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a b s t r a c t

A new criterion for shear band formation in metallic glasses is proposed based on the shear plane criterion
proposed by Packard and Schuh [1]. This modified shear plane (MSP) criterion suggests that a shear band
is not initiated randomly throughout the entire material under stress but is initiated at the physical
0 December 2009
ccepted 23 December 2009

eywords:
ulk metallic glasses

boundaries or defects and at locations where the highest normal stress modified maximum shear stress
occurs. Moreover, the same as in the shear plan criterion, the shear stress all over the shear band should
exceed the shear yield strength of the material. For a complete shear band to form, both requirements
need to be fulfilled. The shear yield strength of the material is represented by the shear stress of the point
at which the shear band stops. The new criterion agrees very well with experimental results in both the

ar yie
hear bands
ielding criterion

determination of the she

. Introduction

Bulk metallic glasses (BMGs) have drawn intensive interest of
any researchers due to their impressive properties including

igh strength, large elastic strain, good corrosion resistance and
igh wear resistance [2,3]. However, the high strength of BMGs is
lways accompanied by remarkably small plastic deformation in
omparison to crystalline metallic materials. The deformation and
racture behavior of metallic glasses have been extensively inves-
igated in the past few decades [1,4–10]. A general observation
s that the plastic deformation of metallic glasses is localized in
ery narrow regions of shear bands whose rapid propagation often
eads to sudden fracture of the material [11–13]. The underlying

icro-mechanisms of the plastic deformation of metallic glasses
re fundamentally different from those of crystalline metals pri-
arily due to the absence of long-range ordering in metallic glasses

11]. The flow localization in metallic glasses is considered to be
elated to the local change of viscosity within shear bands and there

re two kinds of hypotheses to explain this phenomenon [14]. The
rst suggests that it is the formation of free volumes during defor-
ation that decreases the viscosity within the shear bands and thus

ecreases the density of the material [15]. Such geometry soften-

∗ Corresponding author. Tel.: +86 29 8849 5912.
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ld strength and the shear band path.
© 2010 Elsevier B.V. All rights reserved.

ing will lead to severe localization and subsequent fracture along
the shear bands. The second considers the local adiabatic heating
generated during shear banding [16], and an estimation of temper-
ature rise up to the glass transition temperature or even the melting
temperature has been made, which could decrease the viscosity by
several orders of magnitude [11].

Therefore, paralleling dislocation activities responsible for the
yielding of crystalline metals, shear band formation signals the
yielding of metallic glasses. Several criterions have been proposed
for shear band formation within metallic glasses. The first and sim-
plest is the maximum shear stress criterion which is commonly
used for crystalline metals [17–19]. Bei et al. [4] interpreted their
nanoindentation data of metallic glasses (Vit 1, BAM11, both Zr-
based, and two Fe-based systems) by means of this criterion. In their
study, the objective is to find the “theoretical strength”. However,
the physical picture of such “theoretical strength” is not clearly
defined in the paper of Bei et al. [4]. According to Bei et al., the
theoretical strength appears to be the stress that kicks off the first
shear band. But this interpretation of “theoretical strength” seems
at variance with the widely accepted understanding of theoretical
strength [20].

Unlike in crystalline metals, the plastic deformation of metal-
lic glasses has been found to exhibit significant sensitivity to the

normal stress or to pressure [21–25]. One piece of experimen-
tal evidence that supports this notion is the tension/compression
asymmetry in the yield stress and the deviations of the shear frac-
ture plane from the maximum shear stress plane under uniaxial
loading [21–24]. The pressure-modified criterion can be approx-

http://www.sciencedirect.com/science/journal/09215093
http://www.elsevier.com/locate/msea
mailto:guoyzh@mail.nwpu.edu.cn
mailto:qwei@uncc.edu
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occurs. The yield strengths determined by the maximum shear
stress criterion and pressure-modified maximum shear stress cri-
terion are thus derived. A comparison of these results with the
values of the expected shear yield stresses is shown in Fig. 2. The
discrepancy is apparent and quite significant. Moreover, the shear
614 Y.Z. Guo et al. / Materials Science a

mated by the Coulomb–Mohr yield criterion, which is widely
sed to describe the constitutive behaviors of granular materials
26]. Both the maximum shear stress criterion and the pressure-

odified maximum shear stress criterion are based on the belief
hat the process of shear band formation is controlled by shear
tress (or pressure-modified shear stress). As such when the high-
st maximum shear stress (or pressure-modified maximum shear
tress) all over the material exceeds the yield shear stress it will
nitiate shear band.

Different from the aforementioned criteria, Packard and Schuh
1] contended that since the formation of shear band is a coopera-
ive process along a specific shear plane, it requires the yield stress
e exceeded everywhere along the entire path. In other words, it

s not the highest shear stress all over the material but the lowest
hear stress on a potential shear path that controls the formation
f shear flow localization.

Naturally, the yield strength of a metallic glass extracted from a
ertain experiment is directly related to the yield criterion applied.
hus the comparison of yield strengths from different experiments
ill be meaningless if inconsistent yield criteria are used. This is
articularly the case if the stress state is complex. It becomes a
ather important issue in interpreting the experimental results so
s to pin down the underlying physics such as responsible for the
o-called size effect, for example [4,6,7,9,10,27]. Moreover, a good
nderstanding of how shear band forms in metallic glasses will not
nly shed light on the underlying mechanism and physics of frac-
ure and fatigue, but will also facilitate the design and fabrication
f structure devices made from metallic glasses.

In this paper, we will critically evaluate the aforementioned
ield criterions (or criterions for shear band formation) in bulk
etallic glasses by applying them to derive the yield strengths of

ifferent experiments with various stress states. Particularly, we
ill provide detailed analysis of a spherical indentation test which

erves as an example of complex stress state but at the same time
an be analyzed more or less thoroughly. Based on such efforts, a
ew criterion is proposed to describe the requirement of initiating
shear band and to determine the yield strength of metallic glasses
nder stress concentration.

In what follows, we will first provide a detailed review of the
hear plane criterion of Packard and Schuh [1]. A critical assessment
f the maximum shear stress criterion and the pressure-modified
riterion has been given by Packard and Schuh, and will not be
etailed here. Then we will lay out a modification to the shear plane
riterion. Finally we will use the modified shear plane criterion to
e-examine various experimental data.

. Review of the shear plane criterion

Recently, Packard and Schuh [1] have analyzed the stress state
n metallic glasses under spherical indentation using the Hertzian
ontact theory. They also compared the theoretical results with
heir experiments on Pd-, Zr- and Fe-based BMGs. Their goal is
o interpret the first stage of plastic deformation and to derive
he yield stresses using the maximum shear criterion or pressure-

odified maximum shear criterion. However, it turned out that
either of the two criteria agreed with the theoretical and experi-
ental results. Based on the nature of shear banding processes in
etallic glasses, and in order to reconcile the discrepancy between

he much too high yield strengths from indentation experiments
is-à-vis the values derived from uniaxial loading, Packard and
chuh proposed the shear plane criterion briefly mentioned in the

receding section. Here we will provide a more detailed review on
he shear plane criterion so as to lay the foundation for the new
riterion to be developed later in this article.

The stress states arising from the contact between two elastic
odies was first studied by Hertz in 1881 [28]. Based on the Hertzian
ineering A 527 (2010) 2613–2620

contact theory, the stress components, the principal stresses and
maximum shear stresses under spherical indentation can be easily
determined [28]. A nondimensionalized solution for the stresses
was given in Ref. [1]. With the assumption that the angular direc-
tion of the shear path at every point is determined by the local
shear angle, the shear trajectories within the material could also be
obtained [1].

Fig. 1 is the distribution of the maximum shear stress and the
modified maximum shear stress from Fig. 4 of Ref. [1]. The same
stress contour map can also be found in the work of Bei et al. [4]. In
Fig. 1, the contact radius is a and is used as a characteristic length
of the indentation problem. Pm is the mean pressure on the contact
surface and is used as characteristic stress. These two characteristic
quantities are given by [1].

a =
(

3PR

4Er

)1/3
(1)

Pm = 4Era

3�R
(2)

where P is the applied load, R the radius of the indenter tip, Er the
reduced modulus [29].

We also made the following definition. � ′ is the maximum shear
stress normalized by the mean pressure Pm and is related to the
maximum (�1

′) and the minimum (�3
′) principal stresses. p′ is the

normalized hydrostatic pressure and is calculated from the prin-
cipal stresses. A pressure-modified shear stress is then defined as
(� ′ − ˛p′), where ˛ is pressure coefficient (or the internal friction
coefficient in the sense of the Coulomb–Mohr yield criterion). We
have

� ′ = 1
2 (� ′

1 − � ′
3) (3)

p′ = −� ′
r + � ′

z + � ′
�

3
(4)

As can be seen from Fig. 1, the highest values of the maximum
shear stress and the pressure-modified maximum shear stress are
about 0.45Pm and 0.41Pm, respectively. Meanwhile, in Ref. [1] the
authors obtained Pm experimentally from the critical indentation
load defined as the load at which the first shear banding event
Fig. 1. Contours of maximum shear stress (� ′ , on the right) and pressure-modified
maximum shear stress (� ′ − ˛p′ , on the left (˛ = 0.12)) associated with a spherical
indentation calculated using the Hertzian contact theory, from Ref. [1] (also to be
found in the work of Bei et al. [4]). The stresses are plotted in Pm , the mean pressure
under the spherical indenter.
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ig. 2. Comparison of the shear yield stress calculated through the critical indentat
aximum shear stress criterion ((� − ˛p)max) with the expected values [1] (horizon

aths under these two criterions could also be predicted by the
ertzian contact theory, as path D in Fig. 3 (the two shear paths
re almost superposed, and hence they are denoted as one line).
ig. 3 also gives some other shear trajectories originated from z = 0,
.e. the surface of the specimen. The shear bands from a cylin-
rical indentation experiment are shown in Fig. 4 [30]. Although
hey might not be exactly the same with the spherical inden-
ation, the mechanical similarities are sufficient to make some
omparisons (the similarities between cylindrical indentation and
pherical indentation will be discussed later in this article). There
re three main shear bands in Fig. 4, denoted as A–C. However,

one of them is even close to path D in Fig. 3 predicted by the
aximum shear stress criterion or the pressure-modified crite-

ion. Therefore, the seemingly irreconcilable differences between
he predicted shear yield stresses/trajectories and the experimental
esults indicate that these criterions are not appropriate for metallic

ig. 3. Representative potential shear trajectories originated from the specimen
urface, calculated using the Hertzian contact theory.
ads by using the maximum shear stress criterion (�max) and the pressure-modified
es are values from macroscopic experiments).

glasses under indentation conditions.
Packard and Schuh [1] then examined the stresses along all the

potential shear paths and proposed the shear plane criterion for
metallic glasses. There are two key features associated with the
shear plane criterion. The first is that the plane which undergoes
the highest shear stress along its entire path is the preferred shear
plane. The second is that the lowest stress along that path defines
the yield strength of the metallic glass. Based on these two points,
Packard and Schuh reevaluated their experimental shear yield
stresses using the shear plane criterion and observed much better
consistency with the expected values, as shown in Fig. 5. Compar-
ison between Figs. 2 and 5 reveals more clearly the improvement
brought about by the shear plane criterion. Furthermore, based on
the shear plane criterion, the preferred shear plane is now along

path B in Fig. 3, as it has the highest stress along its entire path
(curve B in Fig. 6, to be detailed later). This predicted shear plane is
also consistent with the experimental observations, namely, shear
band B in Fig. 4.

Fig. 4. Shear band paths under cylindrical indentation of a metallic glass, from Ref.
[30]. The right half of this image has been used by Packard and Schuh [1]. Notice the
major bands on the right-hand side, particularly the starting points of these bands
which are at or at least close to the edge of the indent where large tensile stresses
are expected.
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ig. 5. Comparison of the shear yield stresses calculated through the critical inden
�MSP) with the expected values [1] (horizontal lines are values from macroscopic e

. Modified shear plane criterion

The shear plane criterion proposed by Packard and Schuh
ppears to be a much improved method for defining the shear
anding behavior of metallic glasses. However, a closer examina-
ion suggests that there are still a few problems that need to be
ddressed. For example, Fig. 5 shows that the shear plane crite-
ion consistently underestimates the yield stresses of all the three
etallic glasses investigated by Packard and Schuh. In what follows,
e attempt to provide a critical assessment of the shear plane cri-

erion and to put forward a modified method that results in better
redictions of the shear yield stress under complex stress state such
s associated with indentation.
.1. Determination of a complete shear band

The shear trajectories calculated using the Hertzian contact the-
ry are just potential candidates along which the shear band may
ropagate. In other words, the shear band does not have to occupy

ig. 6. The stresses along the shear trajectories in Fig. 3, from the starting points
on z = 0) to the end points (on r = 0). Notice that the letters in the plot correspond
o the same used to denote the various paths in Fig. 3.
loads using the shear plane criterion (�SP) and the modified shear plane criterion
ents).

the entire trajectory; it may instead stop at certain point within the
path (see band C in Fig. 4 vis-à-vis curve C in Fig. 3). One may notice
that the two boundaries of a shear trajectory calculated here and
in Ref. [1] by the Hertzian contact theory are defined by z = 0 and
r = 0, i.e. the contact surface and the symmetry axis of the (spher-
ical) indentation problem, respectively. The symmetry axis (r = 0)
is, however, just a mathematical boundary, which means that the
shear band does not have to stop at this axis but may go beyond it
(see band A in Fig. 4, as compared with curve A in Fig. 3). The above
two cases indicate that the actual shear band may not be identi-
cal to the theoretical shear trajectory with mathematically defined
boundaries; it could be shorter or longer. This observation implies
that determining the lowest shear stress along an actual shear band
by using the stress on a mathematically confined trajectory is inap-
propriate. A more reasonable way is to take into account the start
and end points of the shear trajectory.

3.2. Initiation of the shear band

We have calculated the pressure-modified shear stresses along
different shear trajectories displayed in Fig. 3, and the results are
shown in Fig. 6. Suppose path B in Fig. 6 is the preferred shear plane.
We have marked out four points, b1–b4 on path B for detailed con-
sideration. From the shear plane criterion, the shear stress at b1
under the load is roughly 0.07Pm, and is the lowest stress point
along path B. According to the shear plane criterion, it should
therefore be taken as the shear yield strength of the material
[1]. However, this yield stress has been exceeded earlier between
points b2 and b3. Then a natural question arises: why dose not the
shear banding event just occur earlier between b2 and b3? If it does,
the yield strength should be changed to the stress at b3 accordingly.
This paradox could only be resolved if the requirement for shear
band initiation is considered.

One may notice that in our calculation (as well as in Ref. [1]) of
the shear trajectories by the Hertzain contact theory, an assump-

tion is made that all potential shear paths originate from the surface
of the material. To the best of our knowledge, under mechanical
loading the shear localization of BMGs always starts at the phys-
ical boundaries of (under compression or tension) or defects in
(usually under tension) the material. Since the material mostly
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ig. 7. Variation of the normal stress modified maximum shear stress on the spec-
men surface under a spherical indenter. Note the stress reach a peak value at r = a.

ndergoes compression and the specimen surface is the only phys-
cal boundary of the indentation problem, the above assumption
eems reasonable. In what follows we will focus on the stress anal-
sis of the sample surface under indentation.

As discussed before, the tendency to shear localization of BMGs
s greatly influenced by normal stress components. Moreover, its
ensitivity to tensile stresses is quite different from that to com-
ressive stresses. Flores and Dauskardt [5] found that the mode II
racture toughness of the Zr-based BMG exceed its mode I fracture
oughness by four times, suggesting that the shear stress itself is
ot as effective as tensile stress to initiate a shear band. Zhang et al.
21] compared the fracture behavior of Zr59Cu20Al10Ni8Ti3 under
ompression and tension and they also found that the shear local-
zation is more sensitive to tensile loading. Lund and Schuh [22,24]
nalyzed the previous experimental data on the asymmetry char-
cteristics of BMGs and found that the Mohr–Coulomb criterion is a
ore suitable criterion to describe the yield behavior of BMGs. The
ohr–Coulomb criterion says that the critical shear fracture stress,

y is expressed as �y = �0 − ��n where �n is the normal stress acting
n the shear plane, �0 is the critical shear fracture stress on a plane
ithout normal stress and � is a material constant. Based on pre-

ious experiments, they obtained an average value of � = 0.26 for
ensile loading and � = −0.11 for compressive loading. Using the

ohr–Coulomb criterion, we analyzed the shear stress distribu-
ion on the specimen surface under indentation by Hertzian contact
heory, and the results are shown in Fig. 7. The distribution of the
ressure-modified maximum shear stress on the specimen surface

s also plotted in Fig. 7. The stresses have peak values at r = a by both
riterions, although the peak stress values are slightly different.
his stress distribution indicates that the shear band will proba-
ly initiate at the edge of the contact. Since the Mohr–Coulomb
riterion considers the difference of the coefficients between ten-
ion and compression, it is preferred as the criterion for shear band
nitiation. The critical initiation shear stress is about 0.11Pm from
ig. 7.

It should be noted that the fulfillment of the initiation criterion
s not sufficient for the formation of a complete shear band. Another
equirement, which is also the key component of the shear plane
riterion, is that the shear stress over the whole shear band should
xceed the yield strength of the material. One will not observe a
hear band or a load drop until both of the above two requirements
re satisfied.
.3. Determination of shear yield strength

The shear yield strength of BMGs could be determined by eval-
ation of the aforementioned two requirements. Similar to Ref. [1],
Fig. 8. Pressure-modified shear stress distribution from the surface to the inner
part of the specimen, corresponding to path B in Fig. 3, a characteristic length corre-
sponding to 0.59 �m indenter radius in Ref. [1] is used. Note the large stress gradient
into the surface.

we believe that the lowest shear stress over a complete shear band
(not necessarily the potential shear path) represents the shear yield
strength of the material.

Theoretically, the shear stress required to initiate a shear band
should be the same as the shear yield strength. However, this stress
was not adopted in the process of determining the strength. The
reasons are listed below.

Firstly, as we have discussed before, the shear band may not
come into being even when the initiation stress has been achieved.
In other words, by the time when a complete shear band has been
formed the stress at the initiation site may have changed and is no
longer the shear yield strength of the material. Since the experi-
mental results are always corresponding to the condition for the
formation of a complete shear band, taking the stress at the ini-
tiation point of shear band as the shear yield strength could be
misleading.

Secondly, the physical boundaries and defects are the preferred
locations of the shear band initiation, but the stress state at those
locations is not easy to analyze as it is affected by many factors
such as surface quality or roughness. For example, Fig. 8 gives the
variation of the pressure-modified maximum shear stress from the
surface to the interior of the material along path B of Fig. 3. At the
very top surface, the pressure-modified shear stress gets its lowest
value, about 0.07Pm, which is also the lowest throughout path B in
Fig. 6. Since the lowest pressure-modified shear stress (0.07Pm) at
this point of path B is the highest among all the trajectories, by the
shear plane criterion it should be taken as the shear yield strength
of this metallic glass. However, this value rises to 0.15Pm at about
5 nm deep into the surface, which indicates if the surface roughness
is at this level (5 nm in the work of Packard and Schuh [1], for exam-
ple), none of the stresses will be practical in the domain 0 ≤ z ≤ 5 nm.
Thus there are some other factors such as surface defects that affect
the initiation of shear bands. For instance, surface defects are clearly
visible in Fig. 4 on the left part of the indentation surface. Such sur-
face defects might be the reason for the asymmetric pattern of the
shear bands under the indenter. The above discussion and Section
3.2 suggest that the initiation of shear band is a rather complicated
event and can be affected by many factors. The method of using the
maximum shear stress at the initiation of shear band to predict the
shear yield stress is apparently inadequate.

Unlike the initiation, the propagation of the shear bands

is mainly related to the maximum shear stress (or the pres-
sure/normal stress modified maximum shear stress) [5]. The
shear band will grow along its maximum shear direction until
the shear stress drops down below a critical value. Flores and
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Table 1
Comparison between different shear band criterions (all stresses in GPa).

Metallic glass �y [1] �max (� − ˛p)max �SP �MSP

M E (%) M E (%) M E (%) M E (%)

Pd Ni P 0.7 3.20 357 2.91 316 0.48 −31.4 0.73 4.3
.48
.97
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40 40 20

Fe41Co7Cr15Mo14C15B6Y2 1.6 7.12 345 6
Zr49Cu45Al6 0.7 3.26 366 2

: magnitude; E: error. The magnitudes of the stress are all from the average of the

auskardt [5] studied the critical shear stress required for con-
inued propagation of the shear band by examining where the
hear band stops and found a critical shear stress of 1075 MPa for
r41.25Ti13.75Ni10Cu12.5Be22.5, similar to the reported shear yield
trength [31]. Therefore, it may be more reasonable to determine
he shear yield strength of metallic glasses by studying where it
tops instead of where it starts. Based on this, we have recalculated
he shear yield strengths of the three BMGs studied by Packard
nd Schuh in Ref. [1] using the new criterion (hereafter referred
o as modified shear plane (MSP) criterion). Our results are plotted
n Fig. 5 to be compared with the experimental results as well as
he results derived from the shear plane criterion. The same major
hear band as that of Ref. [1], i.e. band B in Fig. 4, is chosen for
alculation.

The first and critical step to use the MSP criterion is to determine
here the shear band stops and then find the stress at this point

y theoretical calculation. It is relatively easy when the shear band
nds at the surfaces of specimen, such as those in uniaxial tension,
ompression or micro-compressions. When it comes to indentation
here the shear band ends in the bulk, the exact location at which

hear band stops is not easy to identify. However, in the later stage
f the shear banding process, the variation of shear stress along the
hear path is not so intense (see Fig. 6), which means that small
iscrepancy between the real location and the picked point will
ot introduce significant error. The values of shear yield strength
erived based on different criterions are given in Table 1 to facilitate
uantitative comparison. Clearly, the results from the MSP criterion
ave reduced the errors by two orders of magnitude vis-à-vis the
aximum shear criterion; and by about one order of magnitude

is-à-vis the shear plane criterion.
Band B in Fig. 4 stops at B4, and the shear stress at B4 is adopted

s the shear yield strength of this material by the MSP criterion. The
hear stress at the last point of band A (i.e. at r = 0) is larger than this
ield strength, indicating that shear band A will not stop at r = 0 but
ill continue to propagate. For band C, as the shear stress is smaller

han the yield stress at r = 0, the shear band will not go farther and
t should stop at Cs as indicated in Fig. 6. Actually, the pressure-

odified shear stress at point As and point Cs are also calculated
sing the Hertzian contact theory. Results show that �AS

= 0.14Pm

nd �CS = 0.17Pm, significantly larger than the shear yield strength
�b4

= 0.10Pm). However, the real values of these stresses should
e lower than those calculated, because the calculation is based
n an elastic assumption whereas the growth of secondary shear
ands is under the precondition of the formation of the primary
hear band. Since the applied load has been released by the first
hear banding, the stresses along those secondary shear bands are
reatly decreased.

It should be noted that our reference experiment is cylindrical
ndentation (the same as that in Ref. [1]), while all the theoretical
alculations are based on the spherical indentation. The pressure
istributions beneath the indenters can be expressed as [28]:
�z

Pm
= −3

2

[
1 − r2

a2

]1/2

for spherical indenter and (5)
305 1.08 −32.5 1.63 1.9
324 0.49 −30.0 0.75 7.1

rical indentation results with different indenter radius.

�z

Pm
= − 4

�

[
1 − r2

a2

]1/2

for cylindrical indenter (6)

These expressions are almost identical except for the slight dif-
ference (about 15%) between the magnitude of the coefficient (−3/2
for spherical indenter vs. −4/� for cylindrical indenter). Consider-
ing the close similarities between the two cases, we believe that
our calculation results should not be far from the real condition.

4. Comparison of the MSP criterion with the shear plane
criterion

As we have pointed out, the MPS criterion derived in this work
is inspired by the shear plane criterion proposed by Packard and
Schuh [1]. Both criterions have been based on the premise that the
shear plane is along one of the potential shear trajectories decided
by the orientation of maximum shear stress, and that the formation
of shear band in metallic glasses is a cooperative process. In what
follows, however, we would like to discuss differences between the
two criterions.

Firstly, the shear plane criterion is based on the notion that it is
only the lowest shear stress along a potential shear trajectory that
determines whether such a trajectory will be eventually selected as
the shear plane. The way to obtaining the lowest shear stress is by
checking the stresses along all the potential trajectories from the
start point to the end point. As such, for example, all the paths in
Fig. 3 have to be evaluated. One potential issue associated with this
method is the determination of the start point and the end point.
The two axis, i.e. r = 0 and z = 0, were chosen as the boundaries for
calculation. Although the plane corresponding to z = 0 represents
the surface of the specimen and might be justifiably taken as a
boundary, the position of the symmetry axis, r = 0, is somewhat
arbitrary. Moreover, as pointed out in Section 3.2, if the shear band
initiation is only determined by the lowest shear stress along the
shear plane, say b1 on path B in Fig. 6, why does not the shear band-
ing event occur earlier between b2 and b3, as the shear stresses
between them have exceeded the stress at b1 already? This sug-
gests that the shear band initiation suggested by the shear plane
criterion is debatable. The MSP criterion deems that the initiation of
shear band is affected by many factors (defects and surface rough-
ness for example) and always occurs on the physical boundaries of
the problem. For the case of indentation, the shear band tends to
initiate on the specimen surface at which the highest normal stress
modified maximum shear stress is found.

Secondly, the shear plane criterion suggests that the shear yield
strength of the material should be determined by the lowest shear
stress along the shear plane. The MSP criterion is in keeping with
that but it has further taken into account the surface roughness or
defect effect. The extremely large stress gradient and the compli-
cated conditions on the specimen surface (see Fig. 8) makes the
local stress values unrealistically high. Alternatively, the MSP cri-

terion chooses to examine the stress at the point where the shear
band ceases and believes that the shear band will not stop until the
shear stress drops down to a critical value, which we consider as
the shear yield stress. In this sense, the critical shear stress is the
lowest all over the shear plane.
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ig. 9. Micropillars of different diameters: (a) 3.8 �m [7], (b) 1 �m [7], (c) top diam
alculation of shear yield stress using the shear plane or modified shear plane (MS
illars as the pillar size decreases.

. Implications to the size effect

The so-called specimen size effect of BMGs has been inten-
ively studied recently [1,4,6,7,9,10,27] and is still an issue of strong
ebates. While some researchers have reported that the strength of
MGs increases with decreased sample size [4,6,7,10], others have
bserved that the strength enhancement is at least in part extrinsic
1,9,27]. Bei et al. [4] and Wright et al. [10] have both studied the

echanical behavior of Zr-based metallic glass under nanoinden-
ation using the Hertzian contact theory. The yield stresses they
eported are more than three times larger than the shear yield
tress of bulk specimens. They attributed this high yield strength
o the “defect free” characteristic of the material due to the small
est volume. However, the methods used in those studies to deter-
ine the shear yield stress are the maximum shear stress criterion
r normal stress modified shear stress criterion, which could be
isleading as pointed out by Packard and Schuh [1]. As the yield

tress of BMGs is deemed to be close to the theoretical limit, an

able 2
hear yield strengths (�y , GPa) for different bulk metallic glasses based on different exper

Test method Material �y from Refs.

Nanoindentation [4] Zr41Ti14Cu12.5Ni10Be22.5 3.1 [4]
Nanoindentation [4] Zr52.5Al10Ti5Cu17.9Ni14.6 2.9 [4]
Nanoindentation [10] Zr40Ti14Ni10 Cu12 Be24 2.9 [10]
�-Compression [7] Mg65Cu25Gd10 0.81 [7]
�-Compression [6] Zr63.8 Ni16.2Cu15 Al5 1.20 [6]
�-Compression [27] Zr41Ti14Cu12.5Ni10Be22.5 2.32b [27]

a The values were calculated through direct measuring the top diameter and the diame
hear direction were assumed).

b This value was calculated by using the maximum shear stress on the top of the micro
5 nm, bottom diameter 320 nm [27]; (d) definition of parameter pertaining to the
terion. Note the exacerbation of the taper angle and the irregular geometry of the

additional increase by three times seems physically unreasonable
[1]. Moreover, in those studies the shear yield stresses measured
by nanoindentation were just compared with those from uniaxial
compression tests. The comparison between experiments with rad-
ically different stress states seems not as convincing as comparison
between similar experiments, as done in Ref. [1]. Three indenter
sizes were used in Ref. [1] and no apparent size effect were observed
(see Figs. 2 and 5 of this work). All the above discussions indicate
that those so-called “size effect” might be an artifact.

The size effect of BMGs has also been investigated by micro-
compression [6,7,9,27,32]. Lai et al. [6] reported that the yield
strength of micropillars of a Zr-based metallic glass with diameters
from 3.8 �m to 0.7 �m is 25–86% larger than their bulk counter-
parts. Similarly, Lee et al. [7] claim that their micropillars of a

Mg-based metallic glass are 60–100% stronger than the bulk speci-
mens. They both calculated the yield stress by using the maximum
shear criterion and both attribute the strength enhancement to
the decreased defect population of the smaller specimens. One

iments and comparison against theoretical predictions.

�y (uniaxial test) �y (shear plane) �y (MSP)

0.85 [33] 0.49 0.70
0.82 [34] 0.46 0.65
0.95 [10] 0.60 0.91
0.46 [7] 0.56a 0.56a

0.92 [6] 0.96 0.96
0.85 [33] 0.68 0.68

ter where lowest shear stress occurs along a shear band in Fig. 1(a) in Ref. [7] (42◦

pillar.
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[
[
[
[
[

[32] B.E. Schuster, Q. Wei, M.H. Ervin, S. Hruszkewycz, M.K. Miller, T.C. Hufnagel,
620 Y.Z. Guo et al. / Materials Science a

ssue associated with the fabrication of the micropillars is that
hose pillars are usually tapered because of the divergence of the
on beam (see Fig. 9). Schuster et al. [9] have compared the com-
ression results of tapered micropillars with non-tapered ones for
Pd-based metallic glass. No significant dependence of strength

n specimen size from ∼2 �m to 20 �m for non-tapered pillars
as convincingly established. An extrinsic size effect is observed

or tapered specimens if the maximum shear stress criterion was
pplied. Their observations again suggest that the maximum shear
tress criterion (or pressure/normal stress modified maximum
hear stress criterion) is not adequate for metallic glasses. They
eevaluate the experimental data using the shear plane criterion
nd estimate the shear yield stress by the following equation (with
shear band angle ∼42◦):

SP ≈ P

2�(r + h tan ˇ)2
(7)

here P is the applied compressive load, r the radius of the pillar
op, h the distance from the end of the shear band to the top of the
illar and ˇ the taper angle, see Fig. 9(d). By using Eq. (7), the geom-
try influence is eliminated and the yield shear stress of tapered
pecimens is comparable with those of the non-tapered ones. The
hear yield strength of the pillars with diameters of 3.8 �m in Lai et
l.s’ paper was recalculated with the shear plane criterion and the
esults showed that they might have overestimated the shear yield
trength by 20%. A 20% decrease of the shear yield strength makes it
ery close to that of its bulk counterparts, suggesting that there is no
ntrinsic size effect. Fabrication of small, taper-free pillars becomes

ore challenging with decreased pillar size. Furthermore, since
rregular geometry may be produced with very small, nanometer
ized pillars such as shown in Fig. 9(c), caution must be exercised
hen trying to derive yield stress from such pillars. Some of these

xperimental results are listed in Table 2. Applying the shear plane
riterion, an over-all softening effect is observed. No remarkable
ize effect is established if the MSP criterion is used, indicating that
onclusions regarding experimental evidence for the size effect in
ulk metallic glasses need to be welcomed with due caution.

. Summary and concluding remarks

A new criterion for shear band formation in metallic glasses, the
odified shear plane (MSP) criterion, has been proposed in this
ork through analyzing the stress field of spherical indentation
sing the Hertzian contact theory. This criterion suggests that the
hear band always initiates at physical boundaries or defects of the
aterial and at locations where the highest normal stress modi-

ed maximum shear stress occurs. Moreover, as in the shear plane
riterion, the shear stress all over the shear band should exceed
he shear yield strength of the material. For a complete shear band
o form, both of these two requirements need to be satisfied. The

SP criterion also suggests that the shear stress at the point where
he shear band stops determines the shear yield strength of the

aterial. This criterion has improved accuracy in predicting the
hear yield stresses of some typical metallic glasses under spherical

ndentation.

For uniaxial tests, the MSP criterion converges with the shear
lane criterion and the pressure/normal stress modified maximum
hear stress criterion, because the maximum shear stress all over
he specimen is considered to be uniform and the potential shear

[
[

ineering A 527 (2010) 2613–2620

paths predicted by MSP criterion are identical with the maximum
shear planes. For micro-compression tests, especially when the pil-
lars are fabricated with tapered geometry, the maximum shear
stress criterion should not be used, but the MSP criterion and the
shear plane criterion could be equally applied. This is because in
such cases the shear bands usually initiate on one surface, and
propagate along the maximum shear path until reaching another
surface, where the lowest shear stress is located. When it comes
to indentation tests, the incipient shear band tends to form on the
specimen surface which is the only physical boundary of this prob-
lem, and tend to cease within the material. The absence of physical
boundaries makes it improper to use the shear plane criterion, and
the MSP criterion appears to be a better choice.
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