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Taking shear-induced dilatation into consideration in shear transformation zone (STZ) operations, we derive a new yield crite-
rion that reflects the pressure sensitivity in plastic flow in metallic glasses (MGs), which agrees well with experiments. Furthermore,
an intrinsic theoretical correlation between the pressure sensitivity coefficient and the dilatation factor is revealed. It is found that the
pressure sensitivity of plastic flow of MGs originates in the dilatation of microscale STZs.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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The pressure dependence of plastic deformation
in metallic glasses (MGs) has been a topic of active re-
search for over a decade [1–7], since it reflects the basic
flow mechanism, which differs from that of their crystal-
line counterparts. Although the precise physical picture
of how this dependence arises from the internal structure
of MGs remains elusive, it is plausible that it originates
from atomic-scale dilatation [8,9]. In crystalline solids,
unit glide of a dislocation, which is the basic unit of plas-
ticity, does not require significant dilatation; hence, plas-
ticity involves only deviatoric stress. However, the
fundamental carriers of plastic deformation in MGs
are shear transformation zones (STZ) or flow defects
[10–12], i.e. a local cluster of atoms undergoing an
inelastic shear distortion to produce a local shear strain.
Due to the long-range disorder structure, MGs—unlike
crystalline solids—cannot find a slip plane when they
experience shear deformation. As a result, STZs change
into a loose configuration with a larger volume, result-
ing in dilatation [13,14]. Such dilatation results in hydro-
static stress during STZ formation, and thus the
resultant macroscopic plastic flow should depend on

pressure or normal stress. However, the precise correla-
tion between dilatation during STZ formation and the
pressure sensitivity of macroscopic plastic flow in MGs
is unclear. In this paper, we present a theoretical deriva-
tion of the intrinsic correlation between pressure sensi-
tivity and dilatation; the underpinning physics is
briefly discussed as well.

There is a general consensus that the behavior of
STZs in MGs can be treated as an Eshelby-type inclu-
sion problem [10,15]. In this case, the STZ operation
takes place within the elastic confinement of a surround-
ing glass matrix. Since there is a shear-induced dilatation
during shear transformation, the STZ would shove aside
the surrounding atoms [14], making the operation of the
STZ harder. In order to highlight the essential physics,
the initial configuration of a STZ is assumed to be a
sphere of radius R. If the origin of coordinates x; y; zð Þ
lies at the centre of sphere, the initial configuration of
a STZ can be described by x2 þ y2 þ z2 ¼ R2, as
shown in Figure 1a. After a shape distortion, the config-
uration of the STZ changes into an ellipsoid described

by x2= 1þ bð Þ2R2
h i

þ y2= R2 1� bð Þ2
h i

þ z2=R2 ¼ 1, as

shown in Figure 1b. At the same time, an accompanied
bulk dilatation takes place, as shown in Figure 1c. Thus,
the final configuration of the STZ can be described

by x2= 1þ að Þ2 1þ bð Þ2R2
h i

þ y2= 1þ að Þ2R2 1� bð Þ2
h i

þ
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z2= 1þ að Þ2R2
h i

¼ 1. It is then easy to obtain that the

shear strain is 2b and volume strain is 3a during such
a STZ operation. The relationship between shear-in-
duced volume strain and shear strain is assumed to be
linear [16], 3a ¼ cð2bÞ, where c is the dilation coefficient
measuring the ratio of dilatation to shear strain.

In order to make STZ produce such a shear and
accompanying bulk deformation, the activation free en-
ergy DG is given by DG a; bð Þ ¼ DF a; bð Þ � W a; bð Þ,
where DF represents the energy required to deform a
STZ embedded in the matrix, and W is the work of ap-
plied stress at distant boundaries. DF a; bð Þ can be ex-
pressed as the sum of a distortional part DF s bð Þ and a
dilatational part DF d að Þ. Prior to calculating the energy
required to deform a STZ, the potential energy land-
scape of a STZ must be known. Analogous to the case
of close-packed atoms, the shear resistance of a free
STZ via shear strain can be assumed to be a form of
sinusoidal curve [10,15]. Furthermore, for ease of oper-
ation, we replace it with:

s ¼
2l0b b 6 bC

2l0 2bC � bð Þ bC < b 6 3bC

2l0 b� 4bCð Þ 3bC 6 b 6 4bC

8><
>: bc ¼

ŝ
2l0

� �
; ð1Þ

where ŝ is the barrier shear resistance of a STZ and l0

has the mean of shear modulus of a STZ. Then, the en-
ergy necessary to shear a free STZ by an increment of
shear strain is D/s ¼ 2l0X0 4bbc � 2b2

c � b2 � b2
0

� �
,

where X0 is the volume of a STZ, and b0 ¼ r0
1 � r0

3

� �
=

4l0 represents the initial deformation of the STZ before
shear transformation takes place with the principal
stress components ðr0

1; r
0
2; r

0
3Þ of applied stress r0

ij. Since
the STZ is constrained by the matrix, the energy caused
by such a shear deformation is DF s ¼ nsD/, where
ns ¼ 15 1� mð Þ= 7� 5mð Þ is the Eshelby factor for pure
shear deformation [17,18], and m is the Poisson’s ratio.
As for the dilatation part, the potential energy landscape
is assumed to be D/d ¼ 9=2Ka2X0, the same as the elas-
tic deformation, and K is the bulk modulus. Considering
the elastic constraint of the matrix, the potential energy
change associated with dilatation is DF d ¼ 9=2Ka2X0nd ,
where nd ¼ 1:5 1� mð Þ= 1� 2mð Þ is the Eshelby factor for
a pure dilatation [18,19]. As given by Eshelby [17], the
work of the applied stress r0

ij at the boundaries is
W a; bð Þ ¼ 2s b� b0ð Þns þ 2pc b� b0ð Þnd , where s¼ r0

1�
�

r0
3Þ=2is the maximum shear stress, and p¼ r0

1þr0
2þ

�
r0

3Þ=3 is the hydrostatic stress. Thus, we obtain the
whole activation free energy for such an STZ operation:

DG bð Þ=X0 ¼ �Al0 b� b0ð Þ2 þ B b� b0ð Þ þ Dl0; ð2Þ
where A ¼ 2ns � 4ndc2 1þ mð Þ= 3 1� 2mð Þ½ �, B ¼ �2cndpþ
4ns ŝ� sð Þ, and D ¼ 2ns 4b0bc � 2b2

c � 2b2
0

� �
. The free en-

ergy barrier for deforming an STZ is obtained by
@DGu bð Þ=@b ¼ 0. Thus we obtain the energy barrier:

DGu bð Þ X0 ¼= 4n2
s A� ns= Þ

�
ŝ� s� Qpð Þ2 l0;= ð3aÞ

with

Q ¼ 3c= 30 1� 2mð Þ 7� 5mð Þ þ 2 1þ mð Þc2= 1� 2mð Þ
� �

:
�

ð3bÞ
Note that a term with c2, which makes it much less than
other terms for c2 � 1, is neglected.

It has been recognized that macroscopic flow of MGs
occurs as a result of a series of STZ operations as de-
scribed above. In other words, yielding occurs when
the applied activation energy causes a critical density
of STZs to become unstable [15,20,21]. According to
the cooperative shear model (CSM) proposed by John-
son and Samwer [15], only when the barrier crossing rate
of STZs reaches a critical value comparable to the ap-
plied strain rate, _c, does plastic deformation takes place.
This yields:

x0 exp �DGu=kBTð Þ ¼ # _c; ð4Þ
where x0 is the attempt frequency, kB is the Boltzmann
constant, T is the temperature, and # is a dimensionless
constant of order unity. Then, substituting DGuwith
Eq. (3) into Eq. (4), one obtains:

sþ Qp ¼ k; ð5aÞ

with

k ¼ ŝ� 1

X0

l0kBT ln ðx0=# _cÞ=ð4n2
s=A� nsÞ

	 
1=2

: ð5bÞ

Eq. (5) is a pressure-dependent criterion for the plastic
yield of MGs. The coefficient Q, comparable to the fric-
tion coefficient in the conventional Mohr–Coulomb cri-
terion, describes the pressure sensitivity, and k
represents the strength threshold of yielding. Both Q
and k involved in Eq. (5) are endowed with clear phys-
ical meaning: they are correlated with microscopic
STZ operations. We find that the pressure sensitivity
coefficient Q is a function of dilatation coefficient c
and Poisson’s ratio m. The strength k depends on not
only the material parameters such as l0, X0 and m, but
also ambient temperature T and applied strain rate _c.
Here, ŝ is the yield stress at absolute zero temperature,
and the second term on the right-hand side of Eq. (5b)
is the softening of strength induced by thermal assis-
tance in the STZ operation. The temperature depen-
dence of strength is described by a power law with an
exponent 1/2, i.e. the same as that of Schuh et al. [9].
However, the temperature dependence of strength is rel-
atively weak, and hence a slightly different exponent of
2/3 derived by Johnson and Samwer [15] was also found
to capture experimental data well. Furthermore, it is
noted that both the enhanced effect of applied strain
rates and the weakened effect of dilatation are involved
in k.

Obviously, our criterion indicates that plastic yielding
in MGs relies on the maximum shear stress, as well
as hydrostatic pressure. To verify the criterion,
shear strength as a function of hydrostatic stress over

Figure 1. Schematics of Configuration change of an STZ operation.
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a wide range compiled in Figure 2 with data collected
from previous works [1,4,22,23] for Zr41:2Ti13:8Cu12:5

Ni10Be22:5 (Vit.1). Eq. (5) describes the experiment data
quite well while Q ¼ 0:158 and k ¼ 823:2 MPa. The
pressure sensitivity coefficient 0.158 is very close to
0.12 fitted from indentation data [24]. And the pure
shear strength k ¼ 823:2 MPa is a little smaller than
experiment value 1:03 GPa [22]. The reason is that the
real experiment can hardly be in a pure shear state with-
out any constraint in the shear plane. In this plot, two
broken lines represent uniaxial compression (left) and
uniaxial tension (right), respectively. Intersecting points
between the solid line and broken lines, which represent
uniaxial compression and uniaxial tension strength, also
show that strength of compression is larger than that of
tension. Furthermore, according to Eq. (3b), we can ob-
tain the dilatation coefficient c ¼ 0:093 for Vit.1, here
taking Poisson’s ratio m ¼ 0:352[5,25]. The calculated
value is in agreement with our previous analysis. Based
on the systematic study on the correlation between fra-
gility and elastic modulus for MGs, we revealed that,
in a real flow event, the shear-induced dilatation strain
is about 10% of shear yield strain [13].

The Eq. (3b) clearly indicates the relationship be-
tween the pressure sensitivity Q and the dilatation coef-
ficient cwith Poisson’s ratio m involved. If there is no
dilatation in our microscopic model, that is, c ¼ 0, the
pressure dependency of plastic flow vanishes. In this
case, Eq. (5) becomes the known Tresca criterion that
describes plastic yield of crystalline solids. For a given
Poisson’s ratiom, the pressure sensitivity Q increases sig-
nificantly with increasing the dilatation coefficientc,
which is shown in Figure 3. Physically, the higher c,
which means high volume dilatation when shear strain
is the same, could make hydrostatic stress p do more
work (see the expression of W a; bð Þ). As a result, p plays
a more important role in overcoming energy barrier of
STZs. In other words, the plastic flow of the MG be-
comes more sensitive to pressure. From above analysis,
one can conclude that it is the microscopic dilatation
that causes pressure dependency of macroscopic plastic
flow. And in other pressure-sensitive materials, such as
granular materials, Massoudi et al [26] and Nemat-Nas-
ser [27] have derived a correlation between friction angle
in Mohr-Coulomb criterion and dilatation angle by ana-
lyzing the sliding and rolling of grains on a shear plane.

Their calculations also indicate that pressure depen-
dency is resulted from dilatation in granular materials.
In addition, it is noted from Eq. (3b) that Poisson’s ratio
m also have an effect on pressure sensitivity coefficient Q.
However, there is no clear trend between them for vari-
ous MGs, since the dilatation coefficient is highly mate-
rial-dependent. Our prediction was confirmed by the
recent experimental data presented by Baricco et al. [28].

The intrinsic correlation of pressure sensitivity with
the dilatation could be understood further within the
content of the free volume. Recently, Dubach et al [29]
have performed systematic indentation experiments on
a Zr-based BMG with different structural states to
examine the pressure sensitivity of plastic flow. They re-
vealed that structural relaxed BMGs vis-à-vis as-cast
samples have more enhanced pressure sensitivity. It is
well known that atomic disorder or free volume within
BMGs is reduced during structural relaxation [30,31].
In such surroundings with lower free-volume content,
the STZ operations become more difficult, because it re-
quires more significant dilatation of the surrounding
matrix. According our foregoing analysis, such atomic-
scale dilatation would lead to pressure dependence of
macroscopic plastic flow in BMGs. Therefore, availabil-
ity of free volume is important for the STZs to operate
in a given volume of BMGs [29]. In fact, STZ operations
occur preferentially in those regions being higher free
volume as relatively less dilatation is required [10]. In
the opposite case, that is, free volume goes zero, STZs
could be restrained and tension transformation zones
(TTZs) could be activated as they can be regarded as
the counterpart of STZs suffering an extreme dilatation
but only slight shearing [31–33].

In summary, the energy barrier for a STZ operation
which takes shear-induced dilatation into account is de-
rived by treating STZ as an Eshelby inclusion. And then
following the physical picture of CSM, we obtain a yield
criterion theoretically, which describes the pressure
dependence of plastic flow of MGs quite well. In partic-
ular, the explicit relationship between pressure sensitiv-
ity coefficient and dilatation is obtained. Its validity is
briefly discussed in the context of free volume.

Financial support is from the NSFC (Grants
Nos. 10725211 and 10721202), the NSAF (Grant No.
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Figure 2. The maximum shear stress as function of hydrostatic
pressure for Vit.1 with collected experiment data [1,4,22,23].

Figure 3. Relationship between pressure sensitivity coefficient and
dilatation coefficient with different Poisson’s ratio.
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