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The space-time cross-correlation function CT�r ,�� of local temperature fluctuations in turbulent Rayleigh-
Bénard convection is obtained from simultaneous two-point time series measurements. The obtained CT�r ,�� is
found to have the scaling form CT�rE ,0� with rE= ��r−U��2+V2�2�1/2, where U and V are two characteristic
velocities associated with the mean and rms velocities of the flow. The experiment verifies the theory and
demonstrates its applications to a class of turbulent flows in which the requirement of Taylor’s frozen flow
hypothesis is not met.
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Fluid turbulence is often considered as a cascade process
with turbulent kinetic energy being continuously transferred
from large scales of system size �0 to eddies of smaller size,
until it dissipates when the eddy size becomes comparable to
the viscous dissipation length �d �1�. An important quantity
to describe this unique cascade process is the velocity cross-
correlation function

Cv�r,�� = �v�x + r,t + ��v�x,t��t/���v�1��v�2� , �1�

where ��v�i is the rms velocity at position i. For simplicity,
here we only consider a one-dimensional case with separa-
tion r being varied along the stream-wise x direction. In
theories of turbulence, the equal-time correlation function
Cv�r ,0� or its Fourier transform Ev�k� is often used to de-
scribe the spectrum of turbulent kinetic energy in different
lengths r or wave numbers k. For example, according to
Kolmogorov’s 1941 theory �2�, the kinetic energy is cas-
caded without loss through the inertial range, �0

−1�k��d
−1,

giving rise to a universal scale-invariant energy spectrum,
Ev�k���0

2/3k−5/3, with �0 being the constant energy dissipa-
tion rate.

Compared to the large number of theoretical studies, ex-
perimental information about small-scale turbulent fluctua-
tions is often limited to the time series measurement of the
local velocity at a single or a few spatial positions, from
which one obtains the temporal correlation function Cv�0,��
or its Fourier transform Ev�f�. While recent developments of
particle image velocimetry allow one to obtain more spatial
information for small-scale flows, time-domain measure-
ments continue to play a major role in the experimental study
of large-scale flows, such as turbulent jets and wind tunnels.
To connect the time-domain results to the theoretical predic-
tions made in the k-space, Taylor’s frozen flow hypothesis
�3� is often invoked in that turbulent fluctuations in space are
assumed to be carried through a fixed location by a large
convection flow U0 without any significant change. Hence,
one has Cv�r ,��=Cv�rT ,0� with

rT = r − U0� . �2�

Taylor’s hypothesis requires a long correlation length and,
thus, is applicable only to a special group of flows in which
velocity fluctuations are much smaller than the mean flow
velocity U0. For many practical flows of interest, such as
turbulent jets, channel flows and turbulent thermal convec-
tion where U0 is comparable to or even becomes much
smaller than �v, the requirement of the Taylor hypothesis is
often not met �4,5�.

Recently, He et al. �6� proposed a model showing that
Cv�r ,�� has a scaling form Cv�rE ,0� for a stationary and
homogenous flow with rE being of the elliptical form

rE
2 = �r − U��2 + V2�2. �3�

Here U is a characteristic convection velocity proportional to
U0 and V is associated with a random sweeping velocity
proportional to �v. Both U and V can be calculated from the
second derivatives of Cv�r ,�� �6�. Equation �3� incorporates
both the Taylor hypothesis when V is small and Kraichnan’s
random sweeping hypothesis �7� for a homogenous and iso-
tropic turbulent flow with a zero mean. He et al. derived Eq.
�3� for small values of r and � and argued that it is also true
for large values of r and � if the flow is scale invariant. They
tested the model using the direct numerical simulation results
obtained in a turbulent channel flow.

The scaling theory by He et al. has important practical
implications for a large class of turbulent flows and thus it is
essential to test the model in an actual flow system. In this
Letter, we report direct measurements of the temperature
cross-correlation function in turbulent Rayleigh-Bénard con-
vection, where a fluid layer of thickness H is heated from
below and cooled from the top. For the Rayleigh number �8�
Ra�108, the convective flow becomes turbulent. The experi-
ment confirms the theory and demonstrates it applications to
turbulent flows beyond the Taylor frozen flow hypothesis.

The experiment is conducted in a upright cylindrical cell
of inner diameter D=19.0 cm and height H=20.5 cm filled
with water. Details about the apparatus and the experimental
method have been described elsewhere �9�, and here we
mention only some key points. The sidewall of the cell is
made of a transparent Plexiglas ring, which is sandwiched
between the top and bottom brass plates. Two silicon rubber*penger@ust.hk
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film heaters are used to provide uniform heating to the bot-
tom plate. The top plate temperature is maintained constant
by a temperature bath. The entire cell is placed inside a ther-
mostat box, whose temperature matches the mean tempera-
ture of the bulk fluid, which is maintained at 40�0.3 °C.
The Prandtl number is then fixed at Pr�4.3. The value of Ra
is varied in the range of 109	Ra	1010, and here we focus
on the measurements at Ra=1.4
1010.

The flow in a closed convection cell is known to be inho-
mogeneous with a large-scale circulation �LSC� across the
cell height �10�. In the rotation plane of the LSC, the flow is
like a fly wheel with a zero mean velocity at the cell center
and an increasing mean vertical velocity along the cell diam-
eter at the midheight of the cell. After reaching its maximum
value near the sidewall ��1 cm away from the cell wall�,
the mean vertical velocity starts to drop quickly and becomes
zero at the cell wall. Therefore, the flow field near the side-
wall is similar to that of a channel flow with a mean vertical
velocity U0 and a rms velocity �v�0.6U0 �10�. For such a
large rms velocity, Taylor’s hypothesis is not expected to
hold.

In the experiment, we use two small movable thermistors
of 0.2 mm in diameter and 15 ms in time constant to measure
temperature fluctuations at two locations. One is fixed at the
middle height of the cell and is 2 cm away from the sidewall.
The other thermistor is positioned above the fixed one with a
varying vertical separation +r along the down stream direc-
tion. The value of r is varied from 0 to 16 mm. For each
value of r, we collect 10-h-long time series data ��106 data
points� to ensure that the statistical averaging is adequate.
The sampling rate of the temperature measurements is 40
Hz. From the simultaneous two-point measurements, we ob-
tain the longitudinal temperature cross-correlation function

CT�r,�� = ��T�x + r,t + ���T�x,t��t/���T�1��T�2� , �4�

where �T is the local temperature deviation from the mean
and ��T�i is its standard deviation at position i.

It has been reported �11,12� that temperature is an active
scalar in turbulent convection only near the thermal bound-
ary layers, where the temperature gradient is the largest. In
the bulk region of the flow including the sidewall region,
temperature is a passive scalar. In this case, the qualitative
picture of energy cascade can also be used to describe the
spectrum of temperature variance, because it is the turbulent
motion that mixes the temperature field �13�. Therefore, the
velocity and temperature fluctuations share the same decor-
relation mechanism �14� and CT�r ,�� is expected to have
approximately the same scaling form as Cv�r ,�� does.

Figure 1�a� shows a three-dimensional �3D� plot of the
measured CT�r ,�� as a function of r and �. The measured
CT�r ,�� is a single peaked function with a maximal value of
CT�0,0�=1 at the origin and decays to zero at large values of
r and �. Because of the limited range of r varied, the mea-
sured CT�r ,�� only decays to 0.65 at the largest r. Figure 1�b�
shows a two-dimensional �2D� plot of isocorrelation con-
tours of CT�r ,��. In the range of r and � studied, the isocor-
relation contours appear as a set of elliptical curves having
the same orientation and aspect ratio. Such a common set of
elliptical curves can be well described by Eq. �3� with con-

stant values of rE. The orientation and aspect ratio of the
elliptical circles are uniquely determined by the scaling ve-
locities U and V, which can be obtained directly from the
measured CT�r ,��.

It is seen from Fig. 1�a� that CT�r ,�� as a function of � at
a fixed r is a symmetric single peaked function with the peak
position �p increasing with r. This is because it takes longer
time for temperature fluctuations to move across a larger
separation. Figure 2 shows the measured �p as a function of
r, which is well described by a linear function, �p=r, with
=4.36
10−2 s /mm �solid line�. Because CT�rE ,0� is a de-
creasing function of rE, a minimum value of rE will give rise
to a maximum value of CT�rE ,0�. Therefore, �p can be de-

FIG. 1. �Color online� �a� 3D plot of the measured CT�r ,�� as a
function of r and �. The correlation amplitude is color coded. �b�
2D plot of isocorrelation contours of CT�r ,�� with the correlation
amplitude varied from 0.95 to 0.65 at decrements of 0.05 �inner to
outer contours�. All the temperature measurements are made near
the sidewall at Ra=1.4
1010.
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FIG. 2. Obtained peak position �p as a function of r. The solid
line shows the fitted function, �p=r, with =4.36
10−2 s /mm.
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termined by the condition, �rE /�� 	r=0, from which we find
�p= �U / �U2+V2��r. Similarly, we find the peak position rp
from the CT�r ,�� vs. r curve at a fixed �. The obtained rp is
a linear function, rp=��, with �=14 mm /s �not shown�.
Using the condition, �rE /�r 	�=0, we find rp=U�. Therefore,
we have U=14 mm /s and V=11.2 mm /s. The obtained
value of U is very close to the estimated mean velocity
U0�15.6 mm /s �10�.

To further test the scaling form of CT�r ,��, we plot, in
Fig. 3, the measured CT�r ,�� vs. � curves at different values
of r as a function of rE using the obtained values of U and V.
All the correlation functions collapse into a single master
curve, CT�rE ,0�, once the scaling variable rE is used. Figure
3, thus, demonstrates that the measured CT�r ,�� indeed has
the predicted scaling form. When V=0, Eq. �3� becomes
equivalent to the Taylor hypothesis, rT=r−U�. It is found
that the measured CT�r ,�� vs � curves at different values of r
do not scale with rT, further confirming that the Taylor hy-
pothesis does not hold in turbulent convection.

An important implication of Eq. �3� is that when r=0, we
have CT�0,��=CT�rE ,0� with

rE = �U2 + V2�1/2� . �5�

In this case, the single-point autocorrelation function
CT�0,�� can be directly used to evaluate CT�rE ,0� or its en-
ergy spectrum ET�k�. Figures 4�a� and 4�b� show, respec-
tively, the CT�rE ,0� vs rE /�T and ET�k� vs k�T curves
obtained using the same time series data. Here, we have
k�T= �rE /�T�−1 and the Taylor microscale �T is used as the
scaling length. Using the equation

CT�rE,0� � 1 − �rE/�T�2 �6�

for small values of rE, we obtain �T�8.5 mm directly from
the compensated plot of CT�rE ,0�+ �rE /�T�2 vs rE �not
shown�. For the flow near the sidewall, one has �10� the
shear rate S�2U0 /D�0.16 1/s, the rms velocity �v
�9.4 mm /s, and thus �6� V���S�T�2+�v

2�1/2�9.5 mm /s,
which is close to the value of V=11.2 mm /s obtained above.
In addition, we find the Reynolds number based on the Tay-
lor microscale is Re�T

��U2+V2�1/2�T /��240.

Because of the high resolution of the temporal data, we
are able to identify three distinct subranges of length scales
from Fig. 4: the dissipation range �DR�, near-dissipation
range �NDR�, and inertial range �IR�. These three ranges are
marked by the vertical dashed lines in Fig. 4. The first two
ranges, DR �k�T�4� and NDR �0.25	k�T	4�, are more
clearly presented in the real space, whereas the last range, IR
�0.014	k�T	0.25�, is more clearly viewed in the k space.
Such an identification of three distinct subranges in the same
measurement clearly shows the power of the technique.
While the single-point temperature power spectrum ET�f�
�Fourier transform of CT�0,��� has been measured previously
at the cell center and in the sidewall region �15–18�, its con-
nection to the energy spectrum ET�k� has not been firmly
established in turbulent convection �18�. Previous attempts
were made using Taylor’s frozen flow hypothesis either ex-
plicitly or implicitly, but their validity was questioned in both
the early and recent reviews �18,19�. With the scaling results
shown in Fig. 3, Fig. 4 provides the first direct confirmation
of ET�k� with the horizontal axis correctly labeled in units of
�T.

In DR, CT�rE ,0� has a parabolic form as shown in Eq. �6�.
In IR and NDR, all the measured ET�k�’s at different Ra
superimpose with each other, once k�T is used as the scaling
variable. In IR, the measured ET�k� can be well described by
a power law,
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FIG. 3. Measured CT�r ,�� as a function of the scaling variable
rE for different values of r: 0 mm �circles�, 0.7 mm �triangles�, 3.83
mm �squares�, 8.76 mm �diamonds�, and 15.49 mm �crosses�. The
value of rE is calculated using Eq. �3� with U=14 mm /s and
V=11.2 mm /s.

FIG. 4. �Color online� �a� Obtained CT�rE ,0� as a function of
rE /�T. �b� Temperature power spectrum ET�k� as a function of k�T.
The �blue� dotted line indicates the power law, E�T�k���k�T�−1.35�.
The �green� dashed line is a plot of Eq. �8� with a=129.4 and
b=7.11. The vertical �red� dashed lines indicate the three subranges
of rE /�T or k�T: the dissipation range �DR�, near-dissipation range
�NDR�, and inertial range �IR�.
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ET�k� � �k�T�−�, �7�

with the exponent �=1.35�0.05 ��blue� dotted line in
Fig. 4�b��. A similar scaling result was also obtained in low-
temperature helium gas at Ra�1010 �16�. The obtained value
of � is slightly smaller than the Corrsin-Oboukhov value of
�=5 /3 for passive scalars in a turbulent flow at sufficiently
large Reynolds numbers �13�.

Figure 4�b� shows a small peak at k�T�0.014, below
which ET�k� becomes featureless. This peak is caused by a
weak temporal oscillation in the temperature field �15,20�. It
was shown that the oscillation frequency corresponds to the
inverse of the turnover time across the cell circumference
�20�. This oscillation is convoluted into the measured
CT�rE ,0� in IR, making the measurement of the power law in
real space difficult. In the k-space, however, the oscillation
becomes a narrow peak, so that one can determine the expo-
nent � more accurately.

NDR is located between DR and IR, in which ET�k� can
be described by an stretched exponential function,

ET�k� � ae−b�k�T�0.6
, �8�

with a and b as two fitting parameters. The �green� dashed
line in Fig. 4�b� is a plot of Eq. �8� with a=129.4 and b
=7.11. The dynamics of temperature fluctuations in NDR are
determined by a competition between the inertial and viscous

forces �13�. Because of the limited range of scales available,
it is difficult to uniquely determine the functional form of
ET�k� in NDR. Other functional forms have also been pro-
posed �21� and here we choose Eq. �8� for simplicity.

To conclude, we have shown that the measured CT�r ,�� in
the sidewall region has the scaling form CT�rE ,0� as pre-
dicted in Eq. �3�. We expect that this scaling behavior should
be observable in a class of turbulent flows, which can be
characterized by two scaling velocities associated with the
mean and rms velocities of the flow. In this case, while the
Taylor hypothesis is not valid, one can still use the scaling
relation, ft�=k�T, to obtain a reliable power spectrum E�k�
from the single-point time-series data. Here, f is frequency
and t� is Taylor’s microtime, which can be determined from
the measured CT�0,���1− �� / t��2 at small �. We have also
measured CT�r ,�� at the cell center and found it does not
have the predicted scaling form shown in Eq. �3�. This may
be due to the large-scale circulation �a fly-wheel-like flow�,
which introduces a linear shear in the region and thus makes
the velocity field non-uniform in the central region. Extend-
ing the current theory to inhomogenous turbulent flows, such
as turbulent shear flows, is an important task for future study.
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