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ABSTRACT Effects of deposition layer position and number/density on local bending of a thin
film are systematically investigated. Because the deposition layer interacts with the thin film at
the interface and there is an offset between the thin film neutral surface and the interface, the
deposition layer generates not only axial stress but also bending moment. The bending moment
induces an instant out-of-plane deflection of the thin film, which may or may not cause the so-
called local bending. The deposition layer is modeled as a local stressor, whose location and density
are demonstrated to be vital to the occurrence of local bending. The thin film rests on a viscous
layer, which is governed by the Navier-Stokes equation and behaves like an elastic foundation
to exert transverse forces on the thin film. The unknown feature of the axial constraint force
makes the governing equation highly nonlinear even for the small deflection case. The constraint
force and film transverse deflection are solved iteratively through the governing equation and the
displacement constraint equation of immovable edges. This research shows that in some special
cases, the deposition density increase does not necessarily reduce the local bending. By comparing
the thin film deflections of different deposition numbers and positions, we also present the guideline
of strengthening or suppressing the local bending.
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I. INTRODUCTION
The lattice mismatch of different materials has been used as a driving mechanism to grow quantum

dots, or say, nanoscale clusters[1–6]. The stress/strain at the bimaterial interface induced by the lattice
mismatch can also cause wrinkling, or variably called corrugation, undulation, convolution and ripples
of a thin film[7–11]. Liu et al.[11] reported that germanium (Ge) deposition dots on the compliant thin
silicon film of Silicon-on-Insulator (SOI) substrates cause the local bending mode of a compliant film
as shown in Fig.1. The SOI substrate in Ref.[11] consists of a thin silicon (Si) layer, a thin silicon oxide
layer and a thick silicon handle wafer layer. The silicon oxide layer at 700 ◦C (its growth temperature)
is modeled as a viscous fluid[6,11]. The effect of a Ge dot on a thin compliant film is modeled as a local
stressor[11]. The 4.2% lattice mismatch[11] and intermixing/alloying effects of Ge and Si[5,6] result in
the stress/strain at the bimaterial interface, which offers a driving mechanism for the film morphology
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Fig. 1. (a) Schematic illustration of Ge depositions on a Si thin film. The thin film is on a SiO2 viscous layer, which rests
on a solid and rigid Si substrate. The thin film dimensions and coordinates, Ge deposition layer dimensions are also shown.
(b) The distributed stress and bending moment exerted by the Ge deposition layers on the thin film. (c) The scenarios of
the overall and local bendings. In the overall bending the curvature does not change its sign and there are sign changes
in the curvature of the local bending.

evolution[12,13]. Because the local bending results in an undulating strain field inside a thin film, the
formation of a potential well can influence the development of quantum dots[14]. Also, the strain can
alter the crystal symmetry and shift the electronic band, the electronic properties of the thin film can be
significantly changed[14,15], especially when the local bending is formed. The offset between the interface
and the film neutral surface induces a bending moment in the Ge deposition area, which causes an
instant bending of the thin film layer. The previous models on the film morphology[12,13,16] are the
stability analysis, which are the non-equilibrium analysis and offer no information on the nature of the
steady-state film profile[13]. Because there is stress concentration around the valleys of a (sinusoidal)
thin film, Yang and Srolovitz[17] presented a model which goes beyond the stability analysis and is
capable of describing the film cusp-forming morphology evolution via a fracture mechanics approach.
The models presented by Huang and Suo treat the viscous layer either by the lubrication theory[18] or
as the Stokes flow[19]. In Huang and Suo’s models as discussed later, the viscous layer is equivalent to
an elastic foundation offering a transverse support to the upper thin film layer and their two models
are also capable of describing the temporal evolution of film morphology. The elastic foundation model
is also used by Huck et al.[20] in the wrinkling forming study of a metal film on a polydimethylsiloxane
(PDMS) substrate. In Huang and Suo’s models[18,19], the film governing equation is a static one and the
morphology evolution is implicitly embodied in the viscous layer. This study offers an equilibrium/static
study which addresses the influences of the location and density of the deposition layers on the deflection
of the thin film. Therefore, the viscous layer here is assumed in a steady state. In those models[18–20],
wrinkling is formed because of the buckling/postbuckling of the thin film when compressive axial stress
surpasses the critical value. Our model incorporates the bending moments induced by the deposition
layers, which cause the out-of-plane deflection instantly no matter what the axial stress state is. As shown
later in the paper, once the bending moment is removed, our analysis recovers the buckling analysis by
Huang and Suo[18,19]. The constraint has been demonstrated to have huge influence on the wrinkling
pattern of the thin film on compliant substrates[20,21]. In this paper the immovable edge constraint
is imposed, which also implicitly indicates that the film edges are not delaminated. The boundary
conditions and the film length also play important roles of the film/substrate bilayer deflection induced
by the interfacial stress[22], which are also incorporated in this model. It is noticed that in Huang and
Suo’s perturbation solutions[18,19] periodic boundary conditions are implicitly assumed.

Liu et al.[11] also reported that the local bending (curvature) depends on the Ge deposition layer/dot
density and shapes. In this paper a systematic study on the effects of Ge deposition layers/dots and
the viscous SiO2 layer on the wrinkling of a thin film is presented. Our model and computation results
in general agree with the experimental report by Liu et al.[11] that local bending tends to evolve to an
overall extended bending as the Ge layer/dot density increases. However, our model also shows that
in some special cases increasing Ge dots density may not necessarily reduce local bending. We analyze
and compare the deposition position influence on both the symmetric and anti-symmetric mode shapes
of a thin film. We show that in many cases the deposition layer/dot positions play a very important
role in the local bending of a thin film, which can be used as a guide to strengthen or weaken/suppress
the local bending.
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II. MODEL DEVELOPMENT
2.1. Equation of Equilibrium

In Fig.1(a), a schematic diagram of a thin film with Ge deposition layers on a viscous layer and a
substrate is presented. The coordinate system is also given. The bending elastic energy per unit width
of a thin film, which is modeled as a plate bending into a cylindrical surface[23], is given as follows:

U =
∫ L

0

1
2
E∗I

(
d2w

dx2

)2

dx (1)

where L is the thin film length, E∗ the effective Young’s modulus defined as E∗ = E/(1− ν2)[16,18,19].
E, ν are the Young’s modulus and the Poisson’s ratio of the thin film, respectively. I is the area moment
of inertia per unit width defined as I = h3/12, and h is the film thickness. w is the film deflection.

Figure 1(b) illustrates the stress and moment exerted by the Ge deposition layers/dots on the film.
Inside the thin film, the load per unit width P is assumed to have the following distribution

P (w, x) = P1(w, x) + P2 +
Q∑

k=1

SkJk(x) (2)

P1(w, x) is the constraint load, which is unknown yet and we will talk about it later in details. P2

is the load per unit width due to the constant residual stress inside the film. Q is the number of the
deposition layers/dots. Sk is the load per unit width induced by the lattice mismatch of Ge and Si at
the bimaterial interface. Here Sk is assumed to be uniformly distributed along the Si/Ge interface and
function Jk(x) has the following definition

Jk(x) =





xe
k − xs

k = dk (xs
k)

x− xs
k (xs

k ≤ x ≤ xe
k)

0 (x < xs
k)

(3)

xs
k, xe

k are the starting and ending coordinates of the kth deposition layer. dk is the length of the kth
deposition layer and dk = xe

k − xs
k. P > 0 is tensile and P < 0 is compressive. The external work W1

due to P is as follows

W1 = −
∫ L

0

P

2

(
dw

dx

)2

dx (4)

The uniformly distributed bending moment mk due to Sk is defined as[24]

mk =
Skh

2
(5)

The external work W2 due to this bending moment is[24]

W2 =
∫ L

0

Q∑

k=1

mkφk(x)
d2w

dx2
dx (6)

φk(x) is the function defined as

φk(x) = H(x− xs
k)−H(x− xe

k) (7)

in which H is the Heaviside function defined as

H(x− xo) =
{

1 (x > xo)
0 (x ≤ xo)

(8)

where xo is a constant. The purpose of introducing the Heaviside function is to define the action domain
of the deposition layer, which is similar to the case of using the Heaviside function to differentiate the
cracked and uncracked area in Ref.[25]. The above modeling of the effect of the interfacial stress is from
the third model presented in Ref.[24], which in essence is a local stressor model[11,26].
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The external work of W3 due to the pressure exerted by the viscous layer of q is as follows:

W3 =
∫ L

0

∫ w

0

q dwdx (9)

By applying the principle of virtual work (PVW), i.e., δ(U − W ) = 0 (W = W1 + W2 + W3), the
equation of equilibrium is derived as the following:

E∗I
d4w

dx4
−

(
P

d2w

dx2
+

dP

dx

dw

dx

)
−

Q∑

k=1

mk
d2φk

dx2
= q (10)

The definition of φk is shown in Eq.(7) and
d2φk

dx2
=

dδ(x− xs
k)

dx
− dδ(x− xe

k)
dx

. Here δ(x − xo) is
the Dirac delta function. For the detailed derivation of q from the lubrication theory and the Stokes
flow, the reader is referred to the papers of Huang and Suo[18,19]. Here we define q has such a form as
q = −κw which is the Winkler elastic foundation model for a viscous layer. κ is the modulus of the
elastic foundation and is assumed constant here. In conjunction with Eqs.(23) and (27) in Ref.[18], it

is not difficult to find out that κ = σohk2
w +

Ek4
wh3

12(1− ν2)
(σo is a compressive axial stress and kw is the

wave number of the buckled film) for a viscous layer modeled by the lubrication theory. Similarly, in

conjunction with Eqs.(19) and (23) in Ref.[19], κ =
Ehk2

w

12(1− ν2)
[12(1+ν)εo+(kwh)2] (εo is a compressive

axial strain) for a viscous layer modeled as the Stokes flow. Because σo = Eεo(1 − ν)[18], the elastic
foundation moduli of a viscous layer modeled by the lubrication theory and the Stokes flow are the
same. However, the flows of the above two models are different and therefore their temporal evolutions
are different in a non-equilibrium study[18,19]. It is also noticed that once we set the bending moment
mk = 0, Eq.(10) recovers the governing equation of the buckling analysis presented by Huang and Suo
[18,19]. It is this bending moment mk which makes the film deflect no matter what the axial load P is.
So far, we still can not solve Eq.(10) because of the unknown feature of the constraint force P1(P ).

The question now is how to solve P1. When a plate bends into a cylindrical surface and its edges are

free of constraints, there is a (compressive) displacement of
∫ L

0

1
2

(
dw

dx

)2

dx due to the plate deflection.

The displacement due to the axial load P is
∫ L

0

P

E∗h
dx. The following equation states the constraint

of immovable edges[23] ∫ L

0

P

E∗h
dx =

∫ L

0

1
2

(
dw

dx

)2

dx (11)

P1 can thus be solved by this constraint equation once w is known. In computation, we first guess
a P1 value in Eq.(10), solve w and substitute it into Eq.(11) to solve P1, and then substitute this
newly solved P1 back into Eq.(10) again. The above procedure is repeated until both P1 and w are
converged. Here it is also worth pointing out that the above modeling is for a small deflection analysis
and the nonlinear influence of membrane stretching[27] is not considered. For a free-standing structure
the nonlinear membrane stretching will stiffen the structure[27]. For the film/viscous layer/substrate
system studied here, besides the stiffening effect, the membrane stretching will have significant impact
on the constraint force especially when the local bending is severe.

2.2. Nondimensionalization and Numerical Solution

In order to nondimensionalizeEqs.(10) and (11), the followingdimensionless numbers are introduced[28]

ξ =
x

L
, W =

w

L
, ξs

k =
xs

k

L
, ξe

k =
xe

k

L
, Dk =

dk

L
(12)

And for simplicity reasons, we let Sk = S and Dk = D (k = 1, 2, ..., Q). Equation (10) is now nondi-
mensionalized as the following

W ′′′′ −
[
α1 + α2 + α3

Q∑

k=1

Jk(ξ)

]
W ′′ + α3

Q∑

k=1

φk(ξ)W ′ − α3

2

Q∑

k=1

φ′′k(ξ) = α4W (13)
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Now Eq.(11) becomes as follows after some simple manipulations

α1 = 6

1∫

0

W ′2dξ − α2 − α3

Q∑

k=1

[
D(1− ξe

k) +
D2

2

]
(14)

Here ()′ = d/dξ. αi (i = 1 to 4) is defined as follows:

α1 =
P1L

2

E∗I
, α2 =

P2L
2

E∗I
, α3 =

SL3

E∗I
, α4 =

κL4

E∗I
(15)

To solve Eq.(13), we assume that W has the sine series expansion for a hinged-hinged film bending
into a cylindrical surface[29]

W =
M∑

j=1

aj sin(jπξ) (16)

M is the mode number. aj is the modal amplitude to be determined. This sine series expansion of W
also implicitly indicates that the thin film is not delaminated at the edges because sin(jπξ) = 0 at ξ = 0
and 1. It is worth pointing out that during the derivation of governing Eq.(13), we implicitly assume
that dP1/dx = 0 (or dP1/dξ = 0), which means the constraint axial load P1 is distributed uniformly
through the whole film domain. In reality P1 should vary at different ξ. However, it will be extremely
difficult, if not impossible, to find a function of P1 varying with ξ. The integral constraint equation
of (11) is just an overall constraint condition of requiring the whole thin film to generate a matching
constraint force to comply with the compatibility condition. It is a convenient way of assuming P1 is
a constant for each deflection configuration of w.

We now substitute W of Eq.(16) into Eq.(13), multiply it by sin(jπξ) and integrate it from 0 to 1.
Equation (13) becomes as the following:

CA = V (17)

C is the matrix with its element defined as

Cij =
∫ 1

0

sin(iπξ)

{
sin′′′′(jπξ)−

[
α1 + α2 + α3

Q∑

k=1

Jk(ξ)

]
sin′′(jπξ)

+α3

Q∑

k=1

φk(ξ) sin′(jπξ)− α4 sin(jπξ)

}
dξ (i, j = 1, 2 · · · ,M) (18)

A and V are vectors defined as AT = {a1, a2, a3, · · · , aM} and V T = {V1, V2, V3, · · · , VM}. Vi

(i = 1, 2, 3, ..., M) has the following expression

Vi =
∫ 1

0

α3 sin(iπξ)
2

Q∑

k=1

φ′′k(ξ)dξ =
∫ 1

0

α3 sin(iπξ)
2

Q∑

k=1

[δ′(ξ − ξs
k)− δ′(ξ − ξe

k)]dξ

=
α3(iπ)

2

Q∑

k=1

[cos(iπξs
k)− cos(iπξe

k)] (19)

In the above derivation, the following integral property of the Dirac delta function is used[30]

∫ 1

0

f(x)δ(n)(x− xo) = (−1)(n)f (n)(xo) (0 ≤ xo ≤ 1) (20)

Here δ(n)(x− xo) = dnδ(x− xo)/dxn and f (n)(xo) = dnf/dxn(xo).
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III. RESULTS AND DISCUSSIONS
In all the cases studied here, α2 and α3 are set as −1 and 10. α3 is set to be positive, which physically

means that the Ge deposition exerts tensile stress on the thin film[5]. The deposition dot length D is
set as 0.01. Because α1 is an unknown parameter, we first guess an α1 value in Eq.(17) and solve α1

via Eq.(14), and then substitute it into Eq.(17) again. The above procedure continues until both W
and α1 are converged. In Fig.2, 4 cases of thin film deflections with different deposition positions and
numbers are presented. For each case, the deposition has the following distribution

ξs
k =

1 + 4(k − 1)
2(2N − 1)

− D

2
, ξe

k = ξs
k + D (k = 1, 2, · · · , Q) (21)

N is an integer. The whole purpose of designing such a deposition distribution is to let each deposition
layer center located at the peaks of sin[(2N − 1)πξ]. sin[(2N − 1)πξ] is the mode shape symmetric to
ξ = 1/2. In Fig.2, N is taken as 2, 3, 4, 5 and the corresponding deposition layer number Q is Q = N .
Clearly the local bending effects of N = 2 and N = 4 are much more severe than those of N = 3 and
N = 5. That of N = 4 has more severe local bending than that of N = 3 indicates that when the
number of deposition layers/dots is relatively small, increasing deposition density/number (at specific
locations) may not reduce the local bending. The following fact may help to explain why N = 2 and
N = 4 have larger local bending. For N = 2 and N = 4, ξ = 1/2 is the valley of their mode shapes of
sin[(2N − 1)πξ] and there is no deposition layer/dot at ξ = 1/2. For N = 3 and N = 5, ξ = 1/2 is the
peak of their mode shapes of sin[(2N − 1)πξ] and there is a deposition layer/dot at ξ = 1/2. N = 5
shows an overall extended bending. It is also noticed that because of the localization effects of the stress
and moment exerted by the deposition dots, a large mode number of M is needed to approximate the
deflection shape for the computation convergence.

In Fig.3, the influence of the deposition layer/dot position is studied. The number of deposition layer
Q is fixed as 2 and the thin film deflection evolution as a function of the positions of the two deposition
layers are presented. We first define that the deposition has the following distribution

ξs
k =

1 + 4(k − 1)
2(2N − 1)

+ ψkεshift − D

2
, ξe

k = ξs
k + D (k = 1, 2) (22)

Fig. 2. The evolution of thin film deflection as the Ge deposition layer number Q increases. The Ge deposition layer centers
are located at the peaks of symmetric mode shape of sin[(2N − 1)πξ] and N = 2, 3, 4, 5, respectively.

Fig. 3. The evolution of thin film deflection as the two Ge deposition layers symmetrically shift away from the two peaks
of the mode shape of sin(3πξ), which are located at ξ = 1/6 and ξ = 5/6, respectively.
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Fig. 4. The evolution of thin film deflection as the Ge deposition number Q increases. The Ge deposition layer centers
are located at the peaks of an anti-symmetric mode shape of sin(2Nπξ) and N = 1, 2, 3, 4, respectively.

N and Q are fixed as 2. ψk is the function defined as follows:

ψk =





1, ξs
k + D/2 < 0.5

0, ξs
k + D/2 = 0.5

−1, ξs
k + D/2 > 0.5

(23)

The purpose of defining function ψk is to let the two deposition positions shift symmetrically towards
ξ = 1/2. Physically, εshift is thus the shift displacement of the deposition layer(s) away from the film
center. At the beginning, the two depositions are located at the two peaks of sin(3πξ) at ξ = 1/6 and
ξ = 5/6, which is the εshift = 0 case. In Fig.3, εshift is taken as 0, 0.05, 0.1 and 0.15. Figure 3 shows
that such a deposition shift does not necessarily reduce the local bending, either.

Figures 2 and 3 deal with the symmetric case. Now let us look at the local bending effect of the
depositions on the peaks of an anti-symmetric mode shape. In Fig.4 the deposition has the following
distribution

ξs
k =

1 + 4(k − 1)
4N

+ ψkεshift − D

2
, ξe

k = ξs
k + D (k = 1, 2, · · · , Q) (24)

Such a distribution is designed to let the deposition layer/dot center at the peaks of the anti-symmetric
mode shape of sin(2Nπξ). N is set as 1, 2, 3 and 4 and accordingly Q = N . All the cases in Fig.4 show
asymmetric deflections. The reason is simple. For example, as N = 1, there is only one peak at ξ = 1/4
and one valley at ξ = 3/4 for the mode shape of sin(2πξ). So such deposition breaks the anti-symmetry
of sin(2πξ) and makes the deflection asymmetric. There is some trend that the local bending effect is
weakened as the deposition number Q (Q = N) increases.

Figures 2, 3 and 4 all set the deposition layers at or around the peaks of a sinusoid. Now we study more
general cases that the deposition layers are set at or around both the peaks and valleys of a sinusoid.
In Fig.5 the deposition layers/dots center at both the peaks and valleys of the symmetric mode shape
of sin[(2N −1)πξ]. N is set as 2, 3, 4 and 5. The corresponding deposition number Q = 2N −1 because
there are totally 2N−1 peaks and valleys for sin[(2N−1)πξ]. Clearly as the deposition density/number

Fig. 5. The evolution of thin film deflection as the Ge deposition number Q increases. The Ge deposition layer centers
are located at the both peaks and valleys of symmetric mode shape of sin[(2N − 1)πξ] (N = 2, 3, 4, 5).
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Fig. 6. The evolution of thin film deflection as three Ge deposition layers symmetrically shift away from the two peaks
and one valleys of the mode shape of sin(3πξ).

increases, the local bending of the thin film is steadily reduced and the thin film deflection evolves to
overall extended bending shapes, which agrees with the experimental report by Liu et al.[11].

In Fig.6, we study the thin film deflection evolution when the deposition number Q is fixed as 3
and deposition positions gradually shift towards the center. The deposition position has the following
distribution

ξs
k =

1 + 2(k − 1)
2(2N − 1)

+ ψkεshift − D

2
, ξe

k = ξs
k + D (k = 1, 3) (25)

At the beginning, the depositions locate at the peaks and valley of sin(3πξ) at ξ = 1/6 (peak),
ξ = 1/2 (valley) and ξ = 5/6 (peak). εshift is taken as 0, 0.05, 0.1 and 0.15. For these cases, the local
bending effect is also steadily reduced as the depositions shift towards the center.

IV. CONCLUDING REMARKS
The influences of different deposition densities/numbers and positions on the local bending of the

thin film are studied. We show that for the case the depositions located only at the symmetric peaks,
the density increase or position shift does not necessarily reduce the local bending effect. Depositions
on the peaks of symmetric and anti-symmetric mode shapes induce quite different deflections. When
the deposition layers/dots center at or around both the peaks and valleys of a mode shape, the density
increase or deposition position shifting away from the peaks and valleys steadily reduces the local
bending effect, and the film evolves to an overall extended bending shape.

Liu et al.[11] reported that the Ge deposition shape (thickness) also affects the local bending. In
this paper, the deposition contribution to the thin film bending stiffness is not considered and the
stress induced at the Ge/Si bimaterial interface is assumed uniform. During Stranski-Krastanow (SK)
or Volmer-Weber (VW) growth, islands (dots) formation tends to relax elastic strain and the resulting
strain/stress fields are highly non-uniform[31]. Although our equation of equilibrium is derived by
assuming that the interfacial stress is uniformly distributed, the model itself is capable of describing
the non-uniformly distributed stress scenario.
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