23.3 %. It provides some reference for the selection and optimization of technical parameters during the laser material processing.

Key words laser technique; surface modification; absorptivity; numerical simulation

1 引 言

球墨铸铁材料具有很高的机械性能和良好的铸 造性能,而且成本低,已被广泛应用于受力复杂和要 求较高的机械零件中,尤其是在大型冲压模具中。 然而如何提高模具表面的耐磨性,仍然是整个工业 行业面临的重大问题。其中利用激光对材料表面进 行强化处理提高耐磨性和使用寿命是一种非常有开 发潜力的先进加工技术^[1]。

对球墨铸铁等不透明金属材料而言,反射和吸 收是激光能量的主要分配形式。当激光强度较高 时,材料温度在极短时间内急剧升高,材料表面气

基金项目:中国科学院知识创新工程(KGCX1-11)资助项目。

收稿日期:2005-10-10; 收到修改稿日期:2006-02-15

作者简介:崔春阳(1972 → ,女,朝鲜族,中国科学院力学研究所博士研究生,主要从事计算固体力学及材料工艺力学的研究。E-mail:chy.cui@gmail.com

导师简介:虞 钢(19→,男,浙江宁波人,中国科学院力学研究所研究员,博士生导师,目前研究方向为激光智能制造基 础及相关工艺力学。E-mail:gyu @imech.ac.cn

化。气化产生的膨胀压力可使材料表面形成匙孔, 蒸发的物质形成等离子体羽。这种等离子体羽对入 射的激光能量也有吸收和折射作用。虽然在激光与 等离子体的相互作用、传播等方面都有较多研究,但 关于等离子体对入射激光的吸收率方面的研究很少 报道,而激光加工的本质则是利用材料吸收的激光 能量来改变材料的物理化学结构。因此,确定材料 对激光的吸收率^[2,3]是非常重要并亟需求解的问 题,同时又可以应用于工艺过程的数值模拟^[4]。

本文采用将实验测量和数值计算相结合的方法,初步估计球墨铸铁材料对1.06 µm波长入射激 光的吸收率。

2 实验方法及计算模型

2.1 实验方法

978

实验采用的材料为 Q T700-2 球墨铸铁材料。 其名义成分为: w(C) = 3.3%, w(Si) = 2.15%, w(Mn) = 0.6%, w(P) = 0.04%, w(S) = 0.02%。

实验前将块状铸铁用线切割的方法切割成 15 mm ×10 mm ×1 mm的片状试样,用 500[#] 金相 砂纸研磨试样表面。实验采用波长为1.06 µm,法 国 IQL-10 YA G 型脉冲式激光器,光斑直径为 1.2 mm,矩形脉宽为10 ms,单脉冲能量为4.3 J。在 大气环境中分别对两块试样进行了材料对激光吸收 率实验,激光作用位置、热电偶与试样的连接如图 1 所示。除激光作用面外,其余 5 个面和绝热材料接 触。适当能量的激光束照射到钢或铸铁材料表面之 后,材料局部表面温度迅速升高到奥氏体化温度以 上熔点以下,材料中的铁素体或珠光体转变为奥氏 体。当激光束停止作用后,热量迅速传递到周围基 体,奥氏体迅速冷却转变为马氏体,使材料表面得到 强化。

将直径为 0.3 mm 的铜 康铜热电偶用电容放 电的方法紧密焊接于试样底表面,如图 2 所示。通 过该热电偶获得测点在大气环境下的温度-时间历 程。计算机自动采样测量温度,响应时间为 0.2 ms。对大气工作环境下进行多点的温度测量, 如图 3 所示。

图 3 激光输入点分布图

Fig. 3 Input points of laser beam

2.2 计算模型

激光能量进入材料内部导致自由电子和束缚电 子平均动能增加,再通过电子与晶格的相互作用转 化为热能,然后经过弛豫过程达到平衡。弛豫时间 在10⁻¹³ s量级^[5]。脉宽为10⁻³ s量级脉冲激光表面 强化时,可以认为传统的傅里叶热传导定律仍然适 用。典型的热传导方程^[5]为

$$c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + Q \cdot, \qquad (1)$$

其中,*c*,*k*分别为材料密度、比热容和热传导系数, 这里采用变化的热物性参数,随着温度的变化而变 化⁽⁶⁾。Q为单位时间单位质量内热源的生成热。文献 [7]在激光表面强化过程中,证明对流辐射能量损 失不超过1%,同时文献[8]的分析也表明在激光表 面强化过程中对流和辐射引起的热量损失可以忽 略。只考虑两类边界条件,即指定温度的第一类边界 条件T = T(-1, t)和指定法向热流的第二类边界 条件q = q(-2, t)。初始条件为 $T = T_0(x, y, z)$ 。 利用有限元软件 Ansys,建立有限元(FEM)模 型并计算激光作用下材料内部的温度分布(如图 4 所示)。采用 6 面体 20 节点单元,局部细化并在实 验测温点位置布置 1 节点。

图 4 有限元模型图 Fig. 4 FEM-model

Nd YAG激光器的波长为1.06 µm,而感兴趣 的强化层深为百微米量级,因此可以把脉冲激光束 简化为表面热源。空间强度为高斯分布,即

$$I = I_0 \exp(-r^2/R^2), \qquad (2)$$

其中 I 为材料吸收的功率密度, I₀ 为峰值功率密度, r 为任一点处的半径值, R 为光斑半径。

激光作用区域按照第二类边界条件处理,即给 定边界法向热流

$$-k\frac{\partial T}{\partial z} = P, \qquad (3)$$

其中 为平均吸收率,其余边界按照绝热边界处理, 初始温度为25 。相关的热物性参量可以参阅文献 [7]。激光作用下,材料内部组织发生的变化非常复 杂,包含固态相变和固液相变。由于固态相变的潜 热相对固液相变潜热很小,因此计算中只考虑固液 相变潜热,处理成焓的形式进行计算,即

$$H = {}_{t_0} C(t) \,\mathrm{d}t + L \,, \qquad (4)$$

其中 *C*(*t*) 为随温度变化的比热,*L* 为材料的潜热 值。由(4) 式确定的焓场,代入到热传导方程(1) 可 以得到相应的温度场,即

$$\frac{\partial H}{\partial t} \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + Q_{\circ}$$
(5)

具体分析步骤为:

1) 首先假定吸收率 ,采用有限元软件 Ansys 进行瞬态温度场的计算,查看测点位置的温度时间 历程;

 2) 比较测点位置温度时间历程的计算结果和 实验结果,不断调整吸收率,直至二者吻合;

3) 测点位置温度计算结果和实验结果吻合时的吸收率
 助吸收率
 助是材料对激光的吸收率。

对图 3 所示的每个测点,重复 1) ~ 3) 步骤,然 后根据

$$=\frac{1}{n} \int_{i-1}^{n} i$$
(6)

得到大气环境下材料对激光的平均吸收率。其中, *n*为实验次数。

3 结果与讨论

在大气环境中对图 3 所示多个点进行激光能量 输入,通过热电偶测量温度曲线获得试样反面的同 一测点的温度变化输出曲线,如图 5 所示。从而达 到对实验和计算结果相对比的目的(见图 6)。

图 5 对应不同输入点的实验温度响应曲线 Fig. 5 Tested temperature changes with time for different points

由于传感器传输信号的滞后性及不稳定性,使 得实验及计算结果存在一定的偏差。但是二者的规 律及温度变化的峰值基本相同。计算得到的在大气 工作环境下的吸收率如表1所示。

当入射的脉冲激光能量为 4.3 J,脉宽为10 ms 时,在大气条件下基体材料对入射激光能量的吸收 率约为23.3%。由于这种方法的灵活性和可实现性, 可获得材料在不同温度区段对激光的吸收率。本文 激光参数下,材料表面的温度变化范围较大,但限于 实验条件,只能得到整个温度范围内的平均吸收率,

图 6 对应不同输入点的计算温度响应曲线

Fig. 6 Calculated temperature changes with time for different points

表1 对应点的吸收率

Table 1 Absorptivities of different points			
	Dots	Absorptivities	Average absorptivities
	1	0.226	
	2	0.249	
	3	0.235	
Atmosphere	4	0.232	0.233
	5	0.230	
	6	0.232	
	7	0.227	

如果条件许可,可以获得材料在不同温度区段对激 光的吸收率,进而近似得到整个温度范围内吸收率 随温度的变化情况,如通过控制激光参量使得材料 表面的温升范围在 0~200 之间,这时可相应得 到 0~200 的材料的平均吸收率。同样,可通过 控制温升范围在 0~400 得到在 200~400 的 平均吸收率。依次类推,可得到各个温度区段的吸 收率。如果激光器稳定性好,甚至可获得更小区段 的吸收率。吸收率的确定对于各种激光应用(激光 切割、激光焊接、激光表面处理)过程中模型的准确 建立尤为重要,从而指导生产实践。

参考文献

 Ba Fahai, Gan Cuihua, Wu Wei et al.. Study of surface modification by pulse laser of ductile iron [J]. Chinese J. Lasers, 2003, 30(7):663 ~ 667

巴发海,甘翠华,吴 炜等. 球铁材料脉冲激光表面强化的实验研究[J]. 中国激光, 2003, **30**(7):663~667

2 Zhang Qingmao, Liu Ximing, Zhong Minlin et al.. Characterization methods of the laser effective energy utilization in the process of powder feeding laser cladding [J]. Rare Metal Materials and Engineering, 2003, 32(7):550~553

张庆茂,刘喜明,钟敏霖等.送粉式激光熔覆过程激光有效能量的表征方法[J].稀有金属材料与工程,2003,**32**(7):550~553

3 Lin Xiuchuan, Shao Tianmin. Lumped method for the measurement of laser absorptance of materials [J]. Acta Physica Sinica, 2001, 50(5):856~859

蔺秀川,邵天敏.利用集总参数法测量材料对激光的吸收率[J]. 物理学报,2001,**50**(5):856~859

4 Huang Yanlu, Yang Fuhua, Liang Gongying et al.. Using insitu technique to determine laser absorptivity of Al-alloys [J]. Chinese J. Lasers, 2003, 30(5):449~453 芸玩法 私行化 源工芸 第 田原位法測定知会全社激光的時間

黄延禄,杨福华,梁工英等.用原位法测定铝合金对激光的吸收 率[J].中国激光,2003,**30**(5):449~453

5 Martin von Allmen. Laser Beam Interactions with Materials — Physical Principles and Applications [M]. Berlin Heidelberg: Springer Verlag, 1987, 50 ~ 58

Tan Zhen, Guo Guangwen. Thermophysical Properties of Engineering Alloys [M]. Beijing: Metallurgic Industry Press, 1994, 147~151
谭 真,郭广文. 工程合金热物性[M]. 北京: 冶金工业出版社,

1994 , 147 ~ 151

- 7 Sindo Kou, D. K. Sun, Y. P. Le. A fundamental study of laser transformation hardening [J]. *Metall. Trans. A*, 1983, 14:643 ~653
- 8 Li Junchang. Diffraction of Laser and Calculation on Thermal Acting [M]. Beijing: Science Press, 2002. 395~400 李俊昌. 激光的衍射及热作用计算[M]. 北京:科学出版社, 2002. 395~400