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Nanoadhesion of a Power-Law Graded Elastic Material *
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The Dugdale–Barenblatt model is used to analyze the adhesion of graded elastic materials at the nanoscale with
Young’s modulus 𝐸 varying with depth 𝑧 according to a power law 𝐸 = 𝐸0(𝑧/𝑐0)

𝑘 (0 < 𝑘 < 1) while Poisson’s
ratio 𝜈 remains a constant, where 𝐸0 is a referenced Young’s modulus, 𝑘 is the gradient exponent and 𝑐0 is a
characteristic length describing the variation rate of Young’s modulus. We show that, when the size of a rigid
punch becomes smaller than a critical length, the adhesive interface between the punch and the graded material
detaches due to rupture with uniform stresses, rather than by crack propagation with stress concentration. The
critical length can be reduced to the one for isotropic elastic materials only if the gradient exponent 𝑘 vanishes.
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In recent years, the conception, flaw tolerance or
flaw insensitivity, has been raised not only for biolog-
ical materials,[1−7] but also for micro- or nano-scale
electronic devices and mechanical devices.[8−10] This
conception is now often used in interfacial adhesion
problems. Generally speaking, the actual adhesion
strength for an interface, which is defined as the force
per unit contact area at pull-off, can be much lower
than the theoretical adhesion strength due to the pres-
ence of crack-like flaws induced by surface roughness
or contaminants. The breakage of adhesion is due to
the crack propagation. Flaw tolerance in the adhesive
interface will maximize the adhesion strength at the
theoretical one via size reduction. The adhesive con-
tact interface fracture is not due to the crack-like flaw
propagation but to a uniform bonding rupture. For
example, Persson[10] investigated the adhesive con-
tact between a rigid disk and an elastic half space
and showed the adhesion strength saturates for small
contact objects. Gao et al.[3] studied the adhesion
strength of a flat-ended cylindrical punch in contact
with a rigid substrate and found that the adhesive
strength will attain the theoretical one below a criti-
cal scale. Hui et al.[4] and Glassmaker et al.[5] studied
a bio-mimetic fibrillar structure with slender elastic
fibers and demonstrated that the adhesion strength
can be enhanced in contrast to a non-fibrillar struc-
ture. Northen and Turner[11] reported significantly
improved adhesion in hierarchical hairy adhesive ma-
terials.

In this Letter, we study the nanoadhesion between
a small rigid punch and a graded elastic material with
Young’s modulus varying with depth according to a
power law 𝐸 = 𝐸0(𝑧/𝑐0)𝑘 (0 < 𝑘 < 1) while Poisson’s
ratio 𝜈 remains a constant, such as the adhesive pad in
cicada. When 𝑘 = 0, the gradient half-space degrades
to an isotropic material. If 𝑘 = 1, it reduces to be a

Gibson material such as the soil.
The model is shown in Fig. 1. Perfect adhesion is

assumed as that in Ref. [10] and the half-width of the
punch is 𝑎. The adhesive interface is described by the
Dugdale–Barenblatt model.
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Fig. 1. Schematic diagram of a small-size rigid punch
with half-width (plane strain) or radius (3D) 𝑎 in adhe-
sive contact with a power-law graded elastic half space.

From the solution of a plane strain graded elastic
half space pulled by a homogeneous traction 𝜎 within
the length region 2𝑎, the normal displacement 𝑢𝑧(𝑥)
can be expressed as[12,13]
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with Γ in the above formula being the Gamma func-
tion.
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Solving Eq. (1) yields the normal displacement un-
der tension of the homogeneous traction 𝜎,

𝑢𝑧(𝑥) =
𝛽𝑐𝑘0 sin(𝜋𝛽/2)𝜎

2(1 − 𝑘2)𝐼𝑘𝐸*𝑘

[︀
(𝑎 + 𝑥)1−𝑘 + (𝑎− 𝑥)1−𝑘

]︀
.

(3)
The cohesive law in the Dugdale–Barenblatt model
can be expressed as

𝜎(𝛿) =

{︂
𝜎th, 𝛿(𝑥) ≤ 𝛿0,

0, 𝛿(𝑥) > 𝛿0,
(4)

where 𝜎(𝛿) is the normal traction on the adhesive con-
tact interface, 𝛿0 is the maximum effective range of co-
hesive interaction, 𝛿(𝑥) is the separation between the
contact surfaces. The interfacial energy is

∆𝛾 = 𝜎th𝛿0. (5)

At the moment of pull-off, the maximum opening dis-
placement at the contact edge should not be larger
than the effective interaction range 𝛿0, i.e., 𝛿(𝑎) ≤
𝛿0. Thus, the normal traction on the adhesion inter-
face 𝜎(𝛿) uniformly attains the interfacial theoretical
strength 𝜎th. The critical size 𝑎cr can be obtained
from

𝛿(𝑎cr) = 𝛿0, (6)

where
𝛿(𝑎) = 𝑢𝑧(0) − 𝑢𝑧(𝑎). (7)

Substituting Eq. (3) into Eq. (6) leads to the critical
size

𝑎cr =

[︂
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]︂ 1
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. (8)

When 𝑎 ≤ 𝑎cr, the detachment of the adhesive in-
terface will be due to the uniform rupture and the
traction at the interface attains uniformly the theo-
retical strength 𝜎th. For a special case, 𝑘 = 0, the
graded elastic half space reduces to be an isotropic
elastic one. Then the critical size becomes

𝑎cr =
𝜋𝐸*𝛿0

2𝜎th ln 4
, (9)

which is consistent with the results of Chen and
Soh.[14]
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(10)
Figure 2 displays the non-dimensional critical size 𝑎cr
as a function of the non-dimensional characteristic
length 𝑐0 for a determined parameter 𝐸*/𝜎th and dif-
ferent grading exponents 𝑘. One can see that for a
given 𝑘, the critical size 𝑎cr decreases with the increas-
ing characteristic length 𝑐0. When 𝑘 tends to zero, 𝑎cr

tends to be a constant given in Eq. (9).
For the three-dimensional (3D) case, we can find

the normal surface displacement solution[15] of a
graded elastic half space loaded by a uniformly dis-
tributed load 𝜎 in a circle region with radius 𝑎,

𝑢𝑧(𝑟) = 𝑢𝑐𝐹
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where 𝐹 (𝑎, 𝑏, 𝑐, 𝑑) denotes Gauss’s hypergeometric
function, and the center surface displacement at 𝑟 = 0
is

𝑢𝑐 =
2

1 − 𝑘

𝜋𝜎𝐵𝑐𝑘0
𝐸0𝑎𝑘−1
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where
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while the surface displacement at 𝑟 = 𝑎 is given as
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𝑢𝑐Γ(1 − 𝑘)
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For a rigid punch of radius 𝑎 in adhesive contact with
a graded elastic half space, the maximum separation
𝛿 can be obtained to be

𝛿(𝑎) = 𝑢𝑧(0) − 𝑢𝑧(𝑎) = 𝑢𝑐 − 𝑢𝑎. (16)

When the interfacial traction achieves the uniformly
distributed interface theoretical strength 𝜎th, we ob-
tain
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Flaw insensitivity condition requires 𝛿(𝑎) ≤ 𝛿0, then
the critical contact radius 𝑎cr can be derived from
𝛿(𝑎cr) = 𝛿0 as

𝑎cr =
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(1 − 𝑘)𝐸0𝛿0
2𝜋𝜎th𝐵𝑐𝑘0

]︂ 1
1−𝑘

[︃
1 − Γ(1 − 𝑘)

Γ
(︀
1−𝑘
2

)︀
Γ
(︀
3−𝑘
2

)︀]︃ −1
1−𝑘

,

(18)
which means that if 𝑎 ≤ 𝑎cr, the bond breaking may
occur uniformly over that circle contact area and the
traction at the interface achieves uniformly the theo-
retical strength of the interface.

For a special case, 𝑘 = 0, the critical size becomes

𝑎cr =
𝜋𝐸*∆𝛾

4(𝜋/2 − 1)𝜎2
th

, (19)

which is identical to the solution of Hui et al.[4] and
Chen and Soh.[14] Comparing the critical radius in
Eq. (19) with that obtained by Gao et al.,[3] one can
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find that the critical size predicted by the Dugdale–
Barenblatt criterion is more conservative than that
predicted by the Griffith criterion, which is similar
to the flaw insensitivity conditions for a thin strip
with central crack or double-edge cracks by Gao and
Chen.[16]

The non-dimensional relationship between 𝑎cr and
𝑐0 can be written from Eq. (18) as(︂

𝑎cr
𝛿0

)︂1−𝑘

=
1 − 𝑘

2𝜋𝐵
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2
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×
(︂
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𝛿0

)︂−𝑘

. (20)

Comparing Eqs. (10) and (20), we can find an analo-
gous tendency in the 3D case to the plane strain one.
That is, for a determined grading exponent 𝑘, the crit-
ical size 𝑎cr decreases also with an increasing 𝑐0 in this
3D case. When the grading exponent 𝑘 tends to zero,
the critical size 𝑎cr will be that in Eq. (19).
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Fig. 2. The non-dimensional critical size 𝑎cr/𝛿0 as a func-
tion of the non-dimensional characteristic length 𝑐0/𝛿0 for
determined parameters 𝐸*/𝜎th = 500, 𝜈 = 0.3 with dif-
ferent grading exponents 𝑘.

From Eqs. (8) and (18), one can see that the critical
size of nano-adhesion depends on not only the feature
of the solid surface, such as the surface energy ∆𝛾 and
the effective interaction stress 𝜎th, but also the mate-
rial constants, such as the referenced Young’s modulus
𝐸0, the gradient exponent 𝑘 and the characteristically
geometric length 𝑐0, which describes the variation rate

of Young’s modulus near the surface. Nanoadhesion
of flaw tolerance requires 𝑐0 is comparable to the sur-
face effective interaction distance 𝛿0 as shown in Fig. 2,
which leads to the critical adhesion length 𝑎cr compa-
rable to 𝛿0. If 𝑐0 is much larger than 𝛿0, the adhesion
will be flaw-sensitive.

In conclusion, we have analyzed the size effects
in both plane strain and three-dimensional nanoadhe-
sion for small sized punches in adhesive contact with
a graded elastic half space. We find a critical length
scale, under which the bonding breaking occurs uni-
formly over the contact area, rather than by crack
propagation as is almost the case for macroscopic bod-
ies. The critical length depends on the grading expo-
nent 𝑘, the ratio of 𝐸0/𝜎th, as well as the characteris-
tic length 𝑐0 describing the gradient variation rate and
the effective interaction distance 𝛿0. For this kind of
gradient half space, surface nanoadhesion of flaw tol-
erance seems to depend largely on the material char-
acteristics near the surface. When the graded elastic
material reduces to an isotropic elastic one, the crit-
ical size of flaw insensitivity degrades consistently to
the one found for an isotropic case.[4,14]
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