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Sagnac interferometry as a probe to the commutation relation of a macroscopic quantum mirror
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Single photon Sagnac interferometry as a probe to macroscopic quantum mechanics is considered at the
theoretical level. For a freely moving macroscopic quantum mirror susceptible to radiation pressure force inside
a Sagnac interferometer, a careful analysis of the input-output relation reveals that the particle spectrum readout at
the bright and dark ports encode information concerning the noncommutativity of position and momentum of the
macroscopic mirror. A feasible experimental scheme to probe the commutation relation of a macroscopic quantum
mirror is outlined to explore the possible frontier between classical and quantum regimes. In the Appendix, the
case of Michelson interferometry as a feasible probe is also sketched.
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I. INTRODUCTION

In our quest for a better understanding of quantum
mechanics at the macroscopic level [1,2] and certain
foundational issues involving the possible resolution of the
measurement problem in terms of quantum gravity [3], optical
interferometric sensing provides a viable experimental means
to probe the linear superposition and quantum entanglement
of macroscopic quantum mirrors [4–7]. The theme of the
present work is to show that Sagnac interferometry may also
be exploited to probe the commutation relation between two
conjugate variables (position and momentum) of a quantum
macroscopic mirror and explore the possible frontier between
classical and quantum physics. The experimental barriers are
no more difficult (nor easier) than the theoretical schemes
suggested earlier to understand the linear superposition and
nonlocal aspects of macroscopic quantum mechanics [4,8,9].
For the design of other experimental schemes to probe the
commutation relation of more conventional (microscopic)
quantum systems, see [10,11].

Our work was originally motivated by the attempt to
understand Sagnac interferometer as a possible quantum
nondemolition (QND) speed meter relevant to the development
of advanced gravitational wave detector [12,13]. Then a careful
analysis of the input-output relation of the interferometer at
the quantum level revealed that in the simple case of one
movable mirror subject to single photon radiation pressure
within the ring shaped interferometer, the particle spectrum
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at the bright or dark output port registered by a photodiode
actually encode information concerning the commutation
relation of the position and momentum of the macroscopic
quantum mirror. Later on we further realized that, though
Saganc interferometry offers very different physical insights
from those of Michelson interferometry at the quantum level,
modulo certain technical differences, a similar conclusion
may also be drawn for a Michelson interferometer and is
already implicit in [4]. This will be presented in the Appendix.
As Sagnac and Michelson are the two mainstream optical
topologies under consideration as blueprints for the third
generation of advanced gravitational wave detector [14,15],
interferometric sensing method to probe the commutation
relation of a quantum macroscopic mirror may be considered
in the prototype testing stage of the advanced gravitational
wave detector development for both optical topologies.

The main content of this short article is to sketch the
derivation of the input-output relation for single photon Sagnac
interferometry in the optical setup to be described in what
follows. Then we go on to explain how the particle spectrum
readout at the output ports may be used as a probe to the
commutation relation of a macroscopic quantum mirror. In
the calculations to be presented in what follows, we shall
consider a very idealised situation and then come back to the
possible experimental details toward the end. Throughout we
shall adopt units in which h̄ = c = 1.

II. SAGNAC INTERFEROMETRY

A schematic diagram of a Sagnac interferometer to be
considered is shown in Fig. 1 [12,16,17]. A high finesse
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FIG. 1. (Color online) Sagnac interferometry with two cavity on
the north and east arms separately, and mirror at the end of north
cavity is a movable mirror.

(Fabry-Perot) optical cavity with one movable and one rigidly
fixed mirror and of length d are inserted in the north arm of
the ring shaped interferometer, within which optomechanical
coupling between the movable mirror and a single photon takes
place. The end mirror in the north arm is of mass m, movable
and subject to the single photon radiation pressure force while
the mirrors in the east arm are rigidly attached. The frequency
of the photon is ω and the center-of-mass motion of the mirror
is modelled as a harmonic oscillator with natural oscillating
frequency ωm. Like in the detection of gravitational waves, we
assume ωm � ω.

Upon passing through the beam splitter, a linearly polarized
single photon will propagate inside the interferometer in
clockwise or counterclockwise direction. For both paths taken,
a single photon will enter the optical cavity in the north arm
and couple to the movable mirror. However, due to the optical
setup, there is a certain time delay between the clockwise and
counterclockwise propagating photon in the switching on of
the optomechanical coupling with the movable mirror. As we
shall see, the delay time may be fine tuned by adjusting the
length parameter l of the interferometer (see Fig. 1) in our
proposed experiment.

Let a1, a0 be the annihilation operators of single photon
input field and vacuum input field (see Fig. 1) and a+, a−
the annihilation operators of the field modes propagating in
the clockwise and anticlockwise direction. With a balanced
(50:50) beamsplitter, we then have(

a+
a−

)
= 1√

2

(
1 1

1 −1

) (
a1

a0

)
.

Within the cavity in the north arm, a photon will exert
a mechanical force on the movable mirror and the center
of mass of the mirror undergoes forced oscillation. Subject

to the approximations that the displacement of the mirror
is sufficiently small in comparison with the length of the
cavity and the cavity mode as well as the storage time remain
unchanged up to second order in perturbation, the interaction
Hamiltonians describing the optomechanical coupling of the
clockwise and counter-clockwise propagating photon within
the cavity in the north arm are given by [8]

V± = −ga
†
±a±(b† + b), (1)

where g = (ω/d)
√

(1/2mωm) is the coupling constant, b,b†

are annihilation and creation operators for the phonon field
mode associated with the motion of the center of mass of the
mirrors.

Due to the optical topology unique to Sagnac inter-
ferometry, a clockwise propagating photon will be within
the cavity during the time interval l < t < l + τs , with τs

the photon storage time in the cavity and the moment
at which the photon entering the interferometer is chosen
as the time origin. For the counterclockwise propagating
photon, it will be within the cavity at the time interval
3l + τs < t < 3l + 2τs . This means that, as a function of
time, the interaction term V+ will acquire nonzero support
only when l < t < l + τs , while V− will have nonzero support
at 3l + τs < t < 3l + 2τs . The time delay of optomechanical
coupling between two possible paths traversed by a sin-
gle photon distinguishes Sagnac interferometry from other
optical topologies, like, for instance, the familiar Michelson
interferometry.

In terms of the step function defined as

θ (t1,t2) =
{

1, t1 < t < t2,

0, otherwise,

the finite support in time of V± at two different
time intervals may be described by writing the total
Hamiltonian as

H = H0 + V+ θ (l,l + τs) + V− θ (3l + τs,3l + 2τs), (2)

where the free Hamiltonian H0 is given by

H0 = ωa
†
+a+ + ωa

†
−a− + ωmb†b. (3)

The insertion of step function in (2) may be regarded as an
idealisation that the build up of the standing wave structure of
the photon within the cavity is instantaneous.

In the next step, we shall work out the Heisenberg equations
of motion for a± and b. Subject to the time evolution governed
by the Hamiltonian in (2), we find

ȧ+ = −iωa+ + ig a+(b† + b) θ (l,l + τs), (4a)
ȧ− = −iωa− + ig a−(b† + b) θ (3l + τs,3l + 2τs), (4b)

ḃ = −iωmb + ig a
†
+a+ θ (l,l + τs)

+ ig a
†
−a− θ (3l + τs,3l + 2τs). (4c)

It may also be checked from (1), (2) ,and (3) that

[a†
+a+,H ] = [a†

−a−,H ] = 0

and therefore the photon number operators a
†
+a+ and a

†
−a−

are conserved and equivalent to QND observables though
the character of back-action-free measurement is not obvious.
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This implies that, as a harmonic oscillator, the center of mass
of the mirror is under a constant radiation pressure force
ga

†
+a+

√
2mωm or ga

†
−a−

√
2mωm at different time intervals.

The conservation of a
†
±a± also enables us to decouple the

equation of motion for b from those for a±, and (4c) may be
integrated directly to obtain

b(t) = b(0)e−iωmt + e−iωmt

∫ t

0
eiωmt ′ ig a

†
+a+ θ (l,l + τs)dt ′

+ e−iωmt

∫ t

0
eiωmt ′ ig a

†
−a− θ (3l + τs,3l + 2τs)dt ′.

(5)

From (4a), (4b), and (5), we also have

a+(t) = a+(0)e−iωt+∫ t

0 ig[b†(t ′)+b(t ′)] θ(l,l+τs )dt ′ , (6a)

a−(t) = a−(0)e−iωt+∫ t

0 ig[b†(t ′)+b(t ′)] θ(3l+τs ,3l+2τs )dt ′ . (6b)

Given 4l + 2τs is the time taken for a single photon to complete
a round trip in the interferometer and we are interested in
the readout at the output ports at a late time τ > 4l + 2τs ,
integrating (5) and (6) from t = 0 to τ > 4l + 2τs , we have

a+(τ ) = a+(0)e−iωτ eκ[b†(0)eiωml (eiωmτs −1)−b(0)e−iωml (e−iωmτs −1)]

× ei2κ2a
†
+a+(ωmτs−sin ωmτs ), (7a)

a−(τ ) = a−(0)e−iωτ

× eκ[b†(0)eiωm (3l+τs )(eiωmτs −1)−b(0)eiωm (3l+τs )(e−iωmτs −1)]

× eκ2a
†
+a+[(1−e−iωmτs )2e−iωm2l−(1−eiωmτs )2eiωm2l ]

× ei2κ2a
†
−a−(ωmτs−sin ωmτs ), (7b)

b(τ ) = b(0)e−iωmτ + κa
†
+a+(1 − e−iωmτs )e−iωm(τ−l−τs )

+ κa
†
−a−(1 − e−iωmτs )e−iωm(τ−3l−2τs ), (7c)

where κ = g/ωm.
Denote by c+, c− the annihilation operators of the field

modes emerging at the bright (+) and dark (−) ports. Again
with a balanced beamsplitter, we have(

c+(τ )

c−(τ )

)
= 1√

2

(
1 1

1 −1

) (
a+(τ )

a−(τ )

)
. (8)

Define the number operator

N± = c
†
±c± (9)

describing the particle spectrum registered by the photodiodes
at the corresponding output ports.

From (7) and (8), it may then be inferred that

N±(τ ) = 1
4 {a†

+(0)a+(0) + a
†
−(0)a−(0)

± eκ[b(0)e−iωml (e−iωmτs −1)−b†(0)eiωml (eiωmτs −1)]

× eκ[b†(0)eiωm (3l+τs )(eiωmτs −1)−b(0)eiωm (3l+τs )(e−iωmτs −1)]

× e−i2κ2a
†
+a+(ωmτs−sin ωmτs )a

†
+(0)a−(0)

× eκ2a
†
+a+[(1−e−iωmτs )2e−iωm2l−(1−eiωmτs )2eiωm2l ]

× ei2κ2a
†
−a−(ωmτs−sin ωmτs )

± Hermitian conjugate}. (10)

To further compute N±, we note that, with the help of
the Baker-Campell-Hausdorff formula, in (10) we may further
elaborate the term

eκ[b(0)e−iωml (e−iωmτs −1)−b†(0)eiωml (eiωmτs −1)]eκ[b†(0)eiωm (3l+τs )(eiωmτs −1)−b(0)eiωm (3l+τs )(e−iωmτs −1)]

= eκb†(0)(eiωmτs −1)[eiωm (3l+τs )−eiωml ]e−κb(0)(e−iωmτs −1)[e−iωm (3l+τs )−e−iωml ]e2κ2(1−cos ωmτs ) sin ωm(2l+τs )[x0,p0]e2iκ2(1−cos ωmτs )[1−cos ωm(2l+τs )][x0,p0]

= e−2κ2(1−cos ωmτs )[1−cos ωm(2l+τs )−i sin ωm(2l+τs )]eκb†(0)eiωml (eiωmτs −1)[eiωm (2l+τs )−1]e−κb(0)(e−iωmτs −1)[e−iωm (3l+τs )−e−iωml ], (11)

where

x0 =
√

1

2mωm

[b†(0) + b(0)], p0 = i

√
mωm

2
[b†(0) − b(0)].

The scalar term appearing in the final expression in (11)
follows from the commutation relation of the macroscopic
mirror [x0,p0] = i. As only x0 and p0 are involved, it is
the commutation relation of a free macroscopic mirror that
eventually enters into the particle spectrum at the readout.
Further inserting (11) back into N± in (10), we find

N±(τ ) = 1
4 {a†

+(0)a+(0) + a
†
−(0)a−(0)

± e−2κ2(1−cos ωmτs )[1−cos ωm(2l+τs )−i sin ωm(2l+τs )]

× [eκb†(0)eiωml (eiωmτs −1)[eiωm (2l+τs )−1]

× e−κb(0)e−iωml (e−iωmτs −1)[e−iωm (2l+τs )−1]

× e−i2κ2a
†
+a+(ωmτs−sin ωmτs )a

†
+(0)a−(0)

× ei2κ2a
†
−a−(ωmτs−sin ωmτs )

× eκ2a
†
+a+[−(1−eiωmτs )2eiωm2l+(1−e−iωmτs )2e−iωm2l ]]

± Hermitian conjugate}. (12)

Consider now the mirror in its ground state |0〉m. The
initial state of the coupled photon-mirror system is then

1√
2
(|1〉+|0〉− + |0〉+|1〉−)|0〉m. When taking the expectation

value of N± with respect to the coupled photon-mirror state,
we find

〈a†
±(0)a±(0)〉 = 1/2

and the rest of the operator terms in (12) yield the unit
expectation value. As a result, we have, from (12),

〈N±(τ )〉 = 1
2 ± 1

2e−2κ2(1−cos ωmτs )(1−cos ωm(2l+τs ))

× cos[2κ2(1 − cos ωmτs) sin ωm(2l + τs)],

(13)

and the particle spectrum at both outport ports are entirely
determined by the real part of the scalar term generated by the
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FIG. 2. (Color online) Expectation value of N+, as a function of
κ, ωmτs, ωm(2l + τs). (a) κ2 = 1/3; (b) κ2 = 1.

commutation relation of a free macroscopic mirror displayed
in (11). This means that a detection of photon at the outport
ports in accordance with the particle spectrum described in (13)
is a direct verification of the commutation relation between the
two conjugate variables x and p of a macroscopic mirror. This
constitutes another feasible test of the validity of macroscopic
quantum mechanics. Moreover, by possibly varying the size
or other physical parameters of the macroscopic mirror, it is
conceivable that we might also further explore the possible
existence of a frontier separating the classical and quantum
regime. In a more general case when the mirror is not in
its ground state, one would expect to uphold the conclusion
that the particle spectrum encodes information concerning the
commutation relation of a macroscopic mirror, albeit in a more
complicated looking expectation value of the number operator.
This expectation is indeed substantiated in the case when the
mirror is in a semi-classical coherent state and this will be
further elaborated elsewhere [18].

As may be seen from (13), the particle spectrum at the
outport ports are dependent on the experimental accessi-
ble parameters κ , l, and τs . For instance, set cos ωmτs =
cos ωm(2l + τs) = −1 and κ2 = 1/3 or κ2 = 1, respectively,
we will have a 50% chance to detect a single photon at both
the bright and dark ports. As illustrated in Fig. 2, the saddle
points of the particle spectrum represent a choice of the set
of parameters (κ,τs,l) at which the visibility of the particle
spectrum is maximized.

III. CONCLUDING REMARKS

We have suggested at the theoretical level a potential appli-
cation of quantum interferometry in the realm of macroscopic
quantum mechanics, with a view that these experiments may
be considered in conjunction with the prototype testing in
the development of an advanced gravitational wave detector.
We have not considered feasible experimentally accessible
parameters of the proposed experiment, as it seems to us that
at this preliminary stage of investigation it is premature to do
so. To carry out the experiment we have to prepare the mirror
in its ground state in the first place. Recent experimental efforts
[19–21] suggest that cooling the mirror down to its ground state
is feasible and would not become an insurmountable obstacle.
However it is likely to take some time to accomplish this
goal. Further, like other related proposed experiments in testing
macroscopic quantum mechanics [4,9], among all conceivable
experimental problems, obtaining the desired coherence time

for a single photon and preventing the generation of spurious
phonons due to excitation of internal degrees of freedom of
the mirror are the two most challenging tasks as far as we see.
Though it is unlikely that the suggested experiment is to be
realised in the near future, it represents a lofty goal toward
which we expend our effort in the foreseeable future.
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APPENDIX: MICHELSON INTERFEROMETRY

Upon the completion of our study of Saganc interferometry,
it is a natural question to ask whether the test of commutation
relation of a macroscopic quantum mirror can only be done
solely by the Sagnac setup. To understand this question better,
we also look into the familiar Michelson setup. It turns out
that the test of commutation relation is not unique to the
Sagnac setup. A similar conclusion may also be drawn for the
Michelson setup and is already implicit in [4]. We shall briefly
sketch the probe of commutation relation for a macroscopic
mirror using Michelson interferometry in this appendix.

Consider the standard Michelson setup as shown in Fig. 3
[4] with only one single photon entering the interferometer.
The end mirror in the north arm is assumed to be movable
while the mirror in the east arm is rigidly attached.

Let a1, a0 be the annihilation operators of single photon
input field and vacuum input field (see Fig. 3) and aN , aE the
annihilation operators of the field modes going into north and
east arms. A balanced beamsplitter then yields

(
aN

aE

)
= 1√

2

(
1 1

1 −1

) (
a1

a0

)
,

FIG. 3. (Color online) Michelson interferometry.
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The Hamiltonian of the total system including optomechanical
coupling may be given as

H = ωa
†
NaN + ωa

†
EaE + ωmb†b

− ga
†
NaN (b† + b)θ (l,l + τs). (A1)

The above Hamiltonian was considered in [4] (except with
the step function made implicit), in which the reduced single
photon density matrix at the readout was worked out. Our
contribution in this appendix lies in working out the input-
output relation of the interferometer in terms of the Heisenberg
picture. We may see clearly that apart from the linear
superposition of a macroscopic mirror, the particle spectrum
also encodes information concerning the commutation relation
of the freely movable mirror. The role of the commutation
relation in the readout is quite evident when looking at the
problem from the Heisenberg picture. The same piece of in-
formation seems to be difficult to extract from the Schrödinger
picture.

Subject to the Hamiltonian in (A1), for the time t = τ >

2l + τs , the Heisenberg equations of motion yield

aN (τ ) = aN (0)e−iωτ ei2κ2a
†
N aN (ωmτs−sin ωmτs )

× eκb(0)†eiωml (eiωmτs −1)−κb(0)e−iωml (e−iωmτs −1), (A2a)
aE(τ ) = aE(0)e−iωτ , (A2b)

b(τ ) = b(0)e−iωmτ + κa
†
NaN (1 − e−iωmτs ). (A2c)

As may be checked from (A1) and (A2), the number operators
a
†
NaN and a

†
EaE are QND observables.

Similar to the Sagnac case, at the bright (+) and dark (–)
ports, we have(

c+(τ )

c−(τ )

)
= 1√

2

(
1 1

1 −1

) (
aN (τ )

aE(τ )

)
, (A3)

and the corresponding number operators N± defined in (9).

Consider the initial state of the coupled photon-mirror
system to be 1√

2
(|1〉N |0〉E + |0〉N |1〉E)|0〉m with |0〉m being

the ground state of the mirrors. Given (A2), like in the Sagnac
case, the expectation values of the two number operators may
be worked out to be

〈N±(t)〉 = 1
2 ± 1

2e−κ2(1−cos ωmτs ) cos [κ2(ωmτs − sin ωmτs)].

(A4)

In the calculations leading up to (A4), we note that the term
e−κ2(1−cos ωmτs ) comes from

eκb(0)†eiωml (eiωmτs −1)−κb(0)e−iωml (e−iωmτs −1)

= eiκ2(1−cos ωmτs )[x0,p0]eκb(0)†eiωml (eiωmτs −1)e−κb(0)e−iωml (e−iωmτs −1)

= e−κ2(1−cos ωmτs )eκb(0)†eiωml (eiωmτs −1)e−κb(0)e−iωml (e−iωmτs −1),

(A5)

where the second equality follows from the commutation
relation [x0,p0] = i. So again the particle spectrum encodes
information of the commutation relation of a macroscopic
mirror. However, while the entire particle spectrum in the
Sagnac case originates from the commutation relation, a slight
difference in the Michelson case is that the modulation term
cos [κ2(ωmτs − sin ωmτs)] is not related to the commutation
relation of the macroscopic mirror but is instead generated
from the expectation values of other operator terms in N±.

Moreover, the nonconstant term in the right-hand side of
(A4) may be identified with the visibility factor in [4]. In
this sense the noncommutativity is already implicit in the
previous work. Our calculations serve to bring out in an explicit
manner the dependence of the readout particle spectrum on the
commutation relation of a macroscopic mirror. As a result, we
see that, apart from being a way to read the linear superposition
of a macroscopic quantum mirror, single photon Michelson
interferometry at the same time also provides a direct probe to
the commutation relation of a macroscopic mirror.
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