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ABSTRACT

In protein sequence alignment, residue similarity is usually evaluated by substitution matrix,
which scores all possible exchanges of one amino acid with another. Several matrices are
widely used in sequence alignment, including PAM matrices derived from homologous se-
quence and BLOSUM matrices derived from aligned segments of BLOCKS. However, most
matrices have not addressed the high-order residue-residue interactions that are vital to the
bioproperties of protein. With consideration for the inherent correlation in residue triplet, we
present a new scoring scheme for sequence alignment. Protein sequence is treated as over-
lapping and successive 3-residue segments. Two edge residues of a triplet are clustered into
hydrophobic or polar categories, respectively. Protein sequence is then rewritten into triplet
sequence with 2 · 20 · 2 = 80 alphabets. Using a traditional approach, we construct a new
scoring scheme named TLESUMhp (TripLEt SUbstitution Matrices with hydropobic and polar
information) for pairwise substitution of triplets, which characterizes the similarity of residue
triplets. The applications of this matrix led to marked improvements in multiple sequence
alignment and in searching structurally alike residue segments. The reason for the occur-
rence of the ‘‘twilight zone,’’ i.e., structure explosion of low identity sequences, is also discussed.
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1. INTRODUCTION

S imilarity of amino acid is the basis of protein sequence alignment, protein design, and protein

structure/function prediction. The mutation data matrices of Dayhoff and Eck (1968) and the substitution

matrices of Henikoff and Henikoff (1992) are not only standard choices for the evaluation of residue

similarity, but also the basis of amino acid classification (Murphy et al., 2000; Liu et al., 2002; Li et al., 2003).

Efforts have been made to optimize these matrices by executing the iterative approach (Gonnet et al., 1992),

including evolutionary information (Koshi and Goldstein, 1995). Usually, in generating these scoring

schemes, homologous sequences were aligned column by column. Residues in each of the column were

deemed to mutate to or substitute for each other during the evolution. The counts of residue mutations or

substitutions observed in the database of aligned sequences were analyzed by statistical approaches, by which

the scores of residue similarity were derived. Though widely used in protein studies, few of these scoring

schemes have gone beyond the consideration of mono-residue substitution. Namely, it was assumed that

residues in different positions of a polypeptide mutate independently of each other.
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However, it is known that there are complicated residue-residue interactions in protein. These high-order

interactions are essential to the protein molecule. So the hypothesis of mono-residue substitution is not an

optimized choice. A more useful approach is investigating the local high-order interactions of protein se-

quence by k consecutive letters (k-word). As residue-residue correlations are biologically meaningful, the

k-word scheme has been used successfully in component analysis of nucleic acid and protein sequences

(Karlin and Ghandou, 1985) and in the study of molecular phylogeny (Qi et al., 2004; Hao and Qi, 2004), for

example. However, a 20k dimension vector is required to characterize the word type in such an approach. Owing

to the huge dimension size, a complete investigation is nearly impossible. A coarse-grained approach is the one

and only choice. Using coarse-grained k-word, research has been performed, including protein secondary

structure prediction (Zheng, 2004) and remote homologues detection (Ogul and Mumcuoglu, 2007).

As the physicochemical properties are alike for some naturally occurring amino acids (Mathews and Van

Holde, 1995), the size of the residue alphabet could be reduced by grouping similar residues together. The

feasibility of amino acid classification was supported by both experimental and theoretical approaches.

Several experiments have shown that some proteins designed with fewer than 20 types of residues can

maintain native structures of natural proteins (Regan and Degrado, 1988; Kamtekear et al., 1993; Davidson et

al., 1995; Riddle et al., 1997). There were also several theoretical approaches focusing on residue classifi-

cation, based on the substitution propensity of residues (Murphy et al., 2000; Liu et al., 2002; Li et al., 2003;

Fan and Wang, 2003), interaction potential (Wang and Wang, 1999; Liu et al., 2002), and other properties

(Gorban et al., 2010). Among the various classification schemes, a well-known and meaningful scheme is

clustering residue alphabets into hydrophobic/polar groups. The importance of hydrophobic interaction owes

much to the following two facts: (i) it is the driving force for protein folding (Dill, 1990; Li et al., 1997); and

(ii) it is an important factor for protein-protein interaction ( Jones and Thornton, 1996; Young et al., 1994).

According to research on amino acid classification, it has been proven that the hydrophobic/polar feature is

the dominant factor in clustering residue alphabets into two categories.

In this article, we introduce a residue clustering scheme for the representation of the residue triplet,

which decreases the dimension of phase space drastically. We then derive the substitution matrices of the

residue triplet from the counts of 3-residue pairwise substitutions based on the aligned residue segments in

the BLOCKS9 database (Henikoff and Henikoff, 1991). The capability of such scoring scheme is examined

in multiple sequence alignment and secondary structure identification.

2. METHODS

2.1. Database

In 1992, Henikoff and Henikoff (1992) obtained their amino acid substitution matrices (BLOSUM,

blocks substitution matrix) from the BLOCKS database. This high-quality database is based on local

sequence alignment, and derived from the homologous proteins in PROSITE catalog (Bairoch, 1991) by

PROTOMAT algorithm (Henikoff and Henikoff, 1991). The BLOCKS database contains the most highly

conserved regions (involving biologically significant sites, patterns, and profiles) of related proteins. In

order to set up a general scoring scheme, we used the BLOCKS9 database (published December 1995) in

matrices construction.

In the BLOCKS database, a group of ungapped multiple aligned segments is called a ‘‘block,’’ with each

row a different protein segment and each column an aligned residue position. A block represents a

conserved region of a protein family. In total, 3179 blocks are involved in BLOCKS9 database.

2.2. Residue classification scheme

In 1996, based on a database of native protein structure, Miyazawa and Jernigan (1996) derived their

knowledge-based potential from the frequencies of structural contacts between different amino acids. This

knowledge system provides the basis of many works in folding mechanism (Li et al., 1996, 1997) and

residue classification (Wang and Wang, 1999; Liu et al., 2002).

In our approach, a 2-letter scheme based on the Miyazawa-Jernigan matrix is adopted in amino acid

classification (hydrophobic h¼ {M, F, I, L, V, A, W}, polar p¼ {C, Y, Q, H, P, G, T, S, N, R, K, D, E}).

According to a former work (Liu et al., 2002), this classification scheme has a strong correlation with residue

hydrophobicity (Branden and Tooze, 1991). Actually, it has been shown by several researchers that there is
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no large difference among various clustering schemes when residue alphabets are grouped into two cate-

gories. So, different selections of clustering schemes should have limited impact on our results. Therefore, the

properties derived are expected to be robust. This is the first merit of a two-categories clustering scheme.

The other consideration is sample counts. In our approach, approximately 200 · x4 elements of a matrix

were estimated, where x is the category count of a clustering scheme. Sample counts decrease drastically with

the increase of x, especially at the low homologous level. A two-categories clustering scheme makes the

sample counts abundant enough for statistical approach.

2.3. Construction of triplet substitution matrix

We attempted to construct the scoring scheme for the similarities among k-words. As parameter k is large,

the resulting scheme would be more specific. But the corresponding sample counts per matrix element are

lower, which results in difficult statistical analysis. A good tradeoff is the adoption of a residue triplet. In our

approach, each protein sequence was treated as successive triplets of amino acids. In each of the 3-residues

segment, two neighbors of the central residue were mapped into h/p letters. With the 2 · 20 · 2¼ 80 letters

alphabet set, protein sequences were rewritten into triplet sequence.

Generally, samples in a block are biased; in other words, many segments are closely related to each other.

To reduce the bias, similar members were clustered within blocks, and each cluster was weighted as a single

sequence in data counting. A parameter Y% was specified as the threshold of sequence identity. Residue

segments that are identical for at least that percentage were grouped together within a block. Consequently,

one matrix characterizes the similarity of triplet among sequences below a certain homologous level.

It was considered that triplets in a column can substitute with each other in protein evolution. We counted

all possible pairs of triplet substitutions in each column of every block. All these counts were summed. The

result of this counting is a frequency table listing the counts for each of the 80þ 79þ ..1¼ 3240 different

triplet pairs that occur in the BLOCKS9 database. The table was then used to calculate a matrix representing

the log-odds ratio between these observed frequencies and those expected by chance.

We denote the total number of triplet pair i, j (1� j� i� 80) by fij. Then the observed probability of the

occurrence of pair i, j is

qij¼ fij=
X80

i¼ 1

Xi

j¼ 1

fij (1)

The probability for triplet i to occur is then

pi¼ qiiþ
X

j 6¼i

qij=2 (2)

The expected probability eij of occurrence of pair i, j is then pipj for i¼ j and pipjþ pjpi¼ 2pipj for i= j. An

odds ratio matrix is calculated where each entry is qij /eij. The logarithm of odds ratio is defined as lod ratio,

which characterizes the deviation of the sample counts observed in BLOCK9 from those of the background.

We calculated the lod ratio in half bit units as sij¼ 2log 2(qij /eij), which is rounded to the nearest integer

value to produce TripLEt SUbstitution Matrices with hydropobic and polar information (TLESUMhp Y).

For more details on matrix deriving, see Henikoff and Henikoff (1992).

3. RESULTS

In the TLESUMhp scoring scheme, the residue triplet is the unit of substitution. To the best of our

knowledge, there is no similar scoring scheme; therefore, a direct comparison with existing methods is not

possible. So we carried out a comparative evaluation of TLESUMhp by its performance in sequence

alignment. The well-known BLOSUM62 matrix was used as a reference.

3.1. Multiple sequence alignment

Here we show the power of TLESUMhp in multiple sequence alignment by an example of single block

motif search. We aligned a set of helix-turn-helix (HTH) proteins provided in 1993 by Lawrence (Lawrence
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et al., 1993). There are thirty sequences in this data set. Each of them contains a HTH motif for DNA-

binding involved in gene regulation. It has been found that there is a 18-residue common pattern in every

sequence. Due to the varieties in residue composition and position, however, it is a challenge to identify the

common pattern with the sequence alignment approach.

In 2005, Zheng searched this common motif with the BLOSUM62 scoring scheme (Zheng, 2005). Using

a center-star approach, two segments with high similarity score were defined as close neighbors. A motif

was regarded as a group of close neighbors in which one member shares the greatest similarity with the

rest of the members. Taking each sliding windows of width 18 from every sequence as a seed, the string

most similar to the seed is searched in each sequence other than the one that the seed is in. Namely, for seed

Si, lþ 1Si, lþ 2 . . . Si, lþ 18 in protein i, the highest scored segment in protein j (i= j; near neighbor of the seed)

that has a similarity score /ij, l¼
P18

k¼ 1 C(Si, lþ k, Sj, mþ k) not less than 10 bits is searched, where C(x, y) is

the xy entry in scoring scheme, and l, m are segment indices in sequence i and j, respectively. The score of a

seed/center-star is defined as the score sum of its near neighbors, Zil¼
P30

j¼ 1, j 6¼i �(/ij, l), where F(x) is the

step function with F(x)¼ x for x� 10 and F(x)¼ 0 otherwise.

According to Zheng’s work, using BLOSUM62, 23 near neighbors (including one incorrect case) was

found in TOP1 star tree, i.e., the tree formed by the near neighbors identified by the highest scored seed and

the seed itself. By rewriting the residue sequence with the triplet alphabet set and employing the TLE-

SUMhp62 scoring scheme, 29 near neighbors (only one protein is omitted) are found by the TOP1 star tree

of this center-star approach. And all these near neighbors are HTH motifs (i.e., true signals).

3.2. Secondary structure identification

Homologous proteins usually share the same protein fold. Therefore, the ability of a scoring scheme

could be evaluated by its performance in identifying structurally identical protein sequences. It is expected

that, in a set of segments collected by sequence alignment, a more sensitive scoring scheme will find a

higher proportion of members that share the same conformation. Namely, at a similar level of false signal

noise, a good scheme can identify more true signals.

To evaluate the performance of TLESUMhp62, we calculated the all-against-all pairwise similarity scores

for 10-width segments in a nonredundant set. In this data set, 1612 nonmembrane proteins from

PDB_SELECT25 (Hobohm and Sander, 1994) are collected, and no pair of sequences share sequence

identity of more than 25%. Given two segments X and Y that have a similarity score wXY ¼
P

i C(Xi, Yi)

more than threshold T
TLESUMhp

, if their secondary structure representations o(Xi) and o(Yi) are the same in any

column i of the alignment, then there is one count of a ‘‘True Positive’’ (TP) sample; otherwise, there is a

‘‘False Positive’’ (FP) one. The secondary structures were taken from the DSSP database (Kabsch and

Sander, 1983). According to this representation, there are eight types of protein secondary structures defined

with the hydrogen bond: H, G, I, E, X, T, S, and B. As in most methods, we considered 3 states {h, e, c}

generated from the 8 by the coarse-graining H, G, I? h for helices, E? e for strands and X, T, S, B? c for

coils.

A similar approach was performed with BLOSUM62 matrix. At certain threshold TBLOSUM, we obtained

the counts of TP and FP samples. Then by varying threshold T
TLESUMhp

, we tuned the total counts of FP to be

equal for both schemes. Consequently, we can evaluate the performance of a scheme by the improvement

in True Positive counts. For example, as threshold TBLOSUM¼ 23 units, we collected 86601 TP and 1389714

FP events with BLOSUM62 matrix. In next step, TLESUMhp62 detected 1403259 FP samples after an

adjustment of the threshold T
TLESUMhp

. At a nearly equal FP level, TLESUMhp62 detected 100644 TP

samples, gained an increase of nearly 16.2% compared with that of BLOSUM62 scheme.

The results of secondary structure identification are shown in Figure 1. Compared with BLOSUM62, the

improvement contributed by TLESUMhp62 is remarkable. The TP counts increase 9.2-16.2%. As shown in

the insertion of Figure 1, the FP/TP ratio decreases as TLESUMhp62 is used. Furthermore, in the counts of

FP, the cases with only tiny structural discrepancy increase 8.8–19.8%. For example, when the counts of FP

is about 244000, the proportion of FP with single mismatch in secondary structure are 22027 and 18381 for

TLESUMhp62 and BLOSUM62, respectively. The present scheme achieved an increase of 19.8 percents.

Therefore with an adoption of TLESUMhp62 matrix, the population of pairwise segment alignment shifts

towards the region with fewer mismatches.

In a detail analysis of the improvement, we found that TLESUMhp62 is more sensitive to samples at low

identity level. As TBLOSUM¼ 23, in the TP segment pairs obtained by BLOSUM62, 44.4 percentages
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(38464/86601) of them have no more than 4 identical residues. Whereas, at a nearly equal FP level, 75

percentages (75474/100644) of TP samples collected by TLESUMhp62 meet this low identity standard.

4. DISCUSSION

We have constructed a series of triplet substitution matrices from the BLOCKS9 database. Since three-

order residue-residue interaction is considered, these matrices are expected to be more sensitive. Im-

provements in sequence alignment, protein design, and protein structure/function prediction will be attained

by existing methods after the modification of using TLESUMhp matrices.

Insertion or deletion is important for sequence alignment. As the size of TLESUMhp is about 16 times of

that of ordinary matrices, it is not convenient to evaluate performance before a modification of the existing

tools. But once a residue sequence is rewritten into triplet sequence, a gap can certainly be introduced. It

does not matter whether a gap represents a triplet or a residue.

We found that, with the variety of sequence identity level, the propensity of the transitions among two

coarse-grained residues of triplet (TCGRT) alters accordingly. For example, the effect of p*h to h*p

transition can be evaluated by mean m(p�h! h�p)¼ 1
20

R20
X¼ 1TLESUMhpH(pXh, hXp), where O stands for

central residue. The effect of h*h to p*p can be defined as m(h * h? p * p) in a similar way. According to

TLESUMhp95, the ratio m( p * h? h * p)/m(h * h? p * p) is 1.85. But for the TLESUMhp30 matrix, the

ratio decreases to 1.11. Namely, the propensity of h*h to p*p transition increases at low identity level.

As the extension of BLOSUM matrices, TLESUMhp should correlate with BLOSUM. But in a direct

score comparison, there are various differences between the two types of schemes. In the BLOSUM62

scheme, the substitution score between F and W is 3 units (half-bits). As shown by the examples in Table 1,

a mismatch of the TCGRT induces a notable score shift in the TLESUMhp matrices, though the central

residues are identical. In TLESUMhp62, the substitution score between hFh and pWp is �3 units. It has the

maximum deviation compared to the 3 units evaluated by BLOSUM62 (i.e., a decrease of 6 units).

Moreover, as shown in Table 1, the score deviation induced by sequence identity threshold Y is obvious. So

the complexity of comparison is beyond the reach of a simple observation. There is a need for mathematical

analysis.

To investigate the correlation between the two types of matrices, a theoretical approach—eigenvalue

decomposition analysis—is applied to these matrices. According to this mathematical analysis, the com-

ponents of a matrix can be ranked based on their significance. Different matrices can be compared by the

most important components of them. In this way, the most significant similarity/dissimilarity among

different matrices could be revealed. For a N · N real symmetric matrix M, the element of the matrix can be

reconstructed as

FIG. 1. Results of secondary

structure identification.
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Mij¼
XN

a¼ 1

kaVa, iVa, j, (3)

where Mij is the element of the matrix in row i and column j, la is the ath eigenvalue, and Va, i is the ith

component of the ath eigenvector, Va¼ (Va, i). According to the absolute values, eigenvalues are sorted in a

descending order. The item given by the top eigenvector, l1V1, iV1, j has the largest contribution to element

Mij. In order to uncover the most significant similarity/dissimilarity, we focus on the relationships between

the first eigenvectors of the two types of matrices.

After subtracting the mean of the corresponding matrix from each element, eigenvalue decomposition

analysis is applied to each matrix. For matrix TLESUMhpY (H¼ 30, 35, . . . , 95), according to types of the

TCGRT (h_h, h_p, p_h, p_p), the 80 components of an eigenvector are grouped into four subsets. Each

subset can be deemed a 20-dimension vector and compared with the eigenvector obtained by the BLO-

SUMY matrix. Correlation coefficient r is calculated as r¼ lxyffiffiffiffiffiffiffi
lxxlyy

p , lxy¼
P20

i¼ 1 (xi� x)(yi� y), where

z¼ 1
20

P20
i¼ 1 zi, i is the residue type, x is a vector given by a subset of the first eigenvector’s components of

the TLESUMhpY matrix, and y is the first eigenvector of the BLOSUMY matrix. It was found that, for

different choices of subset and sequence identity level Y, jrj ranges from 0.74 to 1. So the two types of

matrices are indeed tightly related. According to the first eigenvectors, the difference between the two types

of matrices owes much to the introduction of TCGRT. There are obvious concert shifts in the value of the

first eigenvector’s components induced by TCGRT. It indicates that the differences among the four types of

TCGRT would be critical in reducing the 80-component eigenvectors of TLESUM to 20-component

vectors, to compare against the BLOSUM eigenvectors.

In the first eigenvector of TLESUMhpY (Y> 30), for any central residue O, components of hOp and pOh

are nearly equal. Taking the two components as references, there are obvious value shifts in the compo-

nents of hOh and pOp, up and down, respectively. For each TLESUMhp matrix, the first eigenvalue is

positive. As item k1V1, iV1, j¼ k1

2
[V2

1, iþV2
1, j� (V1, i�V1, j)

2] has the largest contribution in reconstructing

matrix element Mij, the smaller the difference between V1,i and V1,j, the greater is the positive value

attributed to the element. As V1, hXp � V1, pXh, mutations between h_p and p_h are conserved or may be

positively favored as Y> 30. In a similar approach, we find that interchange h_h$ p_p is recommended as

Y� 30. This transition of the type of favored interchange can explain the reason for the occurrence of the

‘‘twilight zone’’ for sequence alignment.

Table 1. The Score of Triplet Substitution as F and W Are Central Residues

Triplet pair TLESUMhp30 TLESUMhp62 TLESUMhp95

hFh$ hWh 4 4 4

hFh$ hWp 1 2 1

hFh$ pWh 2 0 �1

hFh$ pWp �10 �3 �4

hFp$ hWh 0 1 1

hFp$ hWp 1 3 3

hFp$ pWh �1 �2 �4

hFp$ pWp �5 �1 �1

pFh$ hWh 1 1 1

pFh$ hWp 0 �2 �3

pFh$ pWh 0 3 3

pFh$ pWp 1 0 �1

pFp$ hWh �1 �2 �5

pFp$ hWp �3 0 �3

pFp$ pWh �4 0 �2

pFp$ pWp 1 2 2

In each subunit, the score changes induced by miss matches of the two coarse-grained residues are notable. For example, when the two

coarse-grained residues are matchable (hFh$ hWh, hFp$ hWp, pFh$ pWh, and pFp$ pWp; their scores are shown in bold), the

substitution scores evaluated by TLESUMhp62 are 4, 3, 3, and 2 units, respectively, in a similar level to the score C(F, W)¼ 3(units)

evaluated by BLOSUM62 scheme. Otherwise, the scores deviate distinctly. As the scores of different TLESUMhpY matrices are

compared, the changes are also notable. The top three high deviation cases between TLESUMhp30 and TLESUMhp95 are hFh$ pWp,

hFp$ pWp, and pFp$ hWh, and are shown in italic.
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The ‘‘twilight zone’’ (Doolittle, 1986) is a crucial barrier to nearly all scientists who attempt to get

information about protein structure and function by the sequence comparison method. Most protein pairs

that have more than 30 out of 100 identical residues share similar protein structures (Sander and Schneider,

1991). Below this identity level, conventional sequence comparison methods often fail to align protein

sequences. When two totally unrelated sequences composed of the 20 standard amino acids are aligned

without any introduced gaps, random chance leads to about 6 percentages of identical residues (�30%).

And according to the observation of Rost, the emergence of the ‘‘twilight zone’’ seems not to be based

solely on statistics (Rost, 1999). Although a detailed description of structural deviation in the ‘‘twilight

zone’’ has been described by Chung and Subbiah (1996), the reason for its occurrence is still not clear.

Here we introduce Li’s HP model (Li et al., 1996) to describe the cause of the ‘‘twilight zone.’’ In their

model, a protein is treated as a self-avoiding chain of beads placed on a discrete lattice. Two types of beads

are used to mimic polar (p) and hydrophobic (h) residues. The energy of a sequence folded into a certain

structure is given by short-range contact interactions

H¼
X

i5 j

Erirj
D(ri� rj) (4)

where D(ri� rj)¼ 1 if beads ri and rj are adjoining lattice sites, but the two beads are not adjacent in

position along the sequence, and D(ri� rj)¼ 0 otherwise; si is either h or p. Depending on the types of

beads in contact, the interaction energies are evaluated as Ehh¼� 2.3, Ehp¼� 1, or Epp¼ 0, corresponding

to hh, hp, or pp contacts, respectively.

In Li’s 2D model (Li et al., 1996), surrounding each bead of the core, there are two resultful neighbors that

are not adjacent to the bead in position along the sequence. A bead pair have 22 · 22 kinds of surrounding

neighbors in total. For neighbor type m, we can calculate the energy HA B
l of the local structure, because bead

pair A_B are surrounded by m. When A_B changes to A0_B0, there will be an energy modification

jDH(l, A B$ A0 B0)j ¼ jHA B
l �HA0 B0

l j, which reflects the impact to energy induced by interchange.

According to our analysis, interchange of h_p and p_h is recommended as sequence identity is >30%. As

shown in Table 2, when they interchange with each other, only jDHj ¼ 0*0.6 rises in energy modification

(jDHj ¼ 0*1.2 for 3D model). The tiny energy deviation does not impact homologous proteins signifi-

cantly. Consequently, proteins tend to keep a similar structure. This is the reason that sequences at such an

identity level are expected to have similar structure or function. But as sequence identity is less than 30%,

interchange of h_h and p_p is favored. A large energy modification jDHj ¼ 4*5.2 is induced by such an

interchange (jDHj ¼ 8*10.4 for 3D model). The low identity level further makes such mutations happen

Table 2. The Impacts to Energy H Induced by h_p$ p_h and h_h$ p_p

Interchanges

Neighbor categories jDH(h_p$ p_h)j jDH(h_h$ p_p)j

hhhh 0 5.2

hhhp 0.3 4.9

hhph 0.3 4.9

hhpp 0.6 4.6

hphh 0.3 4.9

hphp 0 4.6

hpph 0 4.6

hppp 0.3 4.3

phhh 0.3 4.9

phhp 0 4.6

phph 0 4.6

phpp 0.3 4.3

pphh 0.6 4.6

pphp 0.3 4.3

ppph 0.3 4.3

pppp 0 4

In Li’s two-dimensional HP model, every residue in the core have two resultful neighbors that

are not adjacent to the residue in position along sequence. Two coupled sites have 24 kinds of

surrounding neighbors. The impact for every neighbor category is presented here.
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frequently. Due to the large impact on energy, difficulty in preserving protein structure is drastically

increased. This can explain the occurrence of the so-called ‘‘twilight zone’’ for sequence homology.

Details of the eigenvalue decomposition analysis of TLESUMhp matrices will be published elsewhere.
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