土的卸载试验和在万家寨引水隧洞变形分析中的应用

Unloading test of soil and application in deformation analyses of Wanjia Zhai water transmission tunnel

王 钊^{1,2},黄 杰¹,咸付生³,吴梦喜⁴ (1. 武汉大学 土木建筑学院,湖北 武汉 430072;2.清华大学 土木水利学院,北京 100084;3. 山西水利水电勘测设计院, 山西太原 030024;4.中国科学院力学研究所,北京 100080)

中图分类号:TU 43 文献标识码:A 文章编号:1000 - 4548(2002)04 - 0525 - 03

作者简介:王 钊(1945-),男,江苏扬州人,博士,教授,博士生导师,从事土工合成材料,非饱和土和数值分析的研究。

沭* 1 概

万家寨引黄工程隧洞总干线[#]7隧洞位于偏关县葛 家山至水泉河间,总长约9.21 km,其中土洞长2.685 km,隧洞开挖直径 6.012 m,衬砌内径 5.46 m, 衬砌厚 0.25 m,每环由4块六角形管片组成,管片与洞壁间用 豆砾石灌浆回填。#7隧洞部分穿过地质年代为第四纪 (Q3) 黄土,其颗粒组成和物理性质指标见表1.2。土名 为黄土状粉土。为分析计算隧洞和管片在周围土体作 用下,及在通水和放空情况下的应力和变形情况,对*7 土洞进行有限元分析。在确定土的 c, 值时,分别取 原状土进行了卸载、加载试验,并计算出邓肯-张模型 中的 k, n, R_f, G, F, D 进行比较。文中还对用两种试验 获得的模型参数进行有限元变形分析的结果进行比较。

Table 1 Size grading of loess									
<u>粒组/mm</u>	2.0~0.05	0.05 ~ 0.00	5	< 0.005					
百分比/%	34.5	59.8		5.0					
表 2 黄土的物理性质指标									
	Table 2 Physic	al properties of	loess						
$G_{\rm s}$	$/(g \text{ cm}^{-3})$	е	wp/%	wL / %					
2.70	1.64	0.84	16.9	25.7					

表1 黄土的颗粒组成

2 土的本构模型和加卸载准则

2.1 土的本构模型(邓肯-张模型)

邓肯提出的计算模型中包含切线变形模量 Et 和 切线泊松比 $\mu_t^{(1)}$,计算公式如下:

$$E_{\rm t} = k p_{\rm a} \left(\begin{array}{c} {}_{3} / p_{\rm a} \end{array} \right)^{n} (1 - R_{\rm f} \cdot S)^{2} \tag{1}$$

$$S = \frac{f(1 - \sin \beta)(1 - \beta)f}{2\cos \beta + 2\beta\sin \beta}$$
(2)

$$\mu_{t} = \frac{G - Flog(\frac{3}{p_{a}})}{\left[1 - \frac{D(\frac{1}{p_{a}})}{kp_{a}(\frac{-3}{p_{a}})^{n}(1 - R_{f}S)}\right]^{2}}$$
(3)

式中 E_i 为切线弹性模量 (MPa); S 为应力水平, 定 义为偏应力($_1$ - $_3$)与破坏偏应力($_1$ - $_3$)_f之比; μ_t 为泊松比,当 μ_t 0.5 时,取 $\mu_t = 0.49$; p_a 为大气压 力, pa = 100 kPa; k, n, Rf, G, F, D 为计算参数。

2.2 土的加卸载准则

土的抗剪强度不仅与土质有关,还与试验时的排 水条件、剪切速度、应力状态和应力历史等许多因素有 关、因此必须首先判断加卸载应力状态。

定义应力状态函数: $SS = S(3/p_a)^{0.25}$,土单元 受荷历史最大的 SS 值定义为 SSm ,按现有 3 计算条 件最大应力水平 $S_c = SS_m/(3/p_a)^{0.25/2/}$ 。将 S_c 与单 元当前的应力水平 s 比较 ,当 s s_{c} 时 ,为加载 ;当 s

0.75S。时,为卸载,计算卸载弹性模量的公式为

$$E_{\rm ur} = k_{\rm ur} p_{\rm a} (3/p_{\rm a})^n \qquad (4)$$

式中 $k_{\rm ur} = 1.2k$ 。 当 0.75 S_c S_{c} 时,计算弹 S 性模量 E 的公式为

$$E_{\rm t} = E_{\rm t} + 4(S_{\rm c} - S)(E_{\rm ur} - E_{\rm t})/S_{\rm c}$$
(5)

3 土的加卸载试验

3.1 目的

隧洞开挖实际上是一个卸载过程,而邓肯-张模 型中的参数 k, n, R_f, F, G, D 是由加载试验整理得到 的,为了模拟实际情况,对洞周土体和处于卸载状态的 土单元,应采用卸载试验确定抗剪强度和模型参数,并 与加载试验得到的结果比较。

3.2 卸载试验

卸载试验采用的仪器为 DTC - 158 - 1 型共振柱,试 样共4组,编号分别为#1-11-1、#1-14-4、#2-8-3 和[#]2 - 14 - 2。试样尺寸为 50 ×100 mm,试验固结围 压为 300,500,700 kPa 三级。剪切采用应力控制的方法, 其中#1-11-1、#2-8-3的轴向压力控制为固结压 力,围压逐步降低直至试样破坏,[#]1-14-4、[#]2-14-2 固结后加大轴向压力至二倍的固结压力(模拟原位的应

* 收稿日期:2001 - 09 - 02

力状态),再逐步降低围压直至试样破坏。其中[#]2-14 -2试样的应力和应变曲线见图1。按式(1)~(3)整理 得邓肯-张模型参数列于表3, *E*_t和μ_t列于表4。

表 3 加卸载试验的邓肯 - 张模型参数

 Table 3
 Parameters of Duncan - Chang model from loading and unloading tests

	с / (kPa)	/(9	k	n	R_{f}	G	F	D		
加载	0	30.1	426	0.19	0.89	0.45	0.21	5.00		
卸载	5	38.0	216	1.13	0.99	0.42	- 0.02	0.04		
表 4 加卸载试验的 E_t 和 μ_t 的比较										
Table	4 Comp	parison of	E _t ar	nd µ _t fr	om loa	ding and	l unloadi	ng tests		
试验		\$ *								
		多奴		300 1	cPa	500 kF	Pa 70	00 kPa		
₩ ₩	Et	$E_{\rm t}$ / $10^4 {\rm MPa}$		6.30		6.94 7		7.93		
川车		μ_{t}		0.3	5	0.31	(0.27		
	E	$/10^4$ MPa		6.7	4	12.6		18.0		

0 431

0 433

0.436

3.3 加载试验

U,

卸载

2

526

加载试验共分 10 组,在低压与高压应变控制式三 轴剪切仪上完成,试样尺寸为 39.1 ×80 mm,围压分 别采用 100、200、400 kPa,100、300、500 kPa 和 300、500、 700 kPa 三种,上覆土层厚度大者采用较大围压。剪切 速率为 0.08 mm/min。其中[#]2 - 14 - 2 试样的应力和 应变曲线如图 2 所示。按式(1) ~ (3)整理得邓肯 - 张 模型参数列于表 3, *E*_t 和 μ_t 列于表 4。

图 2 加载试验应力应变关系曲线 Fig. 2 Curves of stress versus strain from loading test

4 加载和卸载的参数比较

4.1 模型参数

从表 3 可见,卸载试验求得的 *c*, 值较大,4 个试 样的平均 *c* 值基本相同,而 值大 7.6°。其他模型参 数 *k*, *n*, *R*_f, *F*, *G*, *D* 的值不易比较,可用式(1),(3) 计 算得 *E*_t 和 μ_t 进行比较。

4.2 *E*_t 和 μ_t 的比较

考虑到卸载时土体的硬化具有较大抵抗变形的能力,常常把加载试验得到模型参数代入式(4)来计算弹 性模量。也可把卸载试验得到的模型参数直接带入邓 肯-张模型计算。下面用这两种方法计算进行比较。

选用围压 3 分别为 300,500,700 kPa,并取(1-3) = 50 kPa,可以算出三组不同的的 *E*_t, µt 值(见表 4)。不难看出采用卸载试验模型参数直接计算所得的 *E*_t 比用加载试验得到模型参数代入公式(4)得到的 *E*_t 大,同时卸载时的泊松比也比加载时大。当(1-3) 分别等于 100 kPa 和 200 kPa 时,具有相同规律。

5 有限元变形计算结果比较

5.1 网格的划分

在进行有限元计算时,由隧洞从内向外依次为三圈 管片单元、两圈豆砾石单元和土单元。单元的划分见图 3。图中为四结点单元,其后被自动剖分为三角形单元。

图 3 #7 洞 0 + 63 断面有限元计算网格 Fig. 3 FEM mesh of section 0 + 63 in tunnel NO. 7

5.2 计算方案和施工模拟

(1) 计算方案

断面堆积形成过程产生的初始应力; 隧洞开挖 引起的应力释放和洞周位移分布; 管片和回填豆砾石 在其自重和周围松动土压力作用下产生的应力和变形; 隧洞通水放空等工况下管片的位移和应力。其中须 说明的有隧洞开挖释放荷载法和松动土压力的施加。

(2) 隧洞开挖的释放荷载法

释放荷载的概念是邓肯 1963 年提出的,其基本思想是:开挖引起的应力和位移的变化,缘于开挖边界应力解除的结果,即在开挖边界上作用一卸荷结点荷载,

其大小等效于原来作用在该边界上的边界初始应力, 但方向相反。将释放荷载法用于隧洞开挖,其步骤为:

将外边界范围取得足够大,例如大于开挖洞径的三 四倍; 计算山体堆积过程,未开挖前的初始应力场 $\{ o_{i} = [x_{i}, y_{i}, x_{j}]_{0}^{T}$; 据初始应力计算开挖边界的 面力 x, y,即

$$\begin{vmatrix} x = x\cos + xy\sin \\ y = y\sin + xy\cos \end{vmatrix}$$
(6)

式中 为边界单元外法线与 x 轴夹角; 由面力计算 等效结点力,再反向作为荷载施加于洞壁,并计算产生 的应力增量 (),位移增量 (); 开挖后的应力场 等于初始应力加应力增量,即 () = ($_0$) + (),而 ()是开挖引起的,正是洞壁和周围土体的变形。

(3) 松动土压力

由于隧洞上方土的成拱作用,隧洞衬砌后,作用在 管片上的土压力并不等于上方土的自重,而是取决于 上方松动土体的压力。太沙基曾用试验和理论推导, 得出松动土体的范围,其高度(从隧洞水平直径向上) 约为3倍的洞径^[3]。根据松动土的高度,并假设静止 土压力系数 $K_0 = 1 - \sin$,可以计算得衬砌的外压 力,作为结点荷载计算管片的应力和位移。

5.3 隧洞的变形分析和比较

用卸载试验参数求得的隧洞开挖洞周位移和管片 安装后在松动土压力作用下管内壁的位移见图 4(a), (b),用加载试验配合加卸载准则计算得到的位移见图 5 (a),(b)。图中虚线是洞壁和管片内壁,虚线圆上共给 出 8点的位移矢量,并用分数表示位移的大小,其中,分 子为水平位移(向右为正),分母为竖向位移(向上为 正),将位移矢量连成实线。可见隧洞洞顶的位移向下, 洞底向上,洞的高度减小;管片安装后,因松动土压力是 对称施加的,其位移基本对称。现比较两种计算结果的 差别(见表 5,6)。可看出,在隧洞开挖洞周位移计算中, 采用卸载试验模型参数计算的洞高的减少为 90 nm,比 采用加载试验参数的小 19 nm;而在施加松动土压力管 壁位移的计算中,采用加载试验模型参数计算的宽度增 加 1 nm,而用卸载试验参数计算的宽度基本不变。

图 4 #7 洞 0+63 断面位移(采用卸载试验模型参数) Fig. 4 Displacement of section 0+63 in tunnel NO.7 从表中还可看出用卸载模型计算的位移较小,隧洞

竖向变形仅为加载模型计算位移的 0.82 倍,水平向变 形约为 0.61 倍,此外,水平方向位移的分布更合理,表 现在因地表倾斜引起的洞壁左侧向右位移大于洞壁右 侧向左的位移,见表 5。其中卸载试验相差较小,为 43, - 26 mm,而加载试验为 102, - 11 mm。此外,松动土压 力作用下管片位移的对称性也较好,见表 6。

图 5 # 7 洞 0 + 63 断面位移 (采用加载试验模型参数) Fig. 5 Displacement of section 0 + 63 in tunnel NO. 7

表5	洞壁位移比较
----	--------

Table 5 Comparison of displacement on inner face of tunnel mm										
试验.	河	顶	洞	底	高度	洞	左	洞	右	宽度
方法	U_X	Uy	U_X	U_Y	减少	U_X	U_{Y}	U_X	U_Y	减少
加载	34	- 77	34	32	109	102	- 27	- 11	- 11	113
卸载	8	- 66	8	24	90	43	- 27	- 26	- 7	69

表6	管片	内侧	位移	比较
12 0	ΒЛ	[멧[[[]]	11119	レレキス

<u>Table 6</u>	Co	mpari so	<u>n of d</u>	isplac	ement o	on inr	<u>ner face</u>	of tur	<u>nnel ri</u>	ng mm	
试验」	<u>管顶</u>		管底		高度	管左		管右		宽度	
方法	U_X	U_Y	U_X	U_Y	减少	U_X	U_Y	U_X	U_Y	减少	
加载	- 1	- 19	2	- 18	1	0	- 20	1	- 16	- 1	
卸载	0	- 18	0	- 17	1	0	- 18	0	- 18	0	

6 结 论

为考虑卸载状态土的应力应变关系,可用加载试验 配合加卸载准则获得模型参数,也可直接用卸载试验求 取模型参数,从山西万家寨粉质黄土的加卸载试验结果 的比较和隧洞变形计算结果的比较,可看出: 由卸载 试验获得的抗剪强度较高,其中 *c* 值基本不变,而 值 平均增大 7.6°; 卸载试验得到的 *E*_t 和 μ_t 比较大,且随 3 的增大, *E*_t 和 μ_t 的增大更明显。 用卸载试验的模 型参数计算得到的位移较小,且位移的分布更合理。建 议对于隧洞和土坡开挖及处于卸载状态下的土单元,应 用卸载试验求取模型参数,进行有限元分析。 可以用 弹性理论边界条件式(6)计算开挖边界的释放荷载。

参考文献:

- [1] Duncan J M, Seed R B, et al. A computer program for finite element analysis of dams (Research Report NO SV/ GT/ 84 03)
 [R]. Department of Civil Engineering, Stanford University, 1984.
- [2] 王 钊,王协群.三峡工程二期围堰低高防渗心墙方案的有 限元分析[J].武汉水利电力大学学报,1997,**30**(3):1-6.
- [3] 周小文. 盾构隧道土压力离心模型试验及理论研究[D]. 北京:清华大学,1999.