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There still exists controversy on the sign and magnitude of the Tolman’s length and the Tolman’s gap. Further

experimental, computational and theoretical investigations on them are needed to solve this problem. In 2006, Blokhuis

and Kuipers obtained a rigorous relationship between the Tolman’s length and other thermodynamic quantities for the

single-component liquid–vapour system. In the present paper, we derive two general relationships between the Tolman’s

length and other thermodynamic quantities for the single-component liquid–vapour system. The relationship derived

by Blokhuis and Kuipers and an earlier result turn out to be two special cases of our results.
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1. Introduction

The liquid–vapour interface is a transition zone

between the liquid phase and the vapour phase. The

density, pressure and other thermodynamic quanti-

ties in the transition zone vary continuously. The

surface tension of the liquid–vapour interface is one

of the most interesting physical properties of fluids.

It is related to a great number of natural phenom-

ena as well as to numerous industrial applications, for

instance, nucleation, wetting, adhesives, emulsions,

foams, dispersions, adsorption-based separations, lu-

bricants, capillary penetration into porous media and

floatation.[1−6] Therefore, surface tension is an impor-

tant topic in chemical physics.[1−4] Surface tension

phenomena was studied theoretically by mechanics,

thermodynamics, quasi-thermodynamic and statisti-

cal mechanics. The interest here is the thermody-

namic theory of surface tension.

Gibbs developed a rigorous theory of the phe-

nomena of surface tension by the methods of

thermodynamics.[1,7,8] In Gibbs’s thermodynamical

theory of capillary phenomena, the transition zone

is modeled as a geometrical surface of zero thickness

called dividing surface. The dividing surface can be

any one of the equidensity surfaces, so it is not unique.

For a spherical droplet, a dividing surface is a closed

spherical surface with its centre located at the centre

of the droplet. Different dividing surfaces have differ-

ent surface tension and different extensive quantities,

for instance, the molecule number of the liquid–vapour

interface. A dividing surface with radius Rs is called

the surface of tension if the Laplace’s equation

pl − pv =
2σ(Rs)

Rs
(1)

is valid at it. Here pl and pv are the bulk pressures

of liquid phase and vapour phase respectively, σ is the

surface tension of the liquid–gas interface. The surface

tension of the surface of tension is denoted by σs be-

low. A dividing surface with the number of molecules

being zero called equimolecular dividing surface and

its radius is denoted by Re.

The definition of the Tolman’s gap is

δG = Re −Rs. (2)

The Tolman’s gap is a function of Rs and temperature.

The definition of the Tolman’s length is

δL ≡ lim
Rs→∞

δG ≡ lim
Rs→∞

(Re −Rs). (3)

The Tolman’s gap δG and the Tolman’s length δL

are of nanoscale and are typical nano-concepts.

Based on thermodynamics, Gibbs found that the

surface tension of the liquid–gas interface was re-

lated to the radius of the surface of tension and later

the following differential equation, i.e., the famous

Gibbs-Tolman–Koening–Buff equation[1,6−12] was es-
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tablished
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The Gibbs–Tolman–Koening–Buff equation is

valid for single-component liquids as well as multi-

components liquids. For the latter the meaning of the

symbol Re in Eq. (2) must be renewed. But we restrict

ourselves here only in single-component liquids.

Tolman[9] pointed out that for sufficiently large

droplets, neglecting high terms and treating δG as a

constant δL, Eq. (4) can be solved. The result is

σs

σ∞
=

1

1 +
2δL
Rs

+ . . . = 1− 2δL
Rs

+ . . . . (5)

Fisher and Israelachvili’s experimental results

confirmed that the surface tension of the liquid–gas

interface is curvature-dependent.[13]

It is obvious that in Eq. (4), the surface tension σs

and the Tolman’s gap δG are two unknown functions,

therefore given either of them, we can obtain the other

by solving this equation. Thus, the surface tension σs

and the Tolman’s gap δG are both important in chem-

ical physics and are both difficult to study. These two

functions are both attractive for researchers. Since

the Tolman’s length δL is the limiting value of the

Tolman’s gap δG at infinite large Rs, the Tolman’s

length δL is also an attractive problem.

For simple liquids, the Tolman’s length obtained

by density functional theory is negative.[14−23] Molec-

ular dynamics simulations for a Lennard–Jones system

showed that the Tolman’s length is positive.[24−26] In

2006, Lei et al.[27] reported a larger scale molecular

dynamics simulation and showed that the Tolman’s

lengths, although positive, are much smaller in mag-

nitude than previously reported. In particular, they

found that the cut-length of interparticle interaction

can significantly affect the magnitude of the Tolman’s

length.

Thus we see that there still exists controversy on

the sign and magnitude of the Tolman’s length or the

Tolman gap. Therefore further experimental, compu-

tational and theoretical investigations on the Tolman’s

length and the Tolman gap are needed to solve this

problem.

The purpose of this paper is to study the Tol-

man’s length by methods of thermodynamics. In this

respect Fisher et al.[28−30] derived the following ex-

plicit relationship between the Tolman’s length and

other thermodynamic quantities for single-component

liquid–vapour system by methods of thermodynamics

δL = − (ρl1e − ρv1e)

2(ρl0 − ρv0)
− µ2e(ρl0 − ρv0)

2σ∞
, (6)

where µ is the chemical potential of the system, ρl0
and ρv0 are the number densities of the liquid phase

and the vapour phase of the planar-interface liquid–

vapour system respectively, ρl1e and ρv1e are the

isothermal partial derivatives of number densities of

the liquid phase and the vapour phase with respect to

the curvature of the equimolecular dividing surface at

the zero curvature respectively, µ2e is the second-order

isothermal partial derivative of the chemical potential

with respect to the curvature of the equimolecular di-

viding surface at the zero curvature, σ∞ is the surface

tension of the planar-interface liquid–vapour system.

In 2006, Blokhuis and Kuipers[14] transfer Eq. (6)

into a more useful relationship between the Tolman’s

length and the isothermal compressibility of the liquid

and the vapour

δL = − σ∞

(ρl0 − ρv0)2
(ρ2l0κl − ρ2v0κv)

− µ2e(ρl0 − ρv0)

2σ∞
, (7)

where κl and κv are the isothermal compressibility of

the liquid phase and the vapour phase at zero curva-

ture respectively.

Our aim is to derive two explicit relations between

the Tolman’s length and other thermodynamic quan-

tities for the single-component liquid–vapour system

in terms of any dividing surface, which will contain

Eqs. (6) and (7) as special cases.

2. Two general thermodynamic

formulae of the Tolman’s

length for single-component

liquid–vapour system in terms

of arbitrary dividing surface

For an arbitrary dividing surface with radius Rε,

we introduce the following notation

Rε = Re − εδG, (8)

where ε is a real number. For ε = 0 and ε = 1, Eq. (8)

gives

Rε|ε=0 = Re, (9)
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Rε|ε=1 = Re − δG = Rs. (10)

Using Eqs. (10) and (5), Eq. (1) becomes

pl − pv =

2σ∞

(
1− 2δL

Rs
+ . . .

)
Re

(
1− δG

Re

)
=

2σ∞

Re

(
1− 2δL

Re
+

δG
Re

+ . . .

)
. (11)

We have the following Tayler’s expansion

δG = δL + δG1ε
1

Rε
+ . . . , (12)

where

δG1ε =
∂δG

∂(1/Rε)

∣∣∣∣
1/Rε=0

. (13)

Using Eqs. (12) and (8), Eq. (11) becomes

pl − pv =
2σ∞

Rε

[
1− δL

Rε
(1 + ε)

]
+ . . . . (14)

For isothermal processes, we have

dpl = ρldµ , (15)

dpv = ρvdµ , (16)

which give

d(pl − pv) = (ρl − ρv)dµ. (17)

For the number densities of the liquid phase

and the vapour phase of single-component spherical

droplets, we have the following Tayler’s expansions

with respect to the curvature of any dividing surface

1/Rε, respectively

ρl = ρl0 +
ρl1ε
Rε

+ . . . , (18)

ρv = ρv0 +
ρv1ε
Rε

+ . . . , (19)

where

ρl1ε =
∂ρl

∂(1/Rε)

∣∣∣∣
1/Rε=0

,

ρv1ε =
∂ρv

∂(1/Rε)

∣∣∣∣
1/Rε=0

. (20)

From Eqs. (18) and (19), we have

ρl − ρv = (ρl0 − ρv0) +
(ρl1ε − ρv1ε)

Rε
+ . . . . (21)

We have the following Tayler’s expansion of the

chemical potential with respect to the curvature of any

dividing surface 1/Rε

µ = µ0 +
µ1ε

Rε
+

µ2ε

R2
ε

+ . . . , (22)

where

µ1ε =
∂µ

∂(1/Rε)

∣∣∣∣
1/Rε=0

,

µ2ε =
∂2µ

2∂(1/Rε)2

∣∣∣∣
1/Rε=0

. (23)

Putting Eqs. (14), (21), and (22) into Eq. (17),

we have

d

[
2σ∞

Rε
(1− (1 + ε)δL

Rε
+ . . .)

]
=

[
(ρl0 − ρv0) +

(ρl1ε − ρv1ε)

Rε
+ . . .

]
× d

(
µ0 +

µ1ε

Rε
+

µ2ε

R2
ε

+ . . .

)
. (24)

Comparing the two main terms on the two sides

of Eq. (24), we obtain

µ1ε =
2σ∞

ρl0 − ρv0
, (25)

µ2ε = −2(1 + ε)δLσ∞

ρl0 − ρv0
− σ∞(ρl1ε − ρv1ε)

(ρl0 − ρv0)2
. (26)

From Eqs. (25) and (26), we obtain the first gen-

eral thermodynamic formula of the Tolman’s length

of single-component liquid–vapour system in terms of

arbitrary dividing surface

δL = − (ρl1ε − ρv1ε)

2(1 + ε)(ρl0 − ρv0)
− µ2ε(ρl0 − ρv0)

2(1 + ε)σ∞
. (27)

The definition of isothermal compressibility κT of

bulk fluid is

κT =
1

ρ

(
∂ρ

∂p

)
T

=
1

ρ2

(
∂ρ

∂µ

)
T

. (28)

From Eqs. (28) and (25), we obtain

κl =
1

ρ2l0

(
∂ρl
∂µ

)
T

=
ρl1ε

ρ2l0µ1ε
=

ρl1ε(ρl0 − ρv0)

2σ∞ρ2l0
, (29)

κv =
1

ρ2v0

(
∂ρv
∂µ

)
T

=
ρv1ε

ρ2v0µ1ε
=

ρv1ε(ρl0 − ρv0)

2σ∞ρ2v0
,

(30)

where κl and κv are the isothermal compressibilities

of the liquid phase and the vapour phase respectively.

From Eqs. (29) and (30), we obtain

ρl1ε − ρv1ε =
2σ∞

(ρl0 − ρv0)
(ρ2l0κl − ρ2v0κv). (31)

Putting Eq. (31) into Eq. (27), we obtain the sec-

ond general thermodynamic formula of the Tolman’s

length of single-component liquid–vapour system in

terms of arbitrary dividing surface and the isothermal

compressibilities

δL = − σ∞

(1 + ε)(ρl0 − ρv0)2
(ρ2l0κl − ρ2v0κv)

− µ2ε(ρl0 − ρv0)

2(1 + ε)σ∞
. (32)
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3. Comparison between our gen-

eral thermodynamic formulae

of the Tolman’s length and the

previous formulae

The two general thermodynamic formulae (27)

and (32) of the Tolman’s length contain a parameter

ε, the values of which cover all the dividing surface.

Therefore, formulae (27) and (32) can be applied to

any dividing surface. For example, letting ε = 1 in for-

mulae (27) and (32), we obtain the following two ex-

plicit thermodynamic formulae of the Tolman’s length

in terms of the surface of tension

δL = − (ρl1s − ρv1s)

4(ρl0 − ρv0)
− µ2s(ρl0 − ρv0)

4σ∞
, (33)

δL = − σ∞

2(ρl0 − ρv0)2
(ρ2l0κl − ρ2v0κv)

− µ2s(ρl0 − ρv0)

4σ∞
, (34)

where

ρl1s = ρl1ε|ε=1 , ρv1s = ρv1ε|ε=1 , µ2s = µ2ε|ε=1 .

Letting ε = 0 in formulae (27) and (32), we obtain

the following two explicit thermodynamic formulas of

the Tolman’s length in terms of the equimolecular di-

viding surface

δL = − (ρl1e − ρv1e)

2(ρl0 − ρv0)
− µ2e(ρl0 − ρv0)

2σ∞
, (35)

δL = − σ∞

(ρl0 − ρv0)2
(ρ2l0κl − ρ2v0κv)

− µ2e(ρl0 − ρv0)

2σ∞
, (36)

where

ρl1e = ρl1ε|ε=0 , ρv1e = ρv1ε|ε=0 , µ2e = µ2ε|ε=0 .

Equations (35) and (36) are the same as

Eqs. (2.14) and (3.4) in Ref. [14] given by Blokhuis

and Kuipers, which illustrate that the latter two for-

mulae are the special cases of our results Eqs. (27) and

(32).

4. Conclusion

There still exists controversy on the sign and mag-

nitude of the Tolman’s length and the Tolman’s gap.

Further experimental, computational and theoretical

investigations on them are needed to solve this prob-

lem. We have derived two general relationships be-

tween the Tolman’s length and other thermodynamic

quantities for single-component liquid–vapour system

by method of thermodynamics. The relationship of

Blokhuis and Kuipers in Ref. [14] and an early result

turn out to be two special cases of our results.
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