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a b s t r a c t

A novel accurate numerical model for shallow water equations on sphere have been devel-
oped by implementing the high order multi-moment constrained finite volume (MCV)
method on the icosahedral geodesic grid. High order reconstructions are conducted cell-
wisely by making use of the point values as the unknowns distributed within each trian-
gular cell element. The time evolution equations to update the unknowns are derived from
a set of constrained conditions for two types of moments, i.e. the point values on the cell
boundary edges and the cell-integrated average. The numerical conservation is rigorously
guaranteed. In the present model, all unknowns or computational variables are point val-
ues and no numerical quadrature is involved, which particularly benefits the computa-
tional accuracy and efficiency in handling the spherical geometry, such as coordinate
transformation and curved surface.

Numerical formulations of third and fourth order accuracy are presented in detail. The
proposed numerical model has been validated by widely used benchmark tests and com-
petitive results are obtained. The present numerical framework provides a promising
and practical base for further development of atmospheric and oceanic general circulation
models.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

One of the crucial issues in developing numerical models for global circulations of atmosphere and ocean is how to
accurately represent the discretized or numerical form of the governing equations in spherical geometry. The spectral mod-
el [5] makes use of the Fourier representation in the longitudinal direction and the Legendre representation in the latitu-
dinal direction, and had found great success in the past. However, because of the global nature, the numerical models
based on spectral transformation intrinsically suffer from poor computational efficiency when implemented on a massively
parallel hardware platform and the spurious oscillations around discontinuities or steep gradients. More attention and ef-
forts have been recently devoted to numerical methods with local representations over compact computational stencils
[59].

Instead of the traditional latitude–longitude grid, the most natural grid to represent a spherical geometry, grids with
more uniform grid spacing over the whole globe share an increasing popularity among the researchers. Two grids
. All rights reserved.
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that are getting widely accepted and accommodate numerical conservation are the cubed-sphere grid and the icosahedral
geodesic grid.

The cubed-sphere grid is generated by mapping the inscribed cube on to the surface of the globe which is then projected
on six identical patches. Global models that use the cubed-sphere grid are found in [44,27,28,36,41,30,31,42,33,4].

The icosahedral geodesic grid, on the other hand, starts from 20 triangles curving over the sphere. Refining the grid is
then conducted by further dividing the triangles into sub-regions of triangle. This process can be repeated until the level of
grid resolution is reached. The icosahedral geodesic grid is one that results in the most isotropic computational mesh ele-
ments over the whole sphere, and had been used as the base for dynamical cores in history [43,56,57,26,6]. Recent efforts
from different groups have led to significant development of global models from shallow water model to atmospheric mod-
els [48,38,14,54,15,39,25,55,16,17,49,45] using icosahedral geodesic grid. It should be also notified that projecting the
equations in Cartesian coordinates onto 2D space on the surface of sphere is getting a popularity in the community
[23,2,11].

Another recent trend which is worthy of particular remarks in the development of the dynamical cores for global geo-
physical circulation models is the implementation of high order schemes with local reconstructions that have been proposed
for more general applications in computational fluid dynamics. The numerical simulations of global circulations generally
requires long-term computation, thus numerical conservation and computational efficiency are also demanded in addition
to the accuracy. As the practice toward that direction, the discontinuous Galerkin (DG) method has been recently applied to
the icosahedral geodesic grid by Giraldo et al. [15,17], and to the cubed-sphere grid by Nair et al. [30,31]. The DG method,
originally introduced in [37] and developed by Cockburn and Shu [7–10] into a framework for solving non-linear time
dependent hyperbolic conservation laws, defines the local degrees of freedom (DOF) on each element or cell as the un-
knowns, which are then updated by the Galerkin formulation with the approximate Riemann solver at the cell boundary.
Thus, the DG method provides the local mass conservation, high order accuracy and flexibility due to the locally defined
DOF. Ascribing the spectral convergence of the DG method, very high order accuracy was reported in [15,30,31]. The DG
method, however, requires numerical quadrature intrinsically due to the Galerkin formulation, and is usually computation-
ally expensive.

We have been recently working on developing a novel class of high order numerical formulations for computational fluid
dynamics by using multi-moment concept [67,68,61,62,18,63,64,19,1,21,4]. The underlying idea is to make use of different
kinds of discretized quantities, such as the point value, derivatives and cell-integrated value, which are collectively called
moments in our context. With all the employed moments locally defined over each mesh cell, high order reconstructions
can be built on very compact mesh stencil. The numerical formulations for the flux function and its spatial derivatives, which
are required to update the moments, are then approximated with high order, provided the local multi-moment reconstruc-
tions are readily available. In a multi-moment method, different moments can be updated by different formulations, for
example the point value can be updated by a point-wise Riemann solver and the cell-integrated average by a finite volume
formulation that leads to the rigorous numerical conservation. We have reported two global multi-moment finite volume
shallow water models by separately using the Yin-Yang over set grid [24] and the cubed-sphere grid [4].

An alternative to the multi-moment finite volume formulation, where the moments are directly used as the unknowns
which need to be updated in time at every step, is to define the unknowns as the values at the points collocated within each
grid cell. The resulting scheme is so-called the multi-moment constrained finite volume (MCV) method [20]. In an MCV
method, the governing equations of the moments provide constraints which are then converted to the time evolution equa-
tions for the unknowns through an interpolation function. In practice, a multi-moment constrained Lagrange interpolation is
used to link the moments and the point values defined within each single cell at equally spaced points as the unknowns. The
finite volume constraint on the cell average exactly guarantees the numerical conservation. Shown in [20], the MCV method
demonstrates spectral convergence behavior to both linear and non-linear problems. The major different between the MCV
method and the previous multi-moment finite volume method is that the cell-integrated average is no longer a computa-
tional variable in the MCV method. All the computational variables are the point values, so, one do not need to calculate
numerical quadrature. This is particularly beneficial when source term, metric term and irregular mesh are involved. The
point-wise computation of the metric terms in the MCV formulation presented in this paper allows us to easily get high accu-
racy for unstructured and curved grid generated by either analytical formula or numerical means.

In this paper, the MCV method is applied to the global shallow water model using the icosahedral geodesic grid. The basic
formulation is obtained by extending our previous work [20] to the triangular mesh. In addition, the local high order curvi-
linear element is employed to ensure the uniform convergence for high order schemes. The governing equations are de-
scribed in the 3D Cartesian coordinate system with the restriction condition to remain the flow along the surface of the
Earth [50]. It is quite suitable and easy to implement the MCV method in such a framework because all unknowns in the
MCV method are the point values to which the computations of the restriction and source terms are carried out
straightforwardly.

The rest of this paper consists of the following parts. Section 2 introduces the basic idea of presenting the global shallow
water equations in the 3D Cartesian coordinate system. The MCV model on the spherical geometry is described in Section 3,
where the third and fourth order formulations are discussed in detail. In Section 4, we verify our numerical model by numer-
ical experiments including the standard test set for the global shallow water model proposed by Williamson et al. [58] and
others. We also make a few comments on our practice of implementing multi-moment finite volume method in Yin-Yang
overset grid and cubed-sphere grid. Finally, we end the paper with some conclusion remarks in Section 5.
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2. Global shallow water model in the Cartesian coordinate system

In this paper, we follow Swarztrauber et al. [50] and re-write the shallow water equations on the surface of the sphere as a
three-dimensional system in Cartesian coordinates to avoid the pole singularity. A projection is then used to restrict the solu-
tions on the surface of the sphere.

The global shallow water model in the three-dimensional Cartesian coordinate system is written as follows,
Qt þ FðQÞx þ GðQÞy þ HðQÞz ¼ S; ð2:1Þ
where
Q ¼

h

hu

hv
hw

26664
37775; F ¼

hu

hu2 þ 1
2 gh2

huv
huw

26664
37775; G ¼
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huv
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uvw
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� ghbz

26664
37775;
ð2:2Þ
and
f ¼ 2Xz
a

: ð2:3Þ
In the above equations, h denotes the height measured from the bed elevation b; u ¼ ðu;v ;wÞ the velocity vector in the
Cartesian coordinate system and f the Coriolis parameter. The radius, gravity acceleration and angular velocity of the Earth
are respectively specified as a ¼ 6:37122� 106; g ¼ 9:80616 and X ¼ 7:292� 10�5.

In the presence of the bottom topography, i.e. bx – 0 or by – 0 or bz – 0, spurious disturbance may arise if the numerical
formulation for the flux function does not well balance that for the source term of bottom topography.

In case of the ‘‘still state” (hþ b ¼ constant and u ¼ 0), (2.1) reduces to following relationships,
1
2

g
@h2

@x
¼ �gh

@b
@x
;

1
2

g
@h2

@y
¼ �gh

@b
@y
;

1
2

g
@h2

@z
¼ �gh

@b
@z
:

It is obvious that the numerical discretization must satisfy the above relationships, i.e. the numerical flux has to be well-bal-
anced with the computation of the topographic source term, to maintain the exact still state solution. It is the so-called C-
property [3,66]. However, this is not automatically guaranteed, and an unbalanced discretization usually causes unphysical
oscillations in numerical solution. We can easily circumvent this problem by recasting (2.2) in terms of the total height or the
elevation of the water surface T ¼ hþ b, which yields another equivalent form of (2.1) by using the total height in flux and
topographic source terms as,
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ð2:4Þ
It is easy to verify that the C-property is satisfied if we use the form given by (2.4).

2.1. High order treatment for the curved surface on the sphere

In this paper, we make use of the icosahedral geodesic grid firstly proposed to solve the barotropic models by Sadourny
et al. [43] and Williamson [56]. The grid is generated from the regular icosahedron (Fig. 1(a)). Shown in Fig. 1(b)–(d), refined
grid is created by further dividing each triangle. So, the globe is finally covered by spherical triangular cells of required res-
olution, see details in Appendix A.

It is necessary to treat each triangular surface of the sphere as a curved surface to maintain the high order accuracy. In the
present scheme, spatial discretization is carried out on the spherical triangle mesh cell. Considering a sphere centered at the
origin of the Cartesian coordinates, we introduce the local coordinate system ðn;g; rÞ for each single cell, where r indicates
the radial coordinate and n and g span a local base on the surface of the sphere. Thus, the transformation of the global coor-
dinates ðx; y; zÞ to the local coordinates ðn;g; rÞ can be expressed by scaling a position vector onto a mesh element on the
spherical surface as [47,14],
~xðn;gÞ ¼ xðn;gÞr; ~yðn;gÞ ¼ yðn;gÞr; ~zðn;gÞ ¼ zðn;gÞr: ð2:5Þ
For a given radius r ¼ a we project the R3 space of ðx; y; zÞ to R2 space of ðn;gÞ that is normalized as the triangle
ð0 6 n; g 6 1; nþ g ¼ 1Þ shown in Fig. 2. The Jacobian matrix is then written as,



Fig. 1. The gradual refinement of the icosahedral geodesic grids.
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Jðn;gÞ ¼

@~xðn;gÞ
@n
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@g

~xðn;gÞ
a

@~yðn;gÞ
@n
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26664
37775 ¼

~xnðn;gÞ ~xgðn;gÞ ~xðn;gÞ=a
~ynðn;gÞ ~ygðn;gÞ ~yðn;gÞ=a
~znðn;gÞ ~zgðn;gÞ ~zðn;gÞ=a

264
375: ð2:6Þ
Shown later, a scheme of Lth order accuracy which requires a ðL� 1Þth order basis function with at least K ¼ LðLþ 1Þ=2
constrained conditions at collocation points within each cell. Given K collocation points, pil ¼ ðxil; yil; zilÞ ðl ¼ 1; . . . ;KÞ, over
cell si, the coordinates of any point ðXi;Yi; ZiÞ within si can be expressed in terms of the local coordinate system ðn;gÞ by
Xiðn;gÞ ¼
XK

l¼1

cilðn;gÞxil; Yiðn;gÞ ¼
XK

l¼1

cilðn;gÞyil; Ziðn;gÞ ¼
XK

l¼1

cilðn;gÞzil; ð2:7Þ
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where cilðn;gÞ ðl ¼ 1; . . . ;KÞ is the basis function of the Lagrange polynomial. Similarly, given the physical quantity Q at the
collocation points ðQil; ðl ¼ 1; . . . ;KÞÞ, the interpolation reconstruction is given by
PiðQ : n;gÞ ¼
XK

l¼1

cilðn;gÞQ il: ð2:8Þ
The Jacobian transformation matrix is then written as,
Jiðn;gÞ ¼

@Xiðn;gÞ
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375: ð2:9Þ
The derivative of the physical field q in respect to the global coordinate system is then expressed by

@Q
@x
¼ PxiðQ : n;gÞ ¼ 1
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@Q
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where
P11ðQ : n;gÞ P12ðQ : n;gÞ
P21ðQ : n;gÞ P22ðQ : n;gÞ
P31ðQ : n;gÞ P32ðQ : n;gÞ

264
375 ¼ PiðQ : n;gÞ

a

Ygiðn;gÞZiðn;gÞ � Zgiðn;gÞYiðn;gÞ Zgiðn;gÞYiðn;gÞ � Ygiðn;gÞZiðn;gÞ
Zgiðn;gÞXiðn;gÞ � Xgiðn;gÞZiðn;gÞ Xgiðn;gÞZiðn;gÞ � Zgiðn;gÞXiðn;gÞ
Xgiðn;gÞYiðn;gÞ � Ygiðn;gÞXiðn;gÞ Ygiðn;gÞXiðn;gÞ � Xgiðn;gÞYiðn;gÞ

264
375:

ð2:11Þ
2.2. Velocity restriction along the surface of the sphere

In order to guarantee that the direction of the velocity or momentum vector is locally restricted in the tangential direc-
tions of the sphere surface, we make use of the projection matrix A introduced in [58],
A ¼ 1
a2

a2 � x2 �xy �xz

�xy a2 � y2 �yz

�xz �yz a2 � z2

264
375: ð2:12Þ
The momentum vector m ¼ ðhu;hv ;hwÞ needs to be corrected by A �m. Because the unknowns in the MCV method are the
point values, the projection computation is point-wise and hence easy without losing accuracy.

3. Multi-moment constrained formulation on the sphere

The surface of the sphere has been partitioned into non-overlapping triangular elements or cells si ði ¼ 1; . . . ;NeÞ, and
Ne ¼ 20N2 is the total number of triangular elements, where N is the number by which each edge of the icosahedral triangle
element is divided as shown in Appendix A. Moreover, we denote the position vector of the point where the value of the
physical field is defined by pip ¼ ðxip ; yip ; zip Þ with ip ¼ 1; . . . ;Np, and Np is the total number of DOFs over cell si.

Two kinds of discretized quantities, i.e. the cell-averaged value and point value, are then defined as follows:
Q iðtÞ �
1

Dsi

Z
si

Qðx; y; z; tÞds;

Q ip ðtÞ � Qðxip ; yip ; zip ; tÞ;
ð3:1Þ
where Dsi is the area of cell si.
As in the context of the multi-moment method, we call Q the volume-integrated average (VIA) moment and Qip the point

value (PV) moment. In the multi-moment constrained finite volume (MCV) method, we only use the point values of the prog-
nostic variables defined at pip as the unknowns for triangular cell si. The evolution equations for updating the unknowns are
derived from the constraints for the moments defined by (3.1).

3.1. Semi-discrete form

Eq. (2.1) without the source term is discretized by the finite volume formulation over triangular cell si as,
dQi

dt
¼ � 1

Dsi

I
l
ðFnx þ Gny þ HnzÞdl ¼ � 1

Dsi

X3

j¼1

lijðFijnxij þ Gijnyij þ HijnzijÞ; ð3:2Þ
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where Fij; Gij; Hij are the averaged numerical fluxes. Let ~si be the corresponding element of si in the local coordinate ðn;gÞ,
the projection of the area Dsi of the triangular cell si onto the local coordinate is
Dsi ¼
Z

si

ds ¼
Z

~si

jJiðn;gÞjd~s ¼ 2DjJij; ð3:3Þ
with D being the unit area in the local coordinate. Assuming the three vertices of triangular cell si to be pi1; pi2 and pi3, we
denote the cell edges by li1 ¼ pi1pi2; li2 ¼ pi2pi3 and li3 ¼ pi3pi1. The outward unit normal vector, nij ¼ ðnxij;nyij; nzijÞ; with
j ¼ 1;2;3, for each edge is then evaluated by
ni1 ¼ �
pi1 � pi2

jpi1jjpi2j
; ni2 ¼ �

pi2 � pi3

jpi2jjpi3j
and ni3 ¼ �

pi3 � pi1

jpi3jjpi1j
: ð3:4Þ
The cell-averaged value in (3.2) is evaluated in the local coordinate system,
Q i ¼
R

si
Q iðx; y; zÞdsR

si
ds

¼
R

~si
jJiðn;gÞjQ iðn;gÞd~sR

~si
jJiðn;gÞjd~s

; ð3:5Þ
and the integration of the flux on the cell boundary in (3.2) can be evaluated in the local coordinate by
lijFij ¼
R

~lij
jeJð~nÞjFð~nÞd~l;

lijGij ¼
R

~lij
jeJð~nÞjGð~nÞd~l;

lijHij ¼
R

~lij
jeJð~nÞjHð~nÞd~l;

8>>><>>>: ð3:6Þ
where ~l represents the edge in the local coordinate system ~n, and
jeJð~nÞj ¼ jp~nð~nÞj ð3:7Þ
with p being the position vector.
Meanwhile, the shallow water equations (2.1) without source term can be also written at point pip point-wisely as,
dQip

dt
¼ �ðbF xip þ bGyip þ bHzip Þ; ð3:8Þ
where bF xip ;
bGyip and bHzip are the numerical fluxes approximated by solving the Riemann problem in terms of the derivatives.

In the MCV method, we construct a set of time evolution equations for both VIA and PV moments, such as (3.2) and (3.8).
The evolution equations for updating the unknowns are then derived from (3.2) and (3.8) which work as the constrained
conditions.

Next, we present the third- and fourth order MCV methods as two practical formulations.

3.1.1. Third order MCV method
In the third order MCV method, we use the P2þ triangular element in order to make use of the constrained conditions for

both VIA and PV moments. For each triangular element, the unknowns are the PV moments defined as Qil ðl ¼ 1; . . . ;7Þ,
respectively, at the cell vertices, the center points of boundary edges and the cell center. As shown in Fig. 3(a), the locations
of the seven unknowns in the local coordinate system are
ai1 � ð0; 0Þ;
ai2 � ð1;0Þ;
ai3 � ð0;1Þ;
ai4 � 1

2 ;0
� �

;

ai5 � 1
2 ;

1
2

� �
;

ai6 � 0; 1
2

� �
;

ai7 � 1
3 ;

1
3

� �
:

8>>>>>>>>>>><>>>>>>>>>>>:
ð3:9Þ
Then, a set of basis functions for a bi-quadratic Lagrange polynomial in (2.7) and (2.8) are given by
ci1ðn;gÞ ¼ �3n2g� 3ng2 þ 2n2 þ 2g2 þ 7ng� 3n� 3gþ 1;
ci2ðn;gÞ ¼ �3n2g� 3ng2 þ 2n2 þ 3ng� n;

ci3ðn;gÞ ¼ �3n2g� 3ng2 þ 2g2 þ 3ng� g;
ci4ðn;gÞ ¼ 12n2gþ 12ng2 � 4n2 � 16ngþ 4n;

ci5ðn;gÞ ¼ 12n2gþ 12ng2 � 8ng;
ci6ðn;gÞ ¼ 12n2gþ 12ng2 � 4g2 � 16ngþ 4g;
ci7ðn;gÞ ¼ �27n2g� 27ng2 þ 27ng:

8>>>>>>>>>>><>>>>>>>>>>>:
ð3:10Þ
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Fig. 3. Locations of the unknowns (PV moments).
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The PV moments at the cell vertices and the center points of boundary edges, i.e. Q il ðl ¼ 1; . . . ;6Þ, are treated as the un-
knowns and updated by
dQil

dt
¼ �ðbF xil þ bGyil þ bHzilÞ ¼ �Fil ðl ¼ 1; . . . ;6Þ; ð3:11Þ
where we denote Fil ¼ bF xil þ bGyil þ bHzil for simplicity. The derivatives of the flux functions bF xil; bGyil and bHzil are computed by
solving the derivative Riemann problem as will be shown later.

On the other hand, the VIA moment is updated by the flux-form,
dQi

dt
¼ � 1

Dsi

X3

j¼1

lijðbF ijnxij þ bGijnyij þ bHijnzijÞ ¼ �Fi: ð3:12Þ
The VIA moment Qi can be easily evaluated by the Lagrange polynomial (2.8) with the basis functions (3.10) in terms of
seven PV moments Qil ðl ¼ 1; . . . ;7Þ as,
Qi ¼
R

si
PiðQ : x; yÞdsR

si
ds

¼
R

~si
jJiðn;gÞjPiðQ : n;gÞd~sR

~si
jJiðn;gÞjd~s

¼ 1
20
ðjJi1jQ i1 þ jJi2jQ i2 þ jJi3jQ i3Þ þ

2
15
ðjJi4jQ i4 þ jJi5jQi5 þ jJi6jQ i6Þ þ

9
20
jJi7jQ i7

� ��
DjJij: ð3:13Þ
With (3.11)–(3.13), we can obtain the following time evolution equation for another unknown, the PV at the cell
center Q i7,
dQi7

dt
¼ 1

9
ðjJi1jFi1 þ jJi2jFi2 þ jJi3jFi3Þ þ

8
27
ðjJi4jFi4 þ jJi5jFi5 þ jJi6jFi6Þ �

20
9

DjJijFi

� ��
jJi7j: ð3:14Þ
The numerical fluxes bFil ¼ ðbF il; bGil; bHilÞ located at ail ¼ ðnil;gilÞ; l ¼ 1; . . . ;6, are evaluated directly from the PVs readily ob-
tained on the boundary edges of cell si.

The integration of the flux functions Fij ¼ ðFij;Gij;HijÞ along each cell-boundary edge lij ðj ¼ 1;2;3Þ as shown in (3.6) can be
approximately computed by
li1Fi1 ¼ j
eJ i1 jbF i1þjeJ i2 jbF i2þ4jeJ i4 jbF i4

6 ;

li2Fi2 ¼ j
eJ i2 jbF i2þjeJ i3 jbF i3þ4jeJ i5 jbF i5

6 ;

li3Fi3 ¼ j
eJ i3 jbF i3þjeJ i1 jbF i1þ4jeJ i6 jbF i6

6 ;

8>>>><>>>>: ð3:15Þ
It is observed that formula (3.15) maintains the third order accuracy of the numerical solution.
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3.1.2. Fourth order MCV method
In the fourth order MCV method, we locally define the PV moments as Fig. 3(b). The locations of the points in the local

coordinate system are given as,
ai1 � ð0; 0Þ;
ai2 � ð1;0Þ;
ai3 � ð0;1Þ;
ai4 � 1

3 ;0
� �

;

ai5 � 2
3 ;

1
3

� �
;

ai6 � 0; 2
3

� �
;

ai7 � 2
3 ;0
� �

;

ai8 � 1
3 ;

2
3

� �
;

ai9 � 0; 1
3

� �
;

ai10 � 1
3 ;

1
3

� �
:

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

ð3:16Þ
In a similar manner, a set of the basis functions for a cubic polynomial in the local coordinate system can be given by
ci1ðn;gÞ ¼ � 9
2 n3 � 9

2 g3 � 27
2 n2g� 27

2 ng2 þ 9n2 þ 9g2 þ 18ng� 11
2 n� 11

2 gþ 1;

ci2ðn;gÞ ¼ 9
2 n3 � 9

2 n2 þ n;

ci3ðn;gÞ ¼ 9
2 g3 � 9

2 g2 þ g;

ci4ðn;gÞ ¼ 27
2 n3 þ 27n2gþ 27

2 ng2 � 45
2 n2 � 45

2 ngþ 9n;

ci5ðn;gÞ ¼ 27
2 n2g� 9

2 ng;
ci6ðn;gÞ ¼ � 27

2 g3 � 27
2 ng2 þ 18g2 þ 9

2 ng� 9
2 g;

ci7ðn;gÞ ¼ � 27
2 n3 � 27

2 n2gþ 18n2 þ 9
2 ng� 9

2 n;

ci8ðn;gÞ ¼ 27
2 ng2 � 9

2 ng;

ci9ðn;gÞ ¼ 27
2 g3 þ 27

2 n2gþ 27ng2 � 45
2 g2 � 45

2 ngþ 9g;

ci10ðn;gÞ ¼ �27n2g� 27ng2 þ 27ng:

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

ð3:17Þ
Analogously, the PV moments at cell vertices and cell edges are updated by
dQil

dt
¼ �ðbF xil þ bGyil þ bHzilÞ ¼ �Fil ðl ¼ 1; . . . ;9Þ; ð3:18Þ
and the VIA moment is updated by
dQ i

dt
¼ � 1

Dsi

X3

j¼1

lijðFijnxij þ Gijnyij þ HijnzijÞ ¼ �Fi: ð3:19Þ
From the cubic polynomial basis function (2.8) and (3.17), the VIA moment can be expressed by,
Q i ¼
1

30
ðjJi1jQ i1 þ jJi2jQ i2 þ jJi3jQ i3Þ þ

3
40
ðjJi4jQ i4 þ jJi5jQ i5 þ jJi6jQ i6 þ jJi7jQ i7 þ jJi8jQi8 þ jJi9jQ i9Þ þ

9
20
jJi10jQ i10

� ��
DjJij:

ð3:20Þ
Finally, we arrive at the following time evolution equation for Qi10,
dQi10

dt
¼ 2

27
ðjJi1jFi1 þ jJi2jFi2 þ jJi3jFi3Þ þ

1
6
ðjJi4jFi4 þ jJi5jFi5 þ jJi6jFi6 þ jJi7jFi7 þ jJi8jFi8 þ jJi9jFi9Þ �

20
9

DjJijFi

� ��
jJi10j:

ð3:21Þ
The integration of the flux functions Fij ¼ ðFij;Gij;HijÞ along cell-boundary edge lij ðj ¼ 1;2;3Þ as shown in (3.6) can be
computed with a fourth order accuracy by
li1Fi1 ¼ j
eJ i1 jbF i1þjeJ i2 jbF i2þ3jeJ i4 jbF i4þ3jeJ i7 jbF i7

8 ;

li2Fi2 ¼ j
eJ i2 jbF i2þjeJ i3 jbF i3þ3jeJ i5 jbF i5þ3jeJ i8 jbF i8

8 ;

li3Fi3 ¼ j
eJ i3 jbF i3þjeJ i1 jbF i1þ3jeJ i6 jbF i6þ3jeJ i9 jbF i9

8 :

8>>>><>>>>: ð3:22Þ
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3.2. Approximate Riemann solver

We apply the generalized Riemann problem suggested in [53,52] and used in [34,35] to evaluate the numerical fluxes in
term of the derivative at point pip ¼ ðxip ; yip ; zip Þ on the cell boundary edges.

Given the unknowns Q il, we obtain the piecewise reconstruction over each single cell by Lagrange polynomial (2.8) for the
flux functions FðQÞ; GðQÞ and HðQÞ, respectively. We denote the reconstruction interpolation functions for the cells adjacent
to pip from xþip side and x�ip side by PxþðFðQÞ : nip ;gip Þ and Px�ðFðQÞ : nip ;gip Þ, respectively. In the same manner, we have the two
adjacent reconstruction interpolations in y direction as PyþðGðQÞ : nip ;gip Þ and Py�ðGðQÞ : nip ;gip Þ, and in z direction as
PzþðHðQÞ : nip ;gip Þ and Pz�ðHðQÞ : nip ;gip Þ.

As mentioned before, the unknowns Q ip defined at the cell boundary are continuous and shared by the neighboring cells.
Thus, the flux functions are computed directly from Q ip by
bF ip ¼ FðQip Þ;bGip ¼ GðQ ip Þ;bHip ¼ HðQip Þ:

8>><>>: ð3:23Þ
The derivatives of the flux functions, however, might be discontinuous at pip . Therefore, we evaluate the derivatives of
flux functions from the two different states from the adjacent reconstruction interpolation functions by approximate Rie-
mann solver, namely Riemannð�; �Þ. The numerical derivatives of the flux functions is then written in form as,
bF xip ¼ Riemann Fx�

x ; Fxþ
x

� �
;bGyip ¼ Riemann Gy�

y ;Gyþ
y

� �
;bHzip ¼ Riemann Hz�

z ;Hzþ
z

� �
;

8>>><>>>: ð3:24Þ
where the derivatives in respect to x; y and z for all neighboring cells are computed from the cell-wise interpolation recon-
structions by
Fx�
xip ¼

@
@x Px�ðFðQÞ : nip ;gip Þ;

Fxþ
xip ¼

@
@x PxþðFðQÞ : nip ;gip Þ;

(
Gy�

yip
¼ @

@y Py�ðGðQÞ : nip ;gip Þ;

Gyþ
yip
¼ @

@y PyþðGðQÞ : nip ;gip Þ;

(
Hz�

zip ¼
@
@z Pz�ðHðQÞ : nip ;gip Þ;

Hzþ
zip ¼

@
@z PzþðHðQÞ : nip ;gip Þ:

( ð3:25Þ
In this paper, we apply a flux vector splitting to evaluate the approximate Riemann solver. The approximate flux deriv-
ative reads, for example, in x direction as,
bF xip ¼ Riemann Fx�
x ; Fxþ

x

� �
¼ 1

2
Fx�

xip þ Fxþ
xip � Rip signðKip ÞR

�1
ip Fxþ

xip � Fx�
xip

� �� �
; ð3:26Þ
where K is the eigen value diagonal matrix of @F=@Q , and R and R�1 the corresponding matrix of right and left eigenvectors
(see [40] for detail), which all are directly evaluated by the unknowns at pip . The same formulation applies to y and z
directions.

When including the source terms of the topographic effect, we cast the geopotential gradient force in terms of the total
height of the wave surface to keep the balance between the inviscid flux and the bottom topographic effect. The source terms
of topography in (3.4), i.e. gbTx; gbTy and gbTz, needed to be computed in a way consistent with flux splitting (3.26).

Noting that the bottom topography b is continuous at the cell boundary, but the derivatives of the total height Tx; Ty and
Tz might be discontinuous, we adopt a formula similar to (3.26) to evaluate the source term for the x component as,
ðgbbT xÞip ¼
1
2

gbip T�xip þ Tþxip � Rip signðKip ÞR
�1
ip Tþxip � T�xip

� �� �
: ð3:27Þ
The above applies to gbTy and gbTz in y and z directions, respectively.
The above treatment guarantees exactly the balance between the numerical flux and the topographic source term to sat-

isfy the C-property, thus eliminate the topography-induced spurious oscillation which may be generated in the mountain
wave test in [58] for example.

3.3. Time integration

We apply the third order TVD Runge–Kutta time integration method [46] to the semi-discretized equations of the un-
knowns, i.e. (3.11) and (3.14) for the third order scheme or (3.18) and (3.21) for the fourth order scheme. We write the
semi-discretized equations in the form as,
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dQ
dt
¼ RðQÞ; ð3:28Þ
where RðQÞ stands for the spatial approximations for the flux functions and their derivatives discussed above.
Given the values Q n at step n, the third order TVD Runge–Kutta method yields the following multi-step updating to obtain

the values Qnþ1 at step nþ 1,
Q 0 ¼ Qn;

Q 1 ¼ Q0 þ DtRðQ 0Þ;

Q 2 ¼
3
4

Q 0 þ
1
4

Q 1 þ
1
4

DtRðQ1Þ;

Q 3 ¼
1
3

Q 0 þ
2
3

Q 2 þ
2
3

DtRðQ2Þ;

Q nþ1 ¼ Q 3:

ð3:29Þ
As discussed before, one needs to project the momentum vector with matrix A given in (2.12) to remain the motion on
the surface of the sphere. We denote the projection operation by
ProjectðQÞ ¼ fAQ ð3:30Þ
with
fA ¼ 1
a2

a2 0 0 0
0 a2 � x2 �xy �xz

0 �xy a2 � y2 �yz

0 �xz �yz a2 � z2

26664
37775: ð3:31Þ
Thus, updating procedure (3.29) is modified to
Q 0 ¼ Qn;

Q 1 ¼ ProjectðQ 0 þ DtRðQ0ÞÞ;

Q 2 ¼ Project
3
4

Q 0 þ
1
4

Q 1 þ
1
4

DtRðQ 1Þ
� �

;

Q 3 ¼ Project
1
3

Q 0 þ
2
3

Q 2 þ
2
3

DtRðQ 2Þ
� �

;

Q nþ1 ¼ Q 3:

ð3:32Þ
It is noted that all predicted unknowns in the MCV method are point values, so the point-wise projection can be computed
accurately.

3.4. Remarks on the computational efficiency in comparison with other existing methods

In the MCV methods presented in this paper, all unknowns are defined at the cell vertices and boundary edges except the
only one PV at the cell center. So, the neighboring cells share the unknowns at the cell vertices and cell edges, which signif-
icantly reduces the total number of the unknowns compared to other existing schemes that locate the unknowns (DOFs) in-
side mesh cells.

Next, we give a quantitative comparison of the total DOFs of the third order MCV scheme with its DG counterpart. Con-
sider that each icosahedral triangle is partitioned into N2 grid elements as described at the beginning of Section 3, the total
numbers of vertices ðNvÞ, cell boundary edges ðNbÞ and elements ðNeÞ are
Nv ¼ 10N2 þ 2;
Nb ¼ 30N2;

Ne ¼ 20N2:

8><>: ð3:33Þ
The total number of PV moments (or DOFs) Np for a physical variable is given as Np ¼ Nv þ Nb þ Ne ¼ 60N2 þ 2, while the
DG method with a P2 polynomial requires Np ¼ 6� Ne ¼ 120N2 DOFs in total. It is obvious that an MCV method on triangular
mesh requires less memory comparing to a DG method of the same order accuracy.

We should also note that the flux function along the cell boundary can be directly computed from the PV moment that are
updated as computational variable, and the updating of each PV moment on the cell boundary needs point-wise derivative
Riemann solver. The total count of this is Nr ¼ Nv þ Nb ¼ 40N2 þ 2 in the third order scheme, while that for DG method is
Nr ¼ 2� Nb ¼ 60N2.

Moreover, the DG method requires high order numerical integration which is not needed in the MCV formulation. The
merit that all computational variables are point values in the MCV method also provides great convenience in accurately
calculating metric terms on a curved surface and source terms of physical processes in real applications. In our numerical
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test, we found that for the schemes of same order and same time marching algorithm (Runge–Kutta), MCV method has larger
CFL number for computational stability compared to the results of DG and SV (Spectral Volume) methods reported in [69].

From above discussions, we know that the MCV method has obvious superiority on computational efficiency.

4. Numerical examples

In this section, we will present several widely used numerical examples for global transport and shallow water models to
evaluate the proposed numerical model. The convergence rate of the numerical model is examined by grid refinement tests
for the global advection transport problem and the balanced geostrophic flow. The standard benchmark tests for both advec-
tion equation and shallow water equations proposed in [58] and other newly suggested tests are used to examine the per-
formance of the numerical model from different aspects.

The relationship between the Cartesian coordinate and the longitude–latitude coordinate is given by8

x ¼ a cos k cos h;

y ¼ a sin k cos h;

z ¼ a sin h;

><>: ð4:1Þ
where k is the longitude and h the latitude.
As in [58], the initial velocity field is given in the longitude–latitude coordinate ðk 2 ½0;2p�; h 2 ½�p=2;p=2�Þ, and then

converted to the 3D Cartesian coordinate as follows,

u ¼ BuðLÞ;

B ¼
� sin k � cos k sin h 0
cos k � sin k sin h 0

0 cos h 0

264
375; ð4:2Þ
where u ¼ ðu;v ;wÞ is the velocity vector in the global Cartesian coordinate and uðLÞ ¼ ðuðkÞ;uðhÞ;uðrÞÞ is the velocity defined in
the longitude–latitude coordinate by uðkÞ ¼ a cos h _k; uðhÞ ¼ a _h and uðrÞ ¼ _r ¼ 0.

We will show numerical results in the 256� 128 longitude–latitude coordinate grid instead of the global coordinate for
clarity. The plotted results are interpolated by bi-quadratic or cubic polynomial on a single cell. In this paper, we depict the
results in the range of k 2 ½�p;p� and h 2 ½�p=2;p=2�.

In order to quantitatively examine the numerical outputs, we use the following normalized error measures introduced in
[58],
L1ðwÞ �
R

X jw
ðnÞ � wðeÞjdXR

X jw
ðeÞjdX

;

L2ðwÞ �

R
Xðw

ðnÞ � wðeÞÞ2 dX
n o1=2

R
Xðw

ðeÞÞ2 dX
n o1=2 ;

L1ðwÞ �
maxðjwðnÞ � wðeÞjÞ2X

maxðjwðeÞjÞ2X
;

ð4:3Þ
and numerical conservation is evaluated by the normalized conservation error for physical variable w,
MðwÞ �
R

X wðnÞ dX�
R

X wð0Þ dXR
X wð0Þ dX

; ð4:4Þ
where X is the whole computational domain, and wðnÞ; wðeÞ and wð0Þ are the numerical solution, the exact solution and the
initial condition.

The integration operator is computed by
IðwÞ �
Z

X
wdX ¼

XNe

i¼1

Z
si

wiðx; y; zÞds ¼
XNe

i¼1

Z
~si

jJiðn;gÞjwiðn;gÞd~s; ð4:5Þ
where the numerical quadrature is calculated by (3.13) for the third order scheme or (3.20) for the fourth order scheme.
With (4.5), the errors are numerically calculated by
L1ðwÞ ¼
IðjwðnÞ � wðeÞjÞ

IðjwðeÞjÞ
;

L2ðwÞ ¼
IððwðnÞ � wðeÞÞ2Þ

IððwðeÞÞ2Þ

( )1=2

;

L1ðwÞ ¼
PNp

ip¼1 max wðnÞip
� wðeÞip

			 			� �
PNp

ip¼1 max wðeÞip

			 			� � ;

ð4:6Þ
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and
Table 1
Numeri

N

3rd o
2
4
8

16

4th o
2
4
8

16
MðwÞ ¼ IðwðnÞÞ � Iðwð0ÞÞ
Iðwð0ÞÞ

: ð4:7Þ
4.1. Global transport model

First, we consider the advection transport computations for the mass conservation equation of passive tracer h,
ht þ ðhuÞx þ ðhvÞy þ ðhwÞz ¼ 0: ð4:8Þ
4.1.1. Accuracy study [4]
We examine the convergence rates of the proposed schemes with the grid refinement tests. The initially smooth profile of

h is given as [4],
hðk; h; 0Þ ¼ sin k cos h: ð4:9Þ
The velocity fields satisfying the divergence-free condition r � u ¼ 0 given in [58] are
uðkÞ ¼ u0ðcos h cosaþ sin h cos k sin aÞ;
uðhÞ ¼ �u0 sin k sin a;

(
ð4:10Þ
where u0 ¼ 2pa=ð12 daysÞ is the maximum of the velocity, and a is the angle between the rotation axis and the north polar of
the Earth.

The computational mesh is doubly refined from N ¼ 2 to N ¼ 16. We have run the tests with a rotation angle a ¼ p=4 up
to 12 days (1 period).

The measured errors are shown in Table 1. Both the third and fourth order schemes possess the converging rates as ex-
pected. We also calculated other cases with the rotation angle a being 0 and p=2 and observed that the error is not sensitive
to the flow direction, and hence the schemes are robust to the grid morphology.

4.1.2. Williamson’s test case 1: advection of cosine bell [58]
The initial cosine bell is given by
hðk; h;0Þ ¼
h0
2 1þ cos pbR

R

� �
; if bR 6 R;

0; if bR > R;

8><>: ð4:11Þ
where h0 ¼ 1000; R ¼ a=3 and bR is the great circle distance defined as,
bR ¼ aacosðsin hc sin hþ cos hc cos h cos k� kcÞ ð4:12Þ
with the center at kc ¼ 3p=2 and hc ¼ 0. The rotational velocity is the same as (4.10). We run the tests with a rotational angle
a ¼ p=4. We use the mesh of N ¼ 25 for the third order scheme and the mesh of N ¼ 20 for the fourth order scheme. As can
be seen, the total DOFs for the fourth order MCV method on the N ¼ 20 mesh is almost the same as that for the third order
MCV method on the N ¼ 25 mesh.

We show the numerical results and exact solution after 12 days in Fig. 4. Both the third and fourth order MCV methods
produce adequate numerical results without dispersion error. Especially, the fourth order MCV method gives numerical re-
sults almost visually identical to the exact solution. We also plot the time history of the normalized errors in Fig. 5. It is ob-
cal error and convergence rate for the advection of q0 ¼ cos k sin h with the rotational angle a ¼ p=4.

L1 Order L2 Order L1 Order

rder MCV
1.63E�1 – 1.84E�1 – 1.32E�1 –
2.06E�2 2.93 2.10E�2 2.96 2.55E�2 2.85
2.56E�3 3.01 2.63E�3 3.00 3.05E�3 3.06
3.24E�4 2.98 3.30E�4 2.99 3.91E�4 2.96

rder MCV
4.21E�2 – 4.20E�2 – 5.22E�2 –
2.68E�3 3.97 2.67E�3 3.98 3.50E�3 3.90
1.68E�4 4.00 1.66E�4 4.01 2.08E�4 4.07
1.06E�5 3.99 1.04E�5 4.00 1.33E�5 3.97



Fig. 4. Numerical solution at day 12 and exact solution for test case 1 with a ¼ p=4. The solid line shows numerical result and dashed line shows exact
solution. The contour interval is 100 from 0 to 1000.
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Fig. 5. Normalized errors in test case 1 with a ¼ p=4.
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served that the result of the fourth order scheme is apparently superior to that of the third order one in numerical errors. It
manifests that a higher order scheme is more attractive in accuracy compared to a lower order one with nearly the same
number of DOFs.

4.1.3. Deformational flow on the sphere [30]
This test was originally proposed on a plane geometry by Doswell [12], and was implemented to the spherical geometry

by Nair et al. [29]. The numerical configuration of this test in detail can be found in [30]. In this test, we set the radius of the
Earth a to 1 same as [4], and the vortical center is located at the north-pole of the Earth.

The initial condition is given by
hðk; h; 0Þ ¼ 1� tanh
q
c

sin k

� �
; ð4:13Þ
where q ¼ q0 cos h is the radius of the vortex. We specified the parameters as q0 ¼ 3 and c ¼ 5. The velocity field is defined
as,
uðkÞðk; hÞ ¼ x cos h;

uðhÞðk; hÞ ¼ 0;

(
ð4:14Þ
with the angular velocity x given by



Fig. 6.
at t ¼ p
0.0001
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x ¼
0; if q ¼ 0;
3
ffiffi
2
p

2q sechðqÞ tanhðqÞ; if q – 0:

(
ð4:15Þ
Then, the exact solution can be written as,
hðeÞðk; h; tÞ ¼ 1� tanh
q
c

sinðk�xtÞ
� �

: ð4:16Þ
The numerical results at t ¼ p with third order method on N ¼ 25 mesh and fourth order method on N ¼ 20 mesh are
shown in Figs. 6(a) and 7(a). There is no visible difference among the numerical outputs. Thus, we also plotted the difference
between the numerical solutions and the exact solution in Figs. 6(b) and 7(b). The numerical errors of different norms of the
third order method and fourth order method are L1 ¼ 3:2302E� 5; L2 ¼ 1:2728E� 4; L1 ¼ 1:1111E� 3, and
L1 ¼ 7:7886E� 6; L2 ¼ 3:2466E� 5; L1 ¼ 3:8007E� 4. Again, with almost same number of DOFs, the result of the fourth or-
der scheme is better than that of the third order scheme. In this test, one center of vortices is set at a vertex of the initial
icosahedron which is topologically singular. Nevertheless, numerical results look not sensitive to this.
4.1.4. Moving vortices on the sphere [32]
This test is introduced by Nair and Jablonowski in 2008 to evaluate the computation of advection transport with a more

challenging deformational velocity field on the sphere. In addition to the deformational flow given in Section 4.1.3, complex-
ity in the velocity field is increased by adding a rotational flow to the vortical motion. The detail of the computational setup
follows [32]. We show the numerical results of the third order MCV method on N ¼ 30 mesh at 3, 6, 9 and 12 (full revolution)
days in Fig. 8(a)–(d). The two vortices are initially located on the equator at 90�E and 90�E and then moved with a rotational
angle a ¼ p=4. Against Fig. 8(e), which is the analytical solution at 12 days, our result looks adequately comparable to those
Numerical result and difference with the exact solution computed by 3rd order MCV method on N ¼ 25 (DOFs = 37,502) for the deformational flow
. The contour interval of the numerical result is 0.05 from 0.5 to 1.5, and the contour of difference with the exact solution is drawn with the interval
from �0.0015 to 0.0015 except 0.

Fig. 7. Same as Fig. 6, but computed by 4th order MCV method on N ¼ 20 (DOFs = 36,002).
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Fig. 8. Height fields of the moving vortex test computed by 3rd order MCV method on N ¼ 30 (DOFs = 54,002) at day 3, 6, 9 and 12. Bottom figure shows
exact solution and the difference with numerical result at day 12. In panels (a)–(e), solid lines indicate the contours from 1.05 to 1.50 with 0.05 interval, and
dash lines from 0.50 to 0.95. In panel (f), solid lines stand for 0.02, 0.04 and 0.06 contours, while dash lines for �0.06, �0.04 and �0.02, respectively.
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in the literature. The major vortical structure of the solution is accurately captured. The difference between the analytical
solution and numerical one is also plotted in Fig. 8(f). The major error appears around the centers of the two vortices, where
part of fine structure is under the grid resolution. The normalized error variations in time are plotted in Fig. 9. The L1 error is
the largest one because of the local discontinuity, which is also reported in [32,33]. Our scheme is not sensitive to grid align-
ment even with this moving vortices velocity field.

4.2. Global shallow water model

We present in this part the major benchmark tests suggested in [58] for the global shallow water models. We also tested
the model with a zonal geostrophic jet [13] to see the significance of the numerical error produced by grid which does not
align with the jet flow.

4.2.1. Williamson’s test case 2: global steady zonal geostrophic flow [58]
This is test case 2 in [58]. The initial velocity field is the same as (4.10), and the corresponding initial height in geostrophic

balance is given by
ghðk; h; 0Þ ¼ gh0 �
u0

2
ð2aXþ u0Þðsin h cos a� cos k cos h sinaÞ2; ð4:17Þ
where u0 ¼ 2pa=ð12 daysÞ and gh0 ¼ 2:94� 104. The Coriolis parameter in this test is given by
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Fig. 10. Normalized errors in test case 2 with a ¼ p=4.
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Fig. 9. Normalized errors of the 3rd order MCV method on N ¼ 30 (DOFs = 54,002) in the moving vortex test on the sphere.
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f ¼ 2Xð� cos k cos h sinaþ sin h cos aÞ: ð4:18Þ
In this test, the theoretical solution to this problem is a steady zonal flow maintaining the initial state in the balance be-
tween the geopotential gradient force and the Coriolis force.

We computed this test up to 5 days with a rotation angle being a ¼ p=4 by both the third order scheme on N ¼ 10 mesh
and the fourth order scheme on N ¼ 8 mesh.

The time evolution of the normalized errors for the height h are plotted in Fig. 10. The results of the fourth order MCV
method are much better than that of the third order one. The numerical convergence with N ¼ 2;4;8;16 meshes is shown
in Table 2. Both third order and fourth order MCV methods achieve the expected orders of accuracy in the non-linear global
shallow water model.

4.2.2. Williamson’s test case 5: zonal flow over an isolated mountain [58]
The initial zonal flow for the total height T ¼ hþ b is similar to those given in Section 4.2.1, but with the parameters

h0 ¼ 5960 and u0 ¼ 20. In this test case, an isolated mountain defined as the bottom surface b is centered at
ðkc; hcÞ ¼ ð3=2p;p=6Þ, and the profile is given by
bðk; hÞ ¼ b0 1�
bR
R

 !
; ð4:19Þ
where b0 ¼ 2000; R ¼ p=9, and bR ¼min R;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk� kcÞ2 þ ðh� hcÞ2

q� �
. Thus, the initial depth of water is obtained by

hðk; h;0Þ ¼ Tðk; h;0Þ � bðk; hÞ. The computation was conducted with third order method on N ¼ 25 mesh and fourth order
method on N ¼ 20 mesh.



Table 2
Numerical error and convergence rate in test case 2 with the rotational angle a ¼ p=4.

N L1 Order L2 Order L1 Order

3rd order MCV
2 5.51E�2 – 6.03E�2 – 9.47E�2 –
4 1.20E�2 2.20 1.29E�2 2.22 2.10E�2 2.17
8 1.71E�3 2.81 1.87E�3 2.79 3.41E�3 2.62

16 2.23E�4 2.94 2.46E�4 2.93 4.51E�4 2.92

4th order MCV
2 6.77E�3 – 8.39E�3 – 1.86E�2 –
4 2.95E�4 4.52 3.72E�4 4.50 9.76E�4 4.25
8 1.49E�5 4.31 1.91E�5 4.28 6.26E�5 3.96

16 8.95E�7 4.06 1.19E�6 4.00 4.38E�6 3.84
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The total height after 15 days is shown in Fig. 11. The numerical results are quite similar to those of the spectral transform
method with much higher resolution T213 (Fig. 5.1 of [5]). Smooth solutions around the mountain are obtained without
unphysical oscillation.

We computed the conservation error MðwÞ of the total mass ðMassÞ, total energy ðEneÞ and the potential enstrophy ðEnsÞ
defined by
-9

-4

 4

 9

Fig. 11.
height
Mass ¼ h;

Ene ¼ 1
2
ðgh2 þ hu � uÞ;

Ens ¼ 1
2h
ðfþ f Þ2;

ð4:20Þ
where the vorticity f is computed by f ¼ p=a � ðr � uÞ with p ¼ ðx; y; zÞ denoting the position vector on the global surface.
The time history of the conservation errors are shown in Fig. 12. The conservation of the total mass is fulfilled due to the
finite volume formulation. The total energy and the potential enstrophy is also adequately conserved. Our results of the third
and fourth order schemes are competitive to those by the spectral transform method with T63 resolution (see Fig. 5.4 of
[22]). Moreover, when comparing the results between the third order MCV method on N ¼ 25 mesh (37,502 DOFs) and
the fourth order MCV method on N ¼ 20 mesh (36,002 DOFs), we find again the result of the high order method is apparently
superior even with a coarser mesh.
4.2.3. Williamson’s test case 6: Rossby–Haurwitz wave [58]
This example is the zonal Rossby–Haurwitz wave. It is known that the intrinsic dynamic instability of the physics might

prevent it from being a proper example for testing the long-term performance of a numerical model [51]. Nevertheless, the
Rossby–Haurwitz wave still provides a good test bed for global middle-term simulations. The numerical results up to 14 days
calculated by the spectral method on the T213 grid (see Fig. 5.5 of [5]) are widely accepted as the reference solutions that
reasonably reflect the dynamic behavior of the system.

The details of the initial height and velocity fields are given in [58]. We computed the test by both third and fourth order
schemes with different mesh resolutions.

The height field after 14 days are shown in Fig. 13. The results after 14 days are slightly different between third order
method and fourth order method. Isolated centers of low geopotential height is observed in the result of the third order
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Total height field at day 15 for zonal flow over an isolated mountain. The contour interval is 50 from 5050 to 5950. The dashed line is the mountain
with the contour value of 100, 500, 1000, 1500 and 2000.
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Fig. 12. Time evolution of the normalized conservation errors computed by the 3rd order MCV method on N ¼ 25 (DOFs = 37,502) and 4th order MCV
method on N ¼ 20 (DOFs = 36,002) in test case 5.
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Fig. 13. The height field at day 14 for the Rossby–Haurwitz wave. The contour interval is 100 from 8100 to 10,500.
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Fig. 14. Time evolution of the normalized conservation errors computed by the 3rd order MCV method on N ¼ 40 (DOFs = 96,002) and 4th order MCV
method on N ¼ 32 (DOFs = 92,162) in test case 5.
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scheme. With improved accuracy of the scheme, the fourth order MCV method gives very similar solution to the reference
one in [5].

We also plotted the time evolution of the normalized conservation errors for the total mass, total energy and potential
enstrophy in Fig. 14. The same conclusion with respect to the performance of the third and fourth order schemes on different
mesh resolutions can be drawn.

It is noted that with nearly the same DOFs the computational time of the third order MCV method on N ¼ 40 mesh is
about 1.29 times of that taken by the fourth order MCV method on N ¼ 32 mesh.

4.2.4. Perturbed flow in balanced jet field [13]
The last example is the development of a barotropic instability induced by a small perturbation added to a geostrophically

balanced jet flow (see [13] for detailed numerical configuration). This is a quite challenging problem for any grid model
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having its grid not aligned to the zonal direction. We first computed the undisturbed zonal jet flow until 5 days with the grid
resolutions gradually refined as N ¼ 30;60;90 and 120. As observed in other models using cubed-sphere grid and icosahedral
grid, the solution could not rigorously maintain the initial zonal steady flow. Shown in Fig. 15, a disturbance of wavenumber-
five is developed and clearly observed in the case with N ¼ 30. Nevertheless, a significant improvement can be observed
when the grid resolution is refined to N ¼ 120. Moreover, the numerical oscillation in the MCV results looks much smaller
than that of the high order DG method in [23]. We examined the L1 errors of the height field in time and displayed in Fig. 16,
which shows a uniform convergence.

Next, we computed the instability generated by the small perturbation until 6 days. The vorticity fields computed with
N ¼ 30;60;90 and 120 resolutions are shown in Fig. 17. Again, a wavenumber-five pattern is visible with low grid resolution
ðN ¼ 30Þ. The results with higher grid resolutions, on the other hand, rapidly converge to the physical solution as those in
[13,4].
4.3. Remarks on implementing the multi-moment methods on various spherical grids

The multi-moment finite volume method has been implemented on the Yin-Yang grid [24] and cubed-sphere grid [4]
previously by our group. As it is well known, both Yin-Yang grid and cubed-sphere grid use quadrilateral grid cell (ele-
ment), and enjoy the advantages of the structured grid. In particular, the Yin-Yang grid is composed of two truncated lon-
gitude–latitude grids, thus the existing numerical formulations developed on a longitude–latitude grid can be directly
transplanted to the Yin-Yang grid. However, the Yin-Yang overset grid has to use an overlapping region to communicate
data between two component grids, where interpolation is involved and the numerical conservation is not guaranteed.
This drawback might raise some problems for applications where the conservation is of great importance. The cubed-
sphere grid, on the other hand, has a well connected finite volume mesh over the whole globe by hanging together the
mesh cells from two neighboring patches on the cube surface, thus has numerical conservation if a finite volume formu-
lation is used.

The multi-moment method uses different moments to build local high order reconstruction over compact stencil (only a
single cell is needed in nearly all cases). The multi-moment reconstruction is very flexible and beneficial when applied to the
Yin-Yang grid and the cubed-sphere grid. The data transfer across the patch (or component grid) boundary can be conducted
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Fig. 17. Vorticity result of the 3rd order MCV method in balanced jet field with perturbation at day 6.
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by single-cell reconstruction on either side. This minimizes the halo layer of the Yin-Yang overset grid and thus reduces the
conservative errors effectively. The performance of the multi-moment finite volume method in these two spherical grids are
adequate and promising. We have not applied the MCV method [20] to the Yin-Yang grid and the cubed-sphere grid for the
moment, but can expect the outcome to be as good as or better than the previous multi-moment finite volume method. As
mentioned before, the MCV method does not explicitly involve the computation of cell-integrated quantity, and is more con-
venient when applied to real problems with complex geometry or source terms.

Compared to above two grids, the icosahedral grid is more geometrically isotropic and has the most uniform grid ele-
ments over the whole globe. Perhaps, the major barrier to this grid is the lack of high accurate and easy-to-use numerical
schemes for its unstructured grid configuration. We hope the numerical formulations presented in this paper can provide
a practical framework for the icosahedral grid. As the multi-moment method is still evolving, further exploration will be
made for numerical cores of higher quality.

Before ending this section, we address that it is very easy to enhance the monotonicity in the multi-moment finite volume
method, which might be important in computing the transport of a concentration. We introduce the first order derivative at
the cell center as an additional constraint for the multi-moment reconstruction which works as a slope limiter and effec-
tively suppresses the numerical oscillations in the solution, see [60,65] among others for example.
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5. Concluding remarks

A novel accurate numerical framework for global shallow water equations has been developed using the high order multi-
moment constrained finite volume (MCV) method and the icosahedral geodesic grid. The multi-moment formulation shares
the essential properties that are usually expected for computational fluid applications, such as the numerical conservation,
high order accuracy, robustness and flexibility due to the local reconstruction, hence is well suited for the icosahedral geo-
desic grid. Moreover, the unknowns (computational variables) in the MCV method are the point values. There is no spatial
integration involved in the numerical procedure. This is not only a great benefit to the computational efficiency but also
advantageous (or essential to some extent) for the accurate treatments of the spherical geometry, e.g. the curved triangular
cell element and the projection of the governing equations from the 3D Cartesian coordinate system onto the surface of the
sphere, as well as the computation of the source terms.

Numerical examples presented in this paper reveal that the proposed model can achieve competitive outputs even with
relatively lower mesh resolutions. We can expect the formulations presented in this paper to be a promising base for further
development of global atmospheric and oceanic models.

Appendix A. Icosahedral geodesic grid

In this appendix, we describe how to generate the icosahedral geodesic grid based on an approach by Sadourny et al. [43].
The grid is generated from the regular icosahedron shown in Fig. 1. For simplicity, we assume that the radius of the circum-
scribed sphere is one and the center of the sphere at the origin O of the Cartesian coordinate.

The 12 vertices of the regular icosahedron points in the Cartesian coordinate system are given as,
ðxp1; yp1; zp1Þ ¼ ð0;0;1Þ;
ðxp2; yp2; zp2Þ ¼ ð2â; 0; âÞ;

ðxp3; yp3; zp3Þ ¼ ðb̂; ê; âÞ;

ðxp4; yp4; zp4Þ ¼ ð�ĉ; d̂; âÞ;

ðxp5; yp5; zp5Þ ¼ ð�ĉ;�d̂; âÞ;

ðxp6; yp6; zp6Þ ¼ ðb̂;�ê; âÞ;
ðxp7; yp7; zp7Þ ¼ ð0;0;�1Þ;

ðxp8; yp8; zp8Þ ¼ ðĉ; d̂;�âÞ;

ðxp9; yp9; zp9Þ ¼ ð�b̂; ê;�âÞ;
ðxp10; yp10; zp10Þ ¼ ð�2â;0;�âÞ;

ðxp11; yp11; zp11Þ ¼ ð�b̂;�ê;�âÞ;

ðxp12; yp12; zp12Þ ¼ ðĉ;�d̂;�âÞ;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ðA:1Þ
where
â ¼ 1ffiffiffi
5
p ; b̂ ¼ 1� â

2
; ĉ ¼ 1þ â

2
; d̂ ¼

ffiffiffî
b

q
and ê ¼

ffiffiffî
c
p

: ðA:2Þ
We coincide the north-pole of the sphere with ðxp1; yp1; zp1Þ and the south pole with ðxp7; yp7; zp7Þ.
Let any triangle element DABC of the icosahedron has its three vertices at A ¼ ðxA; yA; zAÞ; B ¼ ðxB; yB; zBÞ and C ¼ ðxC ; yC ; zCÞ

(see Fig. 18). The grid is then created by dividing each edge of DABC into N equal arcs. The coordinate of points
Pn ¼ ðxn; yn; znÞ ðn ¼ 2; . . . ;NÞ on boundary AB can be obtained by solving linear system
A

B C

P2

P3

P4

PN

Fig. 18. Division of a piece of the icosahedron.
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OA
�!
� OP
�!

n ¼ cos n
N\ðABÞ
� �

;

OB
�! � OP

�!
n ¼ cos 1� n

N

� �
\ðABÞ

� �
;

OP
�!

n � ðOA
�!
� OB
�!Þ ¼ 0;

8>>><>>>:
ðn ¼ 2; . . . ;NÞ;

ðA:3Þ
or in the Cartesian coordinate form,
xAxn þ yAyn þ zAzn ¼ cos n
N\ðABÞ
� �

;

xBxn þ yByn þ zBzn ¼ cos 1� n
N

� �
\ðABÞ

� �
;

xnðyAzB � zAyBÞ þ ynðzAxB � xAzBÞ þ znðxAyB � yAzBÞ ¼ 0;

8><>:
ðn ¼ 2; . . . ;NÞ;

ðA:4Þ
where angle \ðABÞ means arc AB in radians. The third equation is a constraint to make OA
�!

; OP
�!

n and OB
�!

coplanar.
In a similar manner, the grid points on edges ðBCÞ and ðACÞ, as well as the intersection points of the curves, can be found.
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