
Theoretical foundation of Zisman's empirical equation for wetting of liquids on solid surfaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 Eur. J. Phys. 31 251

(http://iopscience.iop.org/0143-0807/31/2/001)

Download details:

IP Address: 159.226.231.78

The article was downloaded on 25/03/2011 at 08:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0143-0807/31/2
http://iopscience.iop.org/0143-0807
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING EUROPEAN JOURNAL OF PHYSICS

Eur. J. Phys. 31 (2010) 251–256 doi:10.1088/0143-0807/31/2/001

Theoretical foundation of Zisman’s
empirical equation for wetting of
liquids on solid surfaces

Ruzeng Zhu1, Shuwen Cui and Xiaosong Wang

State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy
of Sciences, Beijing, 100190, People’s Republic of China

E-mail: zhurz@lnm.imech.ac.cn

Received 21 August 2009
Published 29 December 2009
Online at stacks.iop.org/EJP/31/251

Abstract
Theories of wetting of liquids on solid surfaces under the condition that van
der Waals force is dominant are briefly reviewed. We show theoretically
that Zisman’s empirical equation for wetting of liquids on solid surfaces is
a linear approximation of the Young–van der Waals equation in the wetting
region, and we express the two parameters in Zisman’s empirical equation in
terms of the dielectric polarizabilities of the solid and liquids. The materials
contained in this paper are suitable for physics teaching of wetting phenomena
for undergraduate, graduate, general physicist, etc.

1. Introduction

Contact angle phenomena are common and important in solid–liquid–vapour interfacial
phenomena, for instance, adhesives, lubricants, capillary penetration into porous media,
flotation, etc [1–3].

The contact angle θ of a liquid drop on a solid surface is defined by the mechanical
equilibrium of the drop under the action of three interfacial tensions: solid–vapour, σsv, solid–
liquid, σsl, and liquid–vapour, σlv. This equilibrium relation is known as Young’s equation
[1–4]:

cos θ = σsv − σsl

σlv
. (1)

From contact angle measurements of homologous series of simple molecular liquids (where
van der Waals forces are dominant) on low-energy solid (i.e. molecular solid) surfaces, Zisman
[5, 6] gave a phenomenological linear relation

cos θ = 1 + b(σc − σlv) (2)
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for the wetting region, where b and σ c are constants depending on the solid and the liquid
series.

Zisman’s phenomenological linear relation has been used extensively in experimental
studies of wetting phenomena [7–9]. However, its theoretical origin, i.e. how to deduce
Zisman’s equation (2) from Young’s equation (1), is still unknown.

The purpose of this paper is to deduce Zisman’s equation (2) theoretically. It is obvious
that this theoretical problem is important in the field of wetting phenomena. However, the
theoretical derivation of Zisman’s equation (2) is so simple that the materials contained in this
paper are suitable for physics teaching of wetting phenomena for undergraduate, graduate,
general physicist, etc.

2. Brief review of the Zisman equation for wetting

Experimental studies [5, 10, 11] have shown that the cosine of the contact angle θ of a simple
molecular liquid on a given low-energy solid surface is a function of the surface tension σlv of
the liquid, i.e.,

cos θ = f (σlv) (3)

as long as the liquids belong to a homologous series.
In 1952, Zisman [10] introduced the concept of critical surface tension σc to indicate

the wettability of low-energy solid surfaces for a homologous series of simple molecular
liquids. The definition of the critical surface tension σc is the surface tension which satisfies
the condition cos θ = 1, i.e.

f (σc) = cos 0 = 1. (4)

A liquid of the series with a surface tension σlv = σc forms zero contact angle on the solid
surface. Liquids of the series with a surface tension σlv < σc will spread on the solid surface.
In many cases, we never reach cos θ = 1; then we can extrapolate the plot down to a value
σlv = σc.

In 1963, Zisman [5] noticed that, for most low-energy solid surfaces and any homologous
series of simple molecular liquids, the resulting curves (3) are linear. Thus, he established
empirically, for a given low-energy solid surface, a linear relationship between the cosine
of the contact angle θ and the surface tensions of a homologous series of simple molecular
liquids, i.e. equation (2).

Zisman further generalized the concept of critical surface tension to high-energy surfaces
like graphite, and to nonhomologous series of liquids. In the latter case, a strict linear
relationship may not be seen but the data lie within a linear band that leads to an interval
for σc.

3. Brief review of theories of wetting under van der Waals forces

In the theories of wetting, the intermolecular attractions play the most important role. The
intermolecular attractions, which cause surface tension, arise from a variety of well-known
intermolecular forces. Most of these forces, such as metallic bonding and hydrogen bonding,
are a function of specific chemical nature. However, London dispersion forces exist in all
types of matter and always give an attractive force between adjacent atoms or molecules, no
matter how dissimilar their nature.

In order to deduce Zisman’s equation (2) theoretically, we now review the theories of
wetting under the condition that van der Waals forces are dominant, i.e. we deduce the explicit
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form of equation (3), as the mean step of the derivation of Zisman’s equation (2), from Young’s
equation (1) by using the character of van der Waals forces.

It is known that the work of adhesion of a liquid and solid in contact, Wsl, which is the
work required to separate a unit area of the solid–liquid interface, is given by the Young–Dupré
equation [11]

Wsl = σsv + σlv − σsl. (5)

Combining equation (5) and Young’s equation (1), we obtain

cos θ = Wsl

σlv
− 1. (6)

Similarly, when we separate a unit area of the liquid–liquid interface, we obtain the work of
cohesion of a liquid Wll:

Wll = 2σlv. (7)

Combining equations (6) and (7), we obtain

cos θ = 2Wsl

Wll
− 1. (8)

For simple molecular liquids and low-energy solid surfaces, van der Waals forces are dominant,
so that we have approximately [1, 12]

Wsl = kαsαl (9)

and

Wll = kα2
l (10)

where αs and αl are the dielectric polarizabilities of the solid and liquid, respectively, and k is
an approximate constant depending upon the given solid and the given homologous series of
liquids.

Substitution of equations (9) and (10) into equation (8) gives

cos θ = 2
αs

αl
− 1. (11)

Combining equations (7), (10) and (11), we get

cos θ = αs

√
2k

σlv
− 1. (12)

Take θ = 0 in equation (12) and using equation (4), we obtain

σc = k

2
α2

s . (13)

Combining equations (12) and (13), we get [1]

cos θ = 2
√

σc

σlv
− 1. (14)

We call this equation the Young–van der Waals equation, which, as will be shown in the next
section, is the basis of Zisman’s equation.
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Figure 1. An illustration of the Young–van der Waals equation (14) and Zisman’s equation (2).

(This figure is in colour only in the electronic version)

4. Derivation of Zisman’s equation

For a nonlinear function, its figure is often helpful to us to be familiar with it. A figure of
a function in the field of physics may also be helpful to understand the physical picture of
the relevant physical problem. Thus, we plot the function of the theoretical equation (14) in
figure 1.

From figure 1, we see that the segment of the curve of equation (14) in the region
σc � σlv � 4σc is the wetting section of the curve. It is obvious that the ‘derivation
of Zisman’s equation’ means to determine the empirical parameters b and σc for Zisman’s
empirical equation (2) such that the wetting region of equation (2) is the same as that of the
theoretical equation (14) (the first condition) and the difference between the straight line of
equation (2) and the curve of equation (14) in the wetting region σc � σlv � 4σc would be
small (the second condition). The straight line satisfying the first condition must pass through
both critical points (A(σc, 1); A(4σc, 0)), which determines uniquely the straight line

cos θ = 1 +
1

3σc
(σc − σlv). (15)

Identifying equation (15) with Zisman’s equation (2), we obtain

b = 1

3σc
. (16)

Substitution of equation (13) into equation (16) gives

b = 2

3kα2
s

. (17)

The second condition requires that the line of equation (15) and the curve of equation (14) in
figure 1 should be close to each other in the region σc � σlv � 4σc. Actually, we know from
figure 1 that the second condition is satisfied approximately.
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Thus, we have shown theoretically that Zisman’s empirical equation (2) is a linear
approximation of the Young–van der Waals equation (14) in the wetting region σc � σlv � 4σc

and we have given the parameters b and σc in terms of the dielectric polarizabilities of the
solid and liquids.

5. Discussion

From the above derivations of the Young–van der Waals equation (14) and Zisman’s
equation (2) we see that Young–van der Waals equation is valid under the precondition
that van der Waals forces are dominant and relations (9) and (10) are valid approximately.
Therefore, the Young–van der Waals equation (14) is an approximate equation, to say nothing
of Zisman’s equation (2).

For the cases where van der Waals forces are not dominant, both equations are no longer
valid, and further experimental and theoretical studies of wetting of liquids on solid surfaces
are being done. For example, Fowkes [7, 13–15] considered the surface tension σ to be a
measure of the attractive force between the surface layer and inner phase, and that such forces
and their contribution to the free energy are additive. Therefore, the surface tension of liquid
metals, polar liquids, hydrocarbons, low-energy solids and other solids is considered to be
made up of independent additive terms:

σ = σ d + σ h + σ m + · · ·
where the σ d term is attributed only to the London dispersion interactions, σ h is due to
hydrogen bonding, σ m due to metallic bonding, etc. The readers who are interested in further
particulars may refer to [7, 13–15].

6. Conclusion

Theories of wetting of liquids on solid surfaces under the condition that van der Waals force
is dominant are briefly reviewed. We show theoretically that Zisman’s empirical equation for
wetting of liquids on solid surfaces is a linear approximation of the Young–van der Waals
equation in the wetting region, and we have expressed the parameters b and σc in Zisman’s
empirical equation in terms of the dielectric polarizabilities of the solid and liquids. The
materials contained in this paper are suitable for physics teaching of wetting phenomena for
undergraduate, graduate, general physicist, etc.
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