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ABSTRACT

Semi-implicit algorithms are popularly used to deal with the gravitational term in numerical models. In
this paper, we adopt the method of characteristics to compute the solutions for gravity waves on a sphere
directly using a semi-Lagrangian advection scheme instead of the semi-implicit method in a shallow water

model, to avoid expensive matrix inversions. Adoption of the semi-Lagrangian scheme renders the numerical
model always stable for any Courant number, and which saves CPU time. To illustrate the efficiency of the
characteristic constrained interpolation profile (CIP) method, some numerical results are shown for idealized

test cases on a sphere in the Yin-Yang grid system.
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1. Introduction

Computational efficiency and accuracy are two
important characteristics in the field of computa-
tional fluid dynamics, and the notion of “the higher
the better” seems to be true for numerical weather
forecasting. To achieve better numerical proper-
ties, researchers have invented various finite deference
schemes (Crowley, 1968; Tremback et al., 1987; Morin-
ishi et al., 2004). Besides providing high-precision re-
sults, high-order schemes also have high costs (low
computational efficiency). To address these tradeofls,
we must find a point of balance between the compu-
Many efforts have been
made by researchers around the world to improve the
computational efficiency and/or accuracy, such as the
use of advanced temporal and spatial integration al-
corithms (e.g., Runge-Kutta method, semi-implicit,
and semi-Lagrange methods, ete.). The high-order
Runge-Kutta scheme (Gill, 1951) is much better in

tational accuracy and cost.

terms of stability, and can be used with a larger time
step, than the Euler forward method. Being a multi-
step scheme, however, it takes more computational
resources for a single step of integration. The semi-
Lagrangian scheme, which enlarges the time step for
advection, is known as one of the most effective al-
gorithms (Staniforth and Coté, 1991). Variations on
this kind method (e.g., Yabe and Aoki, 1991; McGre-
gor, 1996; Zerroukat et al., 2002) have been devel-
oped for effective computation, and are already used
in atmospheric models. A successful application of the
semi-implicit method for gravity waves which is stable
suceessfully extends the computational time step. In
computational geophysical fluid dynamics, the defini-
tion or selection of a proper grid system is known to
be a useful way to cut cost and improve numerical
representations (Rancié et al., 1996; McGregor, 1996;
Kagevama and Sato, 2004). We tend to use uniform
grid systems in numerical models because no severe re-
striction on the time step exists in concern with much
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smaller grid spacing. In more general geophysical fluid
dynamics modeling, rigorous restrictions must be con-
sidered for all the dynamical processes, such as advec-
tion and wave propagation. Generally, a rapid wave is
harder to deal with within these restrictions on speed
vs. grid spacing than the flow because waves can travel
so much faster.

Gravity waves, also known as fast waves, are dy-
namical processes that contribute to weather variation.
Explicit and semi-implicit schemes have been devel-
oped to treat the gravity waves in numerical models.
The explicit scheme is conditionally stable, and the
time step is severely restricted by the top gravity wave
speed. Even though the semi-implicit scheme is stable,
a matrix inversion is not avoidable, which is expen-
sive for high resolution cases and hard to parallelize.
With the definition of a Riemann invariant, Ogata and
Yabe (2004) solved the shallow water equation in a
Cartesian coordinate system using the characteristic
approach. In Ogata and Yabe (2004), the gravity wave
is solved with the semi-Lagrangian method in addition
to the advection, which renders the integration always
stable and is free of expensive matrix computations in
the model. In practical application, it is important to
develop an algorithm for the characteristic method in
spherical geometry. In this paper, we will first show
the aforementioned algorithm, and then give the re-
sults of an application to a shallow water equation
with topography on a sphere using the characteristic
method.

The Constrained Interpolation Profile (CIP)
method (Yabe and Aoki, 1991) has been widely used in
computational fluid dynamics (Xiao et al., 1996; Yabe
et al., 2001), and is also applied in atmospheric models
(Peng et al., 2003; 2005). As a multi-moment semi-
Lagrangian scheme (Xiao, 2004), CIP achieves high
accuracy with relatively less stencils. For the spherical
shallow water equations, Peng et al. (2006) developed
a conservative constraint for the overlapped Yin-Yang
erid, and tested this with idealized advection cases. It
shows the successful application of the CIP scheme on
the Yin-Yang grid, and has good numerical properties.

In this paper, we also employ the CIP scheme to
solve the shallow water equations with the so-called
characteristic method on the Yin-Yang grid. The char-
acteristic algorithm on a sphere will be presented in
section 2. The numerical schemes used in this paper
and the computational procedure will appear in sec-
tion 3. A brief introduction to the test cases is pro-
vided in section 4, and the corresponding results will
be illustrated in section 5. Finally, concluding remarks
are presented in section 6.
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2. Characteristic method for shallow water
equation on sphere

The characteristic method was first proposed in de-
tail by Rusanov (1963) for use in the context of gas
dynamics. These kinds of schemes treat the nonlin-
ear wave propagation in direct relationship to the rest
of the fluid dynamics. The basic idea is to compute
the nonlinear effect of various waves with the help of
the Riemann invariant. Generally, multi-dimensional
problems are approached with dimensional splitting,
and the waves travel independently along the coordi-
nate axes. In the field of the gas dynamics, Cartesian
coordinates are well used for application of the char-
acteristic method.

For the case of a geophysical shallow water model,
the equations are solved in spherical geometry. We
present the two-dimensional algorithm for Riemann
problems on a sphere in the appearance of mean flow
and gravity waves in this section. A non-conservative
algorithm is adopted here by using advection-type
equations. The shallow water equations on a sphere
can be written as follows:
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where h* is the depth of the fluid, and Ay is the topog-
raphy. The variable h is the height of the fluid surface.
The latitude and longitude are ¢ and A; f and g are
the Coriolis parameter and the gravitational constant,
respectively. The horizontal wind components are w
and v, and the horizontal wind vector is V' = (u,v).

The Eq. (1) can be rewritten as
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Let

and then the Eq. (2) can be further written in vector
form as

W W oW
P F=0 3
o TPy te5, 1 ) 3)
where the matrices are
u h* 0
1
u 0,
acos
0 0 w
v 0 Ah*
Q=-]10 » 0
a
g 0 w
and the forcing term is
[ h*v 7
———tany
a
u g Ohg
F —( —ts ) )
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U g Ohg
(f—l— —tan:p) u+ =
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Under the basic philosophy of solving the nonlin-

ear Eq. (3) with a dimensional splitting procedure,
the solution can be approached by solving
8{;? FF -0, (4)
a5 =0, ©)

sequentially. It is easy to find that Eq. (4) describes
the forcing term, and Egs. (5) and (6) are similar to
the advection equation, which needs further transfor-
mation.

As an important step to solve Egs. (5) and (6), the
matrixes P and @ must be treated properly in order
to obtain the temporal integration of W. Firstly, we
take Eq. (5) as the example to show the procedure.
Given P, we can get its eigenvalues by solving

[P —AxI| =0, (M)
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where I is an unit matrix. The solutions are

: (uzx+/gh*), Arz = L u.

@ CO5 & a Cos @

(8)

Axipo =

Substituting these eigenvalues into the equation
P—AI=0,

the corresponding characteristic vectors for the three

eigenvalues are obtained straightforwardly. These
eigenvectors are
1 1
0
K, = 9, Ky=|_ /9], K3=|0
h* \ hr i
0 0
(9)

The characteristic matrix, which is made up of the
characteristic vectors, is therefore

1 1 0

E /E _ E 0 (10)
\ b h*
0 0 1
and the inverse of this matrix is

1 1 [h* 0
2 2V g

E! 1 1 [h* .
1 1/ (11)
2 2V g
0 0 ]

The relationship between the eigenvalues and charac-
teristic matrix is

Axi 0 0

E'PE 0 Ayo O
0 0 Ays

Equation (5) can be expressed as
E 18{;’: +E 1P8;r 0,

if multiplied with E—!. Considering
E'P-E 'PEE"'
Ay 0 0
— |1 0 A O |E',
0 0 Axs

further transformation of the equation leads
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, OW
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which is equivalent to Eq. (5). Expansion of Eq. (12)
gives

(20+3) ,,,200)
la (1‘3; %) Hh;) (1;?; %) . (13)
L % l )\,3% 0,

and I' = /gh* is the speed of gravity waves. Equa-
tion (13) is obviously in their typical advective forms,
which can be solved numerically with the CIP (Yabe
and Aoki, 1991) scheme. The Riemann invariants,
I' £ /2 and v, are transported by the eigenvalues,
respectively. It is interesting that A, ;o shows the
combination of the horizontal velocity and the propa-
gation of the gravity wave. Equation (13) shows the
intrinsic relationship between the fluid depth and the
flow in the dynamical sense. The Riemann invariants
are exactly transported by the universal velocity that
is known as an integral of the basic flow wind and the
gravity wave solution.

Similarly, the advection equations in the ¢ direc-
tion are given by:

4 (i v
o(r+3) a(r+3)
A, 22 =0,
at gl dp '
Al WV ol U
dor-3) ,, 2(r-3) (14)
at 22 9y '
du du
Ay L
Lot T8

The eigenvalues are represented as

Ay (v | w‘gh*) /a,

Ao = (v —+/gh*) /a ) (15)

Apz=v/a.

The three in Eq. (14) can be integrated with the
CIP scheme in the same way as in the A direction,
so that a large time step is possible. The advection
velocity is found to be the summation of wind and
wave speeds.
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Besides Egs. (5) and (6), Eq. (4) must also be
solved in a proper way so that the total computational
efficiency is not influenced negatively. Equation (4) de-
scribes the forcing terms due to the Coriolis foree and
topography, and it can be computed semi-implicitly.
The details will be shown in the next section.

3. Numerical schemes and computational pro-
cedure

3.1 Brief description of the advection scheme
for CIP and the boundary condition ar-
rangement

By introducing the characteristic method, the
spherical shallow water model is divided into three
parts. The first two parts are found to be typical
advection problem of the Riemann invariant, and the
third part is related to the forcing terms. For the ad-
vection Eqgs. (13) and (14), the CIP method (Yabe
and Aoki, 1991) is a robust scheme of high accuracy,
even though it gives a non-conservative solution. Sim-
ilar to Peng et al. (2003), the fluid depth and horizon-
tal wind eomponents can be computed with splitting
techniques. Therefore, a one-dimensional CIP algo-
rithm will be adopted to treat the A- and ¢-direction
transports, which is preferable to third-order accuracy.

In the CIP scheme, two moments, namely the ad-
vection variable and its spatial derivative, are defined.
In the present study, we will need to define h, u, v and
the corresponding spatial gradients hy, hy, wy, u,, va,
v, at each of the grid-points of the two-dimensional
domain. The subsecript A and ¢ shows the gradient in
that direction. Please refer to Yabe and Aoki (1991)
for more details of the one-dimensional CIP scheme.

In the Yin-Yang grid system, boundary conditions
must be specified by interpolation or conservative con-
straints. The scalar variables can be interpolated di-
rectly, and the vectors are transformed in a different
coordinate system after the interpolation. In the CIP
scheme, derivatives, in addition to the physical vari-
ables, are used to construct the interpolation poly-
nomials. The boundary conditions of the horizontal
gradients of a scalar variable (e.g., hy, hy) can be ar-
ranged in the same way as for vectors, but it will be
much more complex to arrange the derivatives of a vee-
tor (e.g., ux, uy, vy and v, ) at a boundary. Subscripts
“O” denoting the original zone, and “T” denoting the
target system (i.e., Yin or Yang) are used to show how
the gradient transformation between Yin and Yang is
made:
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where R = cosg and
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are defined, and z, y, and z are the three-dimensional

coordinates, respectively. The boundary condition for

a scalar and any component of the vectors can be inter-

polated using high-order polynomials before the trans-

formation.
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and (6) is stable for large Courant number with the aid
of semi-Lagrangian computation. The inertial mode in
Eq. (4), however, restricts the computational stabil-
ity, as well. A semi-implicit scheme is then developed
for the inertial term in Eq. (4) so as to enlarge the
time-step. Considering the A-direction forcing term,
we show the semi-implicit integration of Eq. (4) as,

(uw® £ 20" =
. + 21—‘)\:. |
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where the superseript * denotes the final value that
counts the forcing term, and the subscripts Ay and
Ap represent the variables after advection by compu-
tation with Eq. (13). The forcing terms in Eq. (4) is
divided into two parts, which are computed separately
in the A direction with Eq. (17) and the ¢ direction, so
that they are symmetrically computed in the splitting
procedure. The relevant solution can be caleulated as:
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3.2 Semi-implicit computation of inertial
forces
In a spherical shallow water equation system, grav- tan ¢
ity and inertial waves exist. Integration of Eqs. (5) fH a Ho— V% /4, (18)
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where
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The semi-implicit solution is represented in Eqgs. (18)
(20) by considering the forcing term and advection in
the A-direction, and the semi-implicit formula in the
p-direction can be written in a similar way as:

R (1., ,
v =w,, £2I,, —E{E[f“ i

tan (p(u*u"‘

fug,

| ?L¢iu.¢i):| At} ;

*
U = Uy,

1 (1.,
|§{§|f?-’ F fog,

tan ¢

—(u*v* + umom)] AL} . (21)

The analytical solution is:
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where
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At tan g
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The »* component is calculated as
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Despite of the complexity of Eq. (23), the compu-
tations involved are very cost effective because of its
exact analytical nature. There is no need to solve any
Poisson equation and matrix problem, even though the
Coriolis term is treated semi-implicitly:.

The computational procedure can be summarized
briefly as follows. First, compute the “advection” by
the dimensional splitting method following Eqs. (13)
and (14) using the CIP scheme. The wind components
(u,v) and the geopotential height (h*) are transported
consequently in the spatial directions. Second, the
equations take account of the forcing terms, includ-
ing the Coriolis term, semi-implicitly according to Egs.
(17) and (21). In this step, the calculation is also con-
ducted with a dimensional splitting method. Finally,
the remaining forcing terms of Eq. (4) are accounted
for. The topographic terms of dhs/dA and dhs/dp can
be computed with a central difference method. In the
idealized test cases (section 5), we use the analytical
solution. The result is

. g Ohg
u* —
u ! acosp A
A v* — E%At
a dg

The forcing term of A" is also computed semi-implicitly
as:

g 1+ Atv* tan ¢/2a
1 1 — Atv* tanp/2a

The subscript n + 1 denotes the new time step, and
h* =T*%/qg.

hy

4. DBrief description of test cases

To evaluate the performance of the method and its
treatment of gravity waves, test cases for the global
shallow-water equation set on sphere from Williamson
et al. (1992) are selected for practical computation in
this study. The global steady state nonlinear zonal
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Fig. 1. Schematic illustration of {a) the Yin-Yang grid and (b) variable
distribution in a cell in the shallow-water model. Variable uy,u, in (b)
shows the derivative of u in A direction andy direction, respectively;

and vy, vy, by, by is similar.

geostrophic flow (case 2) and zonal flow over an iso-
lated mountain (case 5) are tested in the shallow-water
model. The results will be shown in the following sec-
tion.

Test case 2 is a balanced geostrophic flow,
which consists of zonal flow with the corresponding
geostrophic height. The error norms can be estimated
in comparison with the initial state. This provides a
quantitative description of the numerical method and
results. Case 5, however, is more complex, and lacks
exact solutions. High-resolution model results can be
used as a reference to illustrate the numerical accuracy
of the CIP scheme by comparison. The detailed de-
seription of the test cases can be found in Williamson
et al. (1992).

5. Configuration and numerical results for the
shallow water equations

The Yin-Yang grid (Kageyama and Sato, 2004) is
employed to discretize the shallow-water model. There
is no pole in this grid system because of the globe is
being composed of two zones that are cut from the
lower-latitude region (usually 45°S-45°N in latitude
and 45°W-45°E in longitude, see Fig. 1a). The grid
spacing is quasi-uniform in each zone. The usual con-
vergence of the longitude lines at high latitudes disap-
pears from the system, therefore. One more merit of
the grid system is the symmetric structure of the two
zones. This allows the shallow water models on both
zones to share the same code.

The cell number shows a proportion of 3:1 in the
longitudinal and latitudinal directions. The resolution
can be simply described with the latitudinal cell num-
ber (jp). To avoid a vector being located at the poles,

the cell center, where all variables are defined (Fig.
1b), must not be located on the equator. The node
point in Fig. 1b, on the other hand, is found at the
south/north poles as well as at the equator.

A bi-fifth-order interpolation scheme is employed
for the arrangement of the boundary conditions. As
illustrated in Peng et al. (2006), additional constraints
are needed to ensure global mass conservation in the
Yin-Yang grid svstem. The characteristic method
mentioned in this paper, however, makes use of the
advection-form equation of the shallow-water model.
No local conservation is considered in the present CIP
scheme within a mesh cell. The conservation con-
straint that is developed in Peng et al. (2006) cannot
be directly implemented into the present scheme, be-
cause no fluxes are available on cell boundaries. We
then develop another simple modifier to ensure global
mass conservation every time step. The basic con-
sideration is to calculate the integral of mass (i.e.,
I[h* (A, ¢, t)]) and the increment against the initial one
(i.e., ® = I[h* (A, @, t)] — I[h* (N, ,0)]). The modifier
is given as

hin(As 6,1) = W5 (X, 6, 8) (1 = R/T[R*(X, 6, 1)]) , (24)

where Al (A ¢,t) denotes the modified value of
h"*[Ar ¥, L), and h* (/\} (;5! {)IF (n+1)At — h;; +1-

5.1 Numerical result of Williamson et al.
(1992) test case 2

The test case of a steady geostrophic flow is car-
ried out by using the characteristic method shown
in section 3. A low resolution test with jp 34
(AN = Ap = 2.90323) is used here. The Courant-
Friedrichs-Lewy (CFL) number is firstly taken to be

0.5, with a time step interval of 548 s in this case.
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Fig. 2. Geopotential height (solid) and the corresponding absolute errors (dashed) at 3 (a), 7 (b), 10 (¢)

and 12 (d) days of the steady geostrophic flow.

Because the major objective is to evaluate the char-
acteristic method in dealing with the gravity waves,
e = 0 is assumed in this case. The flow pattern in
the Yang-grid zone is the same as that in the ordinary
latitude-longitude coordinate system. In the Yin-grid
zone, however, the wind does not flow along the line of
latitude because it is normal to the Yang zone. Two
vortexes appear on the poles, respectively. This pat-
tern proves to be difficult to compute accurately. The
feature makes it unnecessary to change the direction
of the geostrophic flow for scheme evaluation.

A 12-day integration of the shallow-water model is
executed on a Linux PC. In Fig. 2, the geopotential
height (k) is plotted in comparison with its absolute
error at 3, 7, 10, and 12 days. The steady distribution
of geopotential height, which is shown to be parallel
to lines of latitude, is simulated with reasonable ac-
cordance to the true solution. Little deformation is
observed in the 12-day simulation in the Yang zone,
though numerical diffusion is displayed in pole areas
of the Yin zone. As a result, a generally realistic dis-
tribution is shown in this experiment with plausible
parallel contours. The absolute error, however, dis-
plays more numerical bias at the up-stream boundary
of the Yang-grid zone and in both pole regions. The
former is clearly due the definition of the departure
point, which is located in another zone (i.e., the Yin
orid). As mentioned above, the flow pattern in the
Yin-grid zone makes the calculation of the departure

point much more inaccurate than in Yang zone. This is
clearly due to the vector being uniform in each dimen-
sion of the Yang zone, but non-uniform in the Yin grid
in this test case. Large errors result in high latitude
region as a result of the pole points being located on
the center of the environmental circumfluence in the
Yin zone. Sharp variations of wind direction between
neighboring points is indicated in both the latitudi-
nal and longitudinal directions, which makes it hard
to achieve perfect tracking of the departure point. Er-
rors of departure point tracking are certainly increased
in comparison with the uniform flow in the Yang zone.

Iigure 3 displays the time series of Lo and L.
norms (the same as defined in Peng et al., 2006) on
the sphere. Both error norms increase linearly with
time. As shown in Fig. 2, the norms are mainly the
contribution of the numerical error in the Yin zone and
in the adjacent Yang-zone border area. At day 12, Lo
and L., have values of 0.019 and 0.05, respectively.
The result displays the reasonability of the character-
istic method developed here on the sphere in terms
of accuracy. It still has potential to be used in large
Courant number cases (and without matrix inversion).
It is worth noting that the numerical errors become
much larger if no modifications for global conservation
are imposed. The errors make the geopotential height
of the balanced flow become diffusive and contorted.
This reveals the importance of conservation in the ap-
plication of the characteristic method. Unfortunately,
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the present scheme cannot make use of cell-boundary
fluxes, and therefore no local conservation is ensured.
In addition, the flow in the Yin zone is shown to be
non-uniform in both directions, which is different from
the original definition in the latitude-longitude coor-
dinates. The dimensional convergence is applied for
concern about avoiding numerical oscillations in a time
splitting scheme. This is why we observe more errors
in the Yin zone.

The primary motivation of developing the charac-
teristic method on a sphere is to enlarge the integration
time step in a dynamical model that does not require
matrix inversion. The results above have shown the
suecess of this method in the case of small Courant
number conditions. To verify the ability to handle
large Courant number cases, relatively high-resolution
experiments with a configuration of jp = 136 are car-
ried out under conditions of CFL numbers of 1.0, 1.5,
2.0, and 4.0. All experiments illustrate clearly the
high stability and high computational performance
of the method. Figure 4a shows the 2D geopoten-
tial height and absolute error at day 12 in case of
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CFL=1.5. Stable computation and a reasonable dis-
tribution of geopotential height reveal that the semi-
Lagrangian treatment of gravity waves is capable of
enlarging the usable time steps in a high-resolution
model. Of course, more errors are inevitably displayed
in comparison with the small CFL number case. If
large Courant mumber is used with low-resolution cases
(e.g., jp = 34), numerical noise increases obviously in
the adjacent boundary areas to the Yang zone and in
the whole Yin grid. This shortcoming is not a nec-
essary result of using the method, because the char-
acteristic method is developed for fine-mesh models
when the matrix inversion has become too expensive
in a semi-implicit semi-Lagrangian model. In a high-
resolution model, there is still space left to enlarge
time step (e.g., in global model with grid spacing of
several kilometers) to deal with gravity waves. This is
just when the characteristic method should be used to
save computational time and computer resources.

In Fig. 4b, the time series of Ly and L., are illus-
trated, as well. Both L, and L, increase with time,
but are both much smaller in comparison with the re-
sults in Fig. 3. At day 12, L and L. display the val-
ues of 0.00986 and 0.02751, respectively. They show
error increases of 2.4 and 2.6 fold when the time step
is increased by three times. As a result, it is possi-
ble to enlarge the time step and reduce computational
expense in a high-resolution model using the charac-
teristic method. In high-resolution models with grid
spacing of several kilometers, the time step restriction
due to gravity waves may be only 10 to 20 s in an
explicit integration, which is much smaller than the
life cyele of cumulus clouds, the variation of solar ra-
diation, and most other modeled physical processes.
In both computational and physical senses, the en-
largement of the time step becomes a possibility when
gravity waves can be treated differently, as here.

To learn about the convergence of the character-

ERROR NORMS

T T T T T T T T T T T
01 2 3 45 6 7 8 9 1011 12
TIME (d)

Fig. 4. Numerical results of (a) the geopotential height at day 12 and (b) the corresponding series of error norms,
similar to Figs. 2 and 3 except at a resolution of jp=136 with CFL=1.5.
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grid-point number in the cases of CFL=0.5 and 1.5.

istic method, L, and L, variations with grid-point
number are shown in log-log coordinates in Fig. 5.
The error norms are estimated once per day and aver-
aged over 12 days. They are illustrated with respect
to the Courant number cases of 0.5 and 1.5 respec-
tively. Both error norms decline with grid-point num-
her, clearly. In the case of the larger Courant num-
ber, a higher convergence rate is displayed because a
less conservative reconstruction is performed. As men-
tioned before, the conservation constraints in this pa-
per only operate at first-order accuracy because the
residual of mass is redistributed in accordance with
the original mass. The use of large Courant number
in a high-resolution model helps to increase the con-
vergence rate with the characteristic method.

5.2 Solve the zonal flow case over an isolated
mountain

This case is known as Williamson et al. (1992) test
5. The given flow, which is the same as in case 2, im-
pinges on a bell-like mountain. Gravity waves related
to the topographic forcing interact with the flow, and
these apply stress and result in flow variation. There-
fore, the flow is not steady, and no exact solution ex-
ists. To evaluate the performance of the characteristic
method, we run the shallow water model in a high-
resolution configuration (jp = 130, AA = Ap =0.7)
with several Courant number conditions (CFL=0.5,
1.5, and 3.0).

The geopotential height is illustrated with an in-
terval of 5 days in Fig. 6, when the Courant number
is fixed at 0.5 or 1.5 (Af = 105 s or 315 s, respec-
tively). In the case of small time steps, the charac-
teristic method shows similar results as in Li et al.
(2008), even though a little rougher spatial distribu-
tion is found with the geopotential height in the equa-
torial zone. Development of a trough in the lee of the
bell-shaped mountain displays the proper intensity in
comparison with the conservative multi-moment finite-
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volume shallow-water model (Li et al., 2008) and the
spectral method (Jakob et al., 1993). The zonal flow
pattern shows a reasonable variation in the computa-
tion. Its evolution at high-resolution is confirmed in
the small CFL case with the characteristic method.

The variation of the flow pattern and the non-
uniform distribution of the wind vector make the com-
putation much difficult in this case, especially for large
time steps. In Figs. 6d, 6e, and 6f, the errors increase
with time in the integration. Spurious oscillations are
mainly observed near the mountain. The trough is
greatly deepened in the lee compared with the small
time step case. Sharp variations of the vector near to-
pography make the definition of the departure point
uncertain. Much more error is therefore observed. The
integration, however, is also stable. Low- and high-
pressure systems in this test case developed in a quite
similar way to the small CFL case.

Further enlargement of the CFL number was also
carried out to ensure the stability and accuracy of the
characteristic method. When CFL=3.0, stable com-
putation is also achieved, and a similar distribution of
the geopotential height is shown at each day of the in-
tegration (figure omitted). Due to the large tracking
distance for the departure point and the non-uniform
wind and height results, the contours display a zigzag
pattern in this test. This is shown to be a grid-scale
perturbation, which is related to the large difference
in departure points for neighboring cell grids. These
experiments verifiy the efficiency of the characteris-
tic method in dealing with the gravity wave solution.
In practice, the noise may increase with time step en-
largement, and no overly large Courant number should
be used with a non-uniform flow pattern.

It is worthy noticing that the characteristic method
simulates a zonal flow over an isolated mountain very
well at low resolution (jp = 34, not shown here) with
a small time step. However, it fails to simulate the so-
lution properly in the CFL=1.5 case. 1t suggests that
the usage of a characteristic method to enlarge the
time step should be limited to high-resolution models.
Only in high-resolution cases do numerical models call
for large time step.

Using the proposed characteristic method, we suc-
cessfully simulated cases of a steady geostrophic flow
and of zonal flow over an isolated mountain, with grav-
ity waves are treated explicitly. Integration with a
large time step is confirmed to be possible in the test
cases, and with no matrix inversion needed in the com-
putational procedure. This shows the potential to save
computer resources in high-resolution numerical mod-
els. This is also the main objective for development
of this scheme on a sphere. The conservative proper-
ties of the solutions, however, must also be taken into
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account in an assessment of the computational accu-
racy. The proposed characteristic method based on
the advection-form equations, does not ensure conser-
vation, which is a notable shortcoming of the present
method in practical computations.

Recently, Chen and Xiao (2008) and Toda et al.
(2009) have demonstrated a conservative approach to
the Riemann invariant technique, and good numerical
results were achieved in cubed-sphere grid and Carte-
sian grid coordinates, respectively. The conservative
characteristic CIP method on a sphere is also being de-
veloped on the Yin-Yang grid system with local/global
conservative constraints (Peng et al.; 2006). It is ex-
pected to improve the accuracy of the scheme on the
overlapping grid while retaining the intrinsic nature

of the present numerical method with respect to not
only the efficiency of the integration due to enlarge-
ment of the time step, but also by avoidance of matrix
inversions.

6. Concluding remarks

By adopting the dimensional splitting CIP algo-
rithm, we have herein proposed the use of the charac-
teristic method to deal with gravity waves explicitly
in spherical coordinates. After proper arrangement of
terms, the shallow-water model can be solved as an
advection equation on sphere. Semi-implicit computa-
tion of the Coriolis term and topography-related terms
allows integration of the shallow water equation that
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is free of CFL limitations. In the semi-implicit semi-
Lagrangian integration of the shallow-water model,
no matrix inversion appears. This makes the scheme
quite economical in a high-resolution model in compar-
ison with the conventional semi-implicit computation
of gravity terms.

Computation of the shallow water model solutions
for a steady geostrophic flow case and a case of zonal
flow over an isolated bell-shaped mountain were car-
ried out, using stable integrations with the proposed
scheme, under conditions of large Courant number.
The numerical results show the valuable application
of the characteristic method to deal with rapid grav-
ity waves in a high-resolution model. Both test cases
illustrate that the integration is reasonable and accu-
rate even when computing with CFL=1.5 in a high-
resolution configuration.

In the application of this scheme, we also observed
that conservation is critical for accurate computation.
In the test cases, the global conservation is constrained
by redistribution of the residual mass at every time
step, because no flux-form dynamical equation is used.
The present scheme should be improved to ensure
global and/or local conservation, to achieve better ac-
curacy and performance and improve the application
to numerical models.
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