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The slender axis-symmetric submarine body moving in the vertical plane is the object of our investigation. A coupling model 
is developed where displacements of a solid body as a Euler beam (consisting of rigid motions and elastic deformations) and 
fluid pressures are employed as basic independent variables, including the interaction between hydrodynamic forces and struc-
ture dynamic forces. Firstly the hydrodynamic forces, depending on and conversely influencing body motions, are taken into 
account as the governing equations. The expressions of fluid pressure are derived based on the potential theory. The character-
istics of fluid pressure, including its components, distribution and effect on structure dynamics, are analyzed. Then the cou-
pling model is solved numerically by means of a finite element method (FEM). This avoids the complicacy, combining CFD 
(fluid) and FEM (structure), of direct numerical simulation, and allows the body with a non-strict ideal shape so as to be more 
suitable for practical engineering. An illustrative example is given in which the hydroelastic dynamic characteristics, natural 
frequencies and modes of a submarine body are analyzed and compared with experimental results. Satisfactory agreement is 
observed and the model presented in this paper is shown to be valid. 
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1  Introduction 

Hydroelasticity is a branch of science concerned with the 
motion of deformable solid bodies through liquids [1–4]. 
For a hydroelastic system hydrodynamic force depends on 
and conversely influences the displacement, velocity and 
acceleration of solid body motion. This interaction works as 
a coupling between fluid and the inertia, elasticity and 
damping of a solid body. Consequently the concepts of 
added variable, i.e. added mass, added stiffness and added 
damping respectively produced by inertia coupling, elastic-
ity coupling and damping coupling in the fluid field, are 
proposed. To solve these added variables, depending on the 
fluid field and boundary condition on the interface between 

liquids and solid body, is very difficult. It is one of the im-
portant subjects in the hydroelasticity domain. 

A moving submarine elastic body, such as a subma-
rine-launched missile experiencing a series of stages: emis-
sion from canister launcher, submarine motion and emer-
gence from water surface, usually faces problems due to 
fluid-structure interactions such as dynamic response, hy-
droelastic divergence/flutter and kinematical stability. In 
order to improve structure performance, that is, long sailing 
distance and powerful attack ability, in the missile design 
stage, dynamic/static strength calculation and structure op-
timization are required. Therefore accurate hydroelastic 
dynamic characteristics, i.e. frequency and mode shape, 
should be primarily calculated. The methods for analyzing 
dynamic characteristics of marine bodies can be classified 
into two kinds. One kind is called simplified method [5–8], 
by which the fluid- structure interaction is considered added  
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mass whose value is determined analytically by the poten-
tial flow theory for some special bodies with an ideal shape. 
For example, the added mass coefficient is 1 for a cylinder 
and 1/2 for a sphere. In the alternative method [9–14] the 
dynamics of fluid-structure coupling system are computed 
by means of direct numerical simulation, i.e.. the synthesis 
method combining CFD and FEM or the generalized finite 
element method (GFEM) where fluid is regarded as equiva-
lent solid and the techniques originally for solid mechanics 
are generalized to the coupling system in which displace-
ments of solid and fluid are employed as basic independent 
variables [15]. The simplified method is good for the body 
with an ideal shape, but in practical engineering many 
structures have complex and non-ideal geometry shape. 
Direct numerical simulation, requiring data communication 
between solid and fluid software and mesh match or inter-
polation, is time consuming and inconvenient, and by now 
has not been applied to practical engineering. Moreover for 
GFEM where displacement variable is used to describe fluid 
dummy, zero energy modes may be produced since the ideal 
fluid is treated as a solid whose shear stiffness is zero [16]. 
To eliminate these zero energy modes is very complicated. 

In this paper the slender axis-symmetric body moving in 
water is taken as the object of study. A coupling model tak-
ing account of interactions between hydrodynamic forces 
and structure dynamic forces is developed, where displace-
ment of a solid body (including rigid motion and elastic 
deformation) and fluid pressure are employed as basic in-
dependent variables. The fluid pressure expressions are de-
rived. Characteristics of fluid pressure, including its com-
ponents, distribution and effect on structure dynamics, are 
analyzed. Then the coupling model is solved numerically by 
means of the finite element method (FEM). This avoids the 
complicacy, combining CFD (fluid) and FEM (structure), of 
direct numerical simulation and allows the body with a non 
ideal geometry shape so as to be suitable for practical engi-
neering. An illustrative example is given in which the hy-
droelastic dynamic characteristics, i.e. natural frequencies 
and modes, of a body moving in water are analyzed and 
compared with experimental results. Satisfactory agreement 
is observed and the model presented in this paper is shown 
to be valid. 

2  Analysis model 

2.1  Basic equations 

The deformation of solid body is assumed to satisfy Euler 
beam condition, and the fluid is ideal, incompressible and in 
infinite space. The coordinate systems are shown in Figure 
1. XYZ is inertial coordinate. xyz is relative coordinate, fixed 
on the moving body, whose original point is consistent with 
the mass center of solid body. The x-z plane parallels the 
X-Z plane. Only the motion in the X-Z plane is considered  

 

Figure 1  Sketch of the coordinate systems. 

here. X and Z denote translation displacements of body mass 
center and ϑ  is the rotation angle of a rigid body in the 
inertia coordinate system, and u and w denote displacements, 
respectively in the axial and transverse direction, in the xyz 
coordinate system. The coordinate r  and motion velocity 

r  of structure point i are i ir R ρ= +  and i ir R ω ρ= + ×  

iρ+  respectively, where 

 ( sin cos ) ( cos sin ) ,R X Z i X Z kϑ ϑ ϑ ϑ= + + − +  

 ( ) ( ) ,i i i i i i ix u z i y j z w kρ α= + + + + +  

, ,i j k  are unit vectors respectively in the direction of the 

, ,x y z  axis, ω  is the rotation angle velocity of rigid body 

rotation, and .w xα = ∂ ∂  

System kinetic energy is written as 

 

1

2
1

( ) ( )
2

 2( ) .

i i i

i i i

i i i i

K m r r

m R R ω ρ ω ρ

ρ ρ ω ρ ρ

= ⋅

⎡= ⋅ + × ⋅ ×⎣

⎤+ ⋅ + × ⋅ ⎦

∑

∑  

And system potential energy is 

 
( )

( )

2
2 2

2
2 2

1
, d d d

2

1
 , d d d .

2

u
U E x y z z x y z

x x

u w
E x y z x y z

x x

α∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂⎝ ⎠

∂ ∂⎛ ⎞− + ⎜ ⎟∂ ∂⎝ ⎠

∫∫∫

∫∫∫
 

Given the gravity field effect, the gravity potential energy 
can be included in the system potential energy as a form of 

( ) ,i im g R MgZρ− ⋅ + =∑  where M is the total structure 

mass. 
An arbitrary point on the structure surface is described by 

the coordinate ( , )x γ , where γ  is the circumferential an-

gle from the z axis (Figure 2). The fluid forces exerted on  
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Figure 2  Forces and displacements on the surface element. 

the surface element d ( ( ) / cos ( ))d d ,A a x x xφ γ=  where a(x) 

is the radius of section x  and ( )xφ  is the meridian slope 

(Figure 3), consist of pressure ( , ),p x γ  shear stress ( , )m xτ γ  

tangent to the meridian surface and shear stress ( , )xγτ γ  

tangent to the circumferential cross section (Figure 3). The 
virtual displacements, described by uδ ′  (in the x direction) 
and wδ ′  (in the z  direction), are decomposed into nor-
mal and tangential components and multiply the corre-
sponding stress. Then the virtual work exerted on the sur-
face element is  

 
( )

d d d ( ) ( ),
cos ( ) r m m

a x
W x y pn e e u i w k

x γδ τ τ δ δ
φ

′ ′= − + + ⋅ +  

where , ,r mn e e  are unit vectors in the normal, circumfer-

ential and meridian direction. Integrating the above equation 
can yield the virtual work exerted on the cross section.  

Substituting kinetic energy K, potential energy U and 
virtual work Wδ  into the Hamilton theorem  

 
0 0

( )d d 0,
t t

K U t w tδ δ− + =∫ ∫  

and applying the variational principle, yields the governing 
equations of structure kinematics and dynamics taking into 
account of fluid forces acting on the structure (neglecting 
the surface shear stress and higher order terms containing α) 
as follows:  

 

Figure 3  Segment of the axis-symmetric body. 
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where J is the inertia moment, m is the structure mass per 

unit length. 2 2 2( ) ( , )d dH x z E x y z y z= +∫∫  and ( )K x =  

2 2( , )d d  E x y z y z+∫∫ respectively correspond to the 

bending and tension stiffness. 
Since the fluid pressure ( , )p xγ  depends on the struc-

ture motions, eqs. (1) and (2) indicate the interaction be-
tween the structure motion and the fluid dynamics. The 
second term on the right-hand side of eq. (1c) and the sec-
ond terms on the left-hand side of eqs. (2a) and (2b) show 
that the rigid motion couples with the elastic deformation 
vibration. Eqs. (1) and (2) should be solved by time steps, 
since the differential/integral equations can not be sepa-
rately solve due to the fluid-structure interaction.  

The static hydraulic pressure terms in eqs. (1) and (2) can 
be derived respectively as: zero, ,gVρ  sin ,bgVxρ ϑ−  

2 ( cos ) tancga Z xρ ϑ φ− π +  and 2 sin .a gρ ϑπ  V is the 

body volume, bx  is the distance from the buoyancy center 

to the mass center along the symmetric axis. Zc is the value 
of the Z coordinate of mass center in the inertial coordinates. 
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Since the static hydraulic pressure has been known, p de-
notes only dynamic hydraulic pressure in later sections. 

2.2  Expressions for hydrodynamic pressure 

Potential function Φ  of ideal incompressible fluid satis-
fies Laplace equation 2 0.Φ∇ =  And from the integral 

form, 21
( ) ,
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 of Euler equation 
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where ( )Pψ  is the intensity of point source, nV  is the 

normal velocity of body surface, and PMr  is the distance 

from point P to M. 
The normal components of velocity and acceleration of 

point P in the perpendicular cross section at x can be re-
spectively written as: 
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(4b)

 

where U and W are the velocity components of rigid mo-
tions respectively in the x axis and the z axis. 

Eqs. (4a) and (4b) indicate that nV  (or nV ) consists of 

three rigid motions of cross section at x , i.e. axial transla-
tion, transverse translation and rotation motion around the y 
axis. Therefore three corresponding fluid fields should be 
solved to obtain fluid pressures and potential functions. 
Here a body segment, vertical to the symmetric axis at 

0x x=  and with 0dx  length, is considered. The segment is 

assumed to move with 1 unit acceleration of translation and 
rotation around the y axis respectively, while other parts of 
the body remain static. Then by the superposition principle 
the potential functions of the three motions are derived and 
superimposed as the final solution. The source function of 

point ( , , )x r γ  on the body surface is written as 
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where ,x zπ π  and ,ϑπ  depending on the geometry shape 

of segment element at 0x x=  together with the whole body, 

are solutions to the following equation, respectively: 
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Substituting eq. (5) into pressure formula eq. (3) and de-
composing zπ  and ϑπ  into forms of 0( , , )z x xπ γ =  

0( , ) cosz x x γΠ  and 0 0( , , ) ( , ) cos ,x x x xϑ ϑπ γ γ= Π  respec-

tively, hydrodynamic pressures on the body surface pro-
duced by the three rigid motions are given as follows: 
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Kernel functions 0( , )xK x x , 0( , )zK x x  and 0( , )K x xϑ  in 

the above formulas are 
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Integrating eqs. (7)–(9) can yield the total pressure field. 
It should be pointed out that for many submarine bodies 

in practical engineering such as submarine launched missile, 
the acceleration of rigid motion is much smaller than the 
acceleration of elastic vibration, or the character time for 
rigid motion is much longer than the period of elastic vibra-
tion. Therefore those terms for motions with a short period 
can be neglected when pressure equations are substituted 
into kinematics equation eq. (1). Similarly terms for mo-
tions with a long period can be neglected when pressure 
equations are substituted into dynamics equation eq. (2).  

2.3  Governing equations and added mass 

Further, the acceleration ( , )X Z  is projected onto the x-z 

coordinate, and eqs. (1a)–(1c) are rewritten as: 
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where the expressions for added mass are: 
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And the coupling term in eq. (15) is  
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where L is the total length of body. The above formulas 
imply that the two equations of translation motions are de-
coupled with each other, while the rotation motion is cou-
pled with the transverse motion because of position differ-
ence between the mass center of body and the acting center 
of hydrodynamic force produced by the transverse motion. 

By now the dynamic equations can be rewritten as: 
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 make the above two 

equations nonlinearly coupled. And eq. (16) can be further 
linearized based on the assumption of small deformation. 

Now we have come up with the following two outlooks 
on the hydrodynamic force and coupling characteristics of 
governing equations: (1) The hydrodynamic pressure con-
sists of two parts. The first part, produced by rigid motions, 
is the sum of one axisymmetric pressure by longitudinal 
translation acceleration and pressures, distributing on the 
circle according to cosγ function, by the transverse transla-
tion acceleration and rotation acceleration. The second part, 
produced by elastic deformation vibration, is the superposi-
tion result of an axisymmetric pressure by longitudinal vi-
bration acceleration and a pressure, distributing on the circle 
according to cosγ function, by the transverse vibration ac-
celeration. Hydrodynamic pressure derived as the above can 
be expressed in terms of added mass multiplying the corre-
sponding body surface acceleration; (2) Generally, three 
rigid motions and two elastic deformation vibrations are 
coupled by hydrodynamic pressure. For some practical en-
gineering problems the character time for rigid motion is 
much longer than the period for elastic vibration. Therefore 
equations both for rigid motions and elastic vibrations can 
be decoupled except one, eq. (15), where the rotation mo-
tion is still coupled with the transverse motion. 
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3  Example and discussion 

3.1  Example and model description  

A cylinder shell with a cone cap, the finite element model 
shown in Figure 4, is taken as an illustrative example. The 
geometry parameters are: radius R=0.25 m, and length 
L=3.3 m. Vertical height of the cone cap h=0.2 m. The ma-
terial properties are: bending stiffness 

99.8 10EI = ×  N/m2, 
and Poisson’s ratio 0.3. The non-dimensional mass 

sta Max/im m  ( sta
im  is the structure mass at ith longitudinal 

position, Maxm =54.7 kg) distributions are shown in Figure 

5. The mass density of fluid ρ =1000 kg/m3. 

3.2  Calculation results 

Two cases, i.e. a whole body is immerged into water (called 
Case A in the later section) and the back half part of a body 
immerged into water (Case B), are considered. Hydroelastic 
dynamic characteristics, i.e. vibration frequencies and 
modes, for the two cases are calculated. And dynamic char-                 

 
Figure 4  The finite element simulation model. 

 

Figure 5  Sketch of the structure mass distributions. 

acteristics for the dry case (whole body in air) are also cal-
culated for comparison. Here the effect of free surface is not 
taken into account. For a typical representation, the selected 
mode shapes of cylinder shell, the three rigid modes and the 
first three bending modes for Case A are shown in Figure 6. 

Frequencies of dry modes and wet modes (for Cases A 
and B) are listed in Table 1. Generally, due to the effect of 
added mass, frequencies of wet modes are smaller than 
those of dry modes. And compared to Case B, a more pro-
nounced frequency decrease is observed for Case A because 
of greater added mass caused by a larger area of body sur-
faces interacting with the surrounding fluid. For example, 
the 1st bending frequency for case A is 67% of that for the 
dry mode, and for Case B, 90%. 

The influence of added mass, essentially implying the 
fluid-structure interaction, on the wet modes depends on the 
particular mode shape. For example, the added mass for 
longitude tension, whose order number is 2 for the dry case 
(see Table 1), is very small so that the wet frequency re-
mains almost the same with a dry frequency, 98 Hz. The 
added mass of the 2nd bending, whose order number is 3 for 
the dry case, is large. Thereby its frequency drops from 
114.6 Hz for the dry case to 84.6 Hz for the wet (Case A). It 
is also noted that the order number of the 2nd bending 
changes from 3 into 2. That is to say, compared to the dry 
case, the order number for a mode may change due to dif-
ferent degrees of influence of added mass. This can also be 
seen from the values of frequency ratio of wet frequency to 
dry frequency (see Table 1), e.g. 0.67, 0.74, 0.74, 1.00 re-
spectively for the three bending modes and longitude ten-
sion. We know that different modes have different wave 
lengths, which is responsible for the degrees of influence of 
added mass on wet modes. 

Mode shapes for the dry and wet cases are compared in 
Figure 7 as deformation curves of central axis. Compared to 
the dry case, for Case A the rotation center of rigid rotation 
moves forward and the vibration amplitude at the body tail 
augments a little (Figure 7(a)) due to a change of mass dis-
tribution. Note here that the structure mass (without added 
mass) is mainly at the back part of the body (Figure 5). 
Thus the vibration amplitude is smaller than that of the body 
head. But for Cass A, added mass distribution is nearly uni-
form along the axial length, so the total mass distribution 
tends to be more uniform than that of the dry case and con-
sequently the vibration amplitude at the body tail augments. 
For Case B added masses are mainly at the back half part of 
the body, which makes back part further heavier than the 
front part, and consequently vibration amplitude at the back 
part is much smaller. 

3.3  Discussion 

3.3.1  A comparison with the experimental results 

In practical engineering, frequency experiment is often im-
plemented to obtain the value of added mass for a subma-          
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Table 1  A mode comparison for the dry and wet (Case A and B) cases (Frequency unit: Hz) 

Dry case  Case A (totally submarine)  Case B (half submarine) 
Modes 

Frequency Order number  Frequency Order number Frequency ratio  Frequency Order number Frequency ratio 

1st bending 52.5 1  35.0 1 0.67  47.3 1 0.90 

2nd bending 114.6 3  84.6 2 0.74  100.8 3 0.88 

3rd bending 168.7 5  124.8 4 0.74  162.0 5 0.96 

Longitude tension 98.0 2nd  97.9 3rd 1.00  98.0 2nd 1.00 

 

 

Figure 6  Hydroelastic modes for Case A (from left to right respectively: transverse translation, rotational motion; 1st, 2nd and 3rd bending modes). 

 
Figure 7  A comparison of mode shape for the dry and wet cases (Cases A and B). (a) Rigid rotation; (b) 1st bending; (c) 2nd bending; (d) 3rd bending.
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rine body. The body is supported by a spring with stiffness 
,K  and then the frequencies for the body-spring system 

vibrating respectively in air and static water are measured. It 
is assumed that the value of spring stiffness in water is the 
same as that in air and the body is rigid. The influence of 
hydrodynamic force is considered only as an inertial force, 
or the effect of added mass. Therefore the frequency is re-
lated to the mass by 

 
drydry wet

wet drywet

,
K Mf M

f MK M
= =  (17) 

where dryf  and wetf  are the natural frequencies respec-

tively in air and water. dryM  and wetM  are the general-

ized mass in air and water respectively, and satisfy wetM =  

dry aM M+  where aM  is the generalized added mass. For 

the rigid motion mode with displacement normalization, 
generalized mass dryM  (having the same value with the 

structure mass) is known and frequencies dryf  and wetf  

can be measured by vibration experiments. Thus general-
ized added mass aM  (having same value with added mass) 

is calculated by 

 

2

dry
a dry

wet

1 .
f

M M
f

⎡ ⎤⎛ ⎞
⎢ ⎥= −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (18) 

Here the added mass coefficient aC  is defined as: 

 a
a

dis

,
M

C
M

=  (19) 

where disM  is the displaced mass of body. Here the added 

mass coefficients a ,C  for rigid translations, by experi-

ments and numerical simulations are listed in Table 2. It 
shows that added mass coefficients by numerical simula-
tions have a value of 0.89, and agree well with the value, 
0.90, by experiment. The theoretical solution to the circular 
cylinder, 1.0, is compared with our numerical simulations. 
Significant errors, respectively 12.4% for Case A and 
19.1% for Case B, are observed. 

3.3.2  Effect of body end on added mass (or 3D effect) 

Generally, frequency experiment in practical engineering is 
capable of giving a single value of added mass coefficient 
for a rigid mode, but hard to give added mass distribution in 
the body. Numerical simulations are capable of giving 
added mass and its distribution both for rigid modes and 
elastic modes. Selected results of added mass distribution 
(for the 1st and the 2nd bendings) along the body length are 
shown in Figure 8. 

It shows that added mass coefficients almost keep con-
stant along the middle part of the body length, since the end 
effect is negligible and the body can be regarded as an infi-
nite length or a 2D model is acceptable. More specifically, 
along the length of x/L=0.20–0.79, or 59% of the total body 
length, the added mass coefficients Ca keep constant values, 
i.e. 0.98 and 0.95 respectively for the 1st and 2nd bending 
modes. But approaching the two body ends, the added mass 
coefficients decrease mainly due to a body end effect. It 
means that the 2D model for an infinitely long body no 
longer applies, and should be replaced by a 3D model such 
as presented in this paper. 

4  Conclusions 

A coupled model, taking into account of the interaction be-
tween fluid dynamics and structure dynamics, for a slender 

 
Figure 8  Added mass distributions of the wet modes (for the 1st and 2nd 
bending modes). 

Table 2  Added mass coefficients by numerical simulations and experiments (Mass unit: kg) 

Dry case  Case A  Case B 

Natural mode Generalized  
mass dryM  

 
 

Generalized  
mass wetM  

Added mass  
coefficient aC  

 
 

Generalized  
mass wetM  

Added mass  
coefficient aC  

Transverse translation  
(the Z direction) 

612.5  1164.0 0.89  868.8 0.83 
Numerical  

simulation results Transverse translation  
(the Y direction) 

612.5  1164.0 0.89  868.8 0.83 

Theoretical solution (for an ideal cylinder)    1.00   1.00 

Experimental results    0.90    
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axis-symmetric body is studied in this paper. The governing 
equations are solved by means of a finite element numerical 
method. An illustrative example is presented, in which the 
hydroelastic dynamic characteristics, i.e. the natural fre-
quencies and modes, of a submarine body are analyzed and 
compared with the experimental results. Satisfactory agree-                               
ment is observed. Our results show: 

(1) Hydrodynamics pressure, depending on and mean-
time conversely influencing body motions, consists of two 
parts. The first part is produced by rigid motions, i.e. two 
translations and one rotation. The second part is produced 
by elastic vibration in the longitudinal and transverse direc-
tion. Hydrodynamic pressure can be described in terms of 
added mass and the acceleration on the body surface (the 
expressions are presented in this paper); 

(2) Generally, three rigid motions and two elastic vibra-
tions are coupled because of expressions for hydrodynamic 
pressure. But for some practical engineering problems the 
character time for rigid motion is much longer than the elas-
tic vibration period. Therefore equations both for rigid mo-
tion and elastic vibration can be decoupled except one (eq. 
(15)); 

(3) Frequencies for hydroelastic modes drop due to the 
effect of added mass whose value and influencing manner 
depend on a particular mode shape. Additionally the end 
effect of added mass is shown, which is essentially due to 
the 3D effect of the body shape. 

This work is based on several simplifying assumptions, 
e.g. body moving in the vertical plane, the deformation sat-
isfying Euler beam condition and fluid being ideally not 
compressible. Further works, body three-dimensional mo-
tion and more complex fluid such as vacation, separation 
and turbine, are suggested. 
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