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a b s t r a c t

The generation of internal gravity waves by barotropic tidal flow
passing over a two-dimensional topography is investigated. Rather
than calculating the conversion of tidal energy, this study focuses
on delineating the geometric characteristics of the spatial structure
of the resulting internal wave fields (i.e., the configurations of the
internal beams and their horizontal projections) which have usu-
ally been ignored. It is found that the various possible wave types
can be demarcated by three characteristic frequencies: the tidal fre-
quency, ω0; the buoyancy frequency, N; and the vertical component
of the Coriolis vector or earth’s rotation, f. When different possibil-
ities arising from the sequence of these frequencies are considered,
there occur 12 kinds of wave structures in the full 3D space in con-
trast to the 5 kinds identified by the 2D theory. The constant wave
phase lines may form as ellipses or hyperbolic lines on the horizon-
tal plane, provided the buoyancy frequency is greater or less than
the tidal frequency. The effect that stems from the consideration of
the basic flow is also found, which not only serves as the reason
for the occurrence of higher harmonics but also increases the wave
strength in the direction of basic flow.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The generation of internal gravity waves in deep oceans is a subject of increasing research inter-
est and has attracted considerable attention over the years (Garrett and Kunze, 2007). These waves,
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known as internal tides, are generated by the tidal flow in a density-stratified ocean over its bottom
topography and the first stage in understanding their effect is to quantify the process of generation.
For decades, the processes of tidal generation and attendant energy conversion have been thought
to significantly contribute to the mixing in the deep ocean and catalyzing the thermohaline cir-
culation (Munk and Wunsch, 1998). Most theoretical studies up-to-date have focused largely on
the tidal energy conversion between the barotropic tide and the internal tide (e.g., Bell, 1975a,b;
Balmforth et al., 2002; Smith and Young, 2002, 2003). Recently, Garrett and Kunze (2007) pre-
sented a review of the energy conversion studies. On the other hand, limited attention has been
directed at the spatial structure of the resulting internal wave fields, especially in a 3D space, which
is also crucial for the understanding of the generation process of internal tides (Bühler and Muller,
2007).

In recent years, activities of semi-diurnal internal tides have been observed above the critical lat-
itude (Pisarev, 1996; Parsons et al., 1996; Vlasenko et al., 2003), where freely propagating internal
waves are not accommodated by the traditional linear theory of baroclinic tides. Factors of non-
linearity and convection are regarded as the principle reasons for this limitation (Nakamura et al.,
2000; Nakamura and Awaji, 2001; Vlasenko et al., 2003). Besides, another reason that lies in the
inclusion of the horizontal component of the earth’s rotation (‘non-traditional’ term) seems more
convincing (Fan and Singh, 2008). It has been theoretically shown that the non-traditional effect
can change the direction of propagation of internal wave energy. The internal beams are no longer
symmetric to the vertical and can propagate across the critical latitude, if the gyroscopic waves
prevail (LeBlond and Mysak, 1978). These findings indicate that the methods that neglect the tra-
ditional term are incapable to elucidate the internal wave structure in extreme conditions. As a
consequence, non-traditional effects have received renewed attention due to their unique role in ocean
dynamics.

The effects of non-traditional terms for two-dimensional wave structures are now well known,
which lead to the occurrences of the asymmetric internal wave rays (Durran and Bretherton, 2004;
Fan and Singh, 2008). Under non-traditional approximations, propagation of internal wave rays has
five kinds of modes, which can be classified by comparing the magnitudes of frequencies, including the
buoyancy frequency, N; the tidal frequency, ω0; and the vertical component of the earth’s rotation, f (Fan
and Singh, 2008). On the other hand, our understanding of the internal tide generation in a 3D space is
limited (Garrett and Kunze, 2007). Our understanding of the special attributes of non-traditional terms
can be attributed to LeBlond and Mysak (1978), who showed that the constant frequency surfaces can
form three kinds of wave types in rotated coordinates under non-traditional approximations. However,
the actual wave structures in a wider parameter space close to a real ocean are still unclear. Thus, there
is a need to have a comprehensive discussion of the 3D structures of internal waves taking into account
some special external factors, such as non-horizontal terms of the Coriolis force and the basic tidal
flow.

For an exact description of wave structures, especially in complicated environmental conditions,
an evaluation of the wave fields is indispensable. In practice, many efficient methods have been pro-
posed for dealing with a steady-state internal gravity wave problem (e.g., Hurley, 1972; Lighthill, 1967,
1978; Voisin, 1991). The objective of this study is therefore to develop a more systematic and gen-
eralized procedure using Lighthill’s theory (1967, 1978), solve the Fourier integrals involved in the
aforementioned problem, and find the asymptotic far-field expressions for these waves. In the anal-
ysis here, the basic tidal flow U is retained, although it is considered to be uniform in the vertical
direction. The horizontal component of earth’s rotation, known as ‘non-traditional approximation,’
is included. These two factors are usually ignored for a 3D study on the internal tide generation,
which, however, are always the concomitants of tidal movements, and hence their effects need to be
evaluated.

The paper is organized as follows. Sections 2 and 3 describe the model and the dispersion relation.
In Section 4 the wave fields for a homogeneous ocean are derived with the aid of Lighthill’s theory
and compared with the results of a 2D representation. This includes descriptions of the wave fields
in three conditions that the buoyancy frequency larger than, less than or equal to the tidal frequency,
and the demarcation criteria for each style of wave structures. The conclusions are summarized in
Section 5.
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2. Model equation

The linearized equations governing the motion of a density-stratified Boussinesq fluid of ambient
density �0(z) on the non-traditional f-plane are

Du − f v + fhw = − 1
�0

px, Dv + fu = − 1
�0

py, Dw − fhu = − 1
�0

pz − �

�0
g,

ux + vy + wz = 0, D� = �0

g
N2(z)w (1)

where

D = ∂

∂t
+ U

∂

∂x
+ V

∂

∂y
, U = [U, V ] = [U0cos ω0t, V0cos ω0t] (2)

In (1) and (2), N(z) denotes the buoyancy frequency; � is the perturbed density; p is the pressure; and
g is the gravitational acceleration; x (west–east), y (south–north) and z (vertical, positive upward, with
the origin at the undisturbed surface) are the Cartesian coordinates; and u, v, w are the corresponding
velocity components. The Coriolis vector can be represented as (0, fh, f) = 2� = 2� (0, cos �, sin �), in
which � is the angular velocity of the earth; and � is the latitude. In the traditional approximation,
one would take fh = 0.

As stated clearly by Vallis (2006), it is convenient to express the above governing equations in the
spherical coordinates when phenomena on a scale comparable to global are considered. Under this
situation, the traditional approximation is confirmed to be necessary for the conservation of angular
momentum and energy in conjunction with the shallow-fluid approximation. In this paper, as the
internal tides operate on a scale smaller than the global scale for which the use of spherical coordinates
becomes awkward, it is more convenient to use a local Cartesian representation of the equations.
Multiplying the momentum equations individually by u, v and w gives:

uDu − fuv + fhuw = − 1
�0

upx, vDv + fuv = − 1
�0

vpy, wDw − fhuw = − 1
�0

wpz − �

�0
gw (3)

Adding up the above equation yields:

1
2

�0D(u2 + v2 + w2) = −U · F (4)

where the vector U represents the velocity and F denotes the effective force defined by F = (�p + �g).
Eq. (4) makes clear that the consideration of horizontal component of the earth’s rotation does not
disobey the principle of conservation of energy.

Eq. (1) can be reduced to an equation for the vertical velocity, w, as:

(D2 + f 2)wzz + 2ffhwyz + {[N2(z) + D2]�h + f 2
h ∂yy}w = 0 (5)

where � = ∂xx + ∂yy + ∂zz, �h = ∂xx + ∂yy. The linearized upper and lower boundary conditions for the
rigid surface z = 0 and bottom z = –h0 are

w = 0, z = 0;
w = U · ∇H, z = −h0

(6)

where H(x) is the amplitude of topography. Introduction of the following transformations:

� = x −
∫ t

0

U(�)d� = x − U0

ω0
sin ω0t, � = y −

∫ t

0

V(�)d� = y − V0

ω0
sin ω0t, 	 = t (7)

yields

(∂		 + f 2)Wzz + 2ffh∂�Wz + {[N2(z) + ∂		]�h
′ + f 2

h
∂�

2}W = 0;

W = 0, z = 0;

W = (UH1� + VH1�), z = −h0

(8)
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where W(�, �, z, 	) and H1(�, �, z, 	) are the vertical velocity and height of the topography in the moving
frame, �h

′ = ∂�� + ∂�� .
The objective here is to deduce the internal wave fields on the basis of (8) and discuss the unique

spatial structures of the resulting wave fields that are still unknown. Throughout the analysis, the
amplitude of topography is assumed to be much less than the depth of ocean, which enables us to
apply the bottom boundary condition at the flat surface z = –h0 rather than at the actual position of
the bottom boundary z = –h0 + H(x).

3. Dispersion relation

In order to solve (8), we use the two-dimensional Fourier transform with respect to � and �, defined
as:

¯̄W(k1, k2) = 1
2


∫ ∞

−∞

∫ ∞

−∞
W(�, �)e−i(k1�+k2�)d�d� (9)

Thus, we obtain the following boundary value problem:

(∂		 + f 2) ¯̄Wzz + 2iffhk2
¯̄Wz − {[N2(z) + ∂		]k2

h
+ f 2

h
k2

2} ¯̄W = 0;
¯̄W = 0, z = 0

(10)

where k2
h

= k2
1 + k2

2. Furthermore, according to the definition of the Fourier transform, the bottom
function can be expressed as:

H(x, y) = 1
2


∫ ∞

−∞

∫ ∞

−∞
¯̄H(k1, k2)ei(k1x+k2y)dk1dk2

= 1
2


∫ ∞

−∞

∫ ∞

−∞
¯̄H(k1, k2)e

i
(

k1

∫ 	

0
Ud�+k2

∫ 	

0
Vd�
)

ei(k1�+k2�)dk1dk2

= H1(�, �)
1

2


∫ ∞

−∞

∫ ∞

−∞
¯̄H1(k1, k2)ei(k1�+k2�)dk1dk2 (11)

It is easy to find

¯̄H1(k1, k2) = ¯̄H(k1, k2)e
i

(
k1

∫ 	

0

Ud� + k2

∫ 	

0

Vd�

)
= ¯̄H(k1, k2)ei� sin ω0t (12)

where

� = k1U0 + k2V0

ω0
(13)

denotes the tidal excursion parameter. Invoking the Bessel function

eix sin � =
∞∑

n=−∞
Jn(x)ein�, eix cos � =

∞∑
n=−∞

inJn(x)ein� (14)

where Jn is a Bessel function of order n, (12) can be rewritten as:

¯̄H1(k1, k2) = ¯̄H(k1, k2)
∞∑

n=−∞
Jn(�)einω0	 (15)

Therefore, the Fourier transform of the bottom boundary condition is

¯̄W(−h0) = i(k1U + k2V) ¯̄H1(k1, k2) = ¯̄H(k1, k2)
∂

∂	
e

i
(

k1

∫ 	

0
Ud�+k2

∫ 	

0
Vd�
)

= ¯̄H(k1, k2)
∞∑

n=−∞
inω0Jn(�)einω0	 (16)
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Following Bell (1975a) and Khatiwala (2003), the BC (16) motivates us to seek a series solution of
the form:

¯̄W(k1, k2, z, 	) = ¯̄H(k1, k2)
∞∑

n=−∞
wn(k1, k2, z)Jn(�)einω0	 (17)

Substituting (17) into (10), we have

(n2ω2
0 − f 2)

d2wn

dz2
− 2iffhk2

dwn

dz
+ {[N2(z) − n2ω2

0]kh
2 + fh

2k2
2}wn = 0;

wn(0) = 0; wn(−h0) = inω0

(18)

Note that the above ODE is ill-posed, provided that n2ω2
0 = f 2. Thus, with the assumption of

n2ω2
0 /= f 2 and introducing the following transformation:

wn(z) = ϕ(z)exp

(
iffhk2

n2ω2
0 − f 2

z

)
(19)

one obtains the following boundary value problem for ϕ:

ϕzz + K2(z)ϕ = 0

ϕ(0) = 0, ϕ(−h0) = inω0exp

(
iffhk2

n2ω2
0 − f 2

h0

)
(20)

Here, the vertical wave number K(z) satisfies

K2(z) = P(z)k2
1 + Q (z)k2

2 (21)

where

P(z) = N2(z) − n2ω2
0

n2ω2
0 − f 2

, Q (z) = P(z) + n2ω2
0f 2

h

(n2ω2
0 − f 2)

2
(22)

Obviously, (21) denotes the dispersion relation for freely oscillating internal waves. The zero points
of P and Q (for constant N) are

P1 = min[f 2, N2], P2 = max[f 2, N2],

Q1,2 = N2 + f 2 + fh
2

2

[
1 ±
√

1 − 4N2f 2

(N2 + f 2 + fh
2)

2

]
, Q1 < Q2 (23)

First, it is easy to verify that Q1 < P1 ≤ P2 < Q2, which provides the actual range of each frequency.
Furthermore, if assuming N2 /= f2, (19) shows that for the form of the surface ω0 = constant in the (k1,
k2, K) plane over the frequency range Q1 < n2ω2

0 < Q2 there exist three possibilities, as given below:

(1) For P1 < n2ω2
0 < P2, there satisfies 0 < P < Q. ω0 = constant lies on the surface of a cone of elliptical

cross-section centered about the k-axis (see Fig. 1a).
(2) For P2 < n2ω2

0 < Q2, or, Q1 < n2ω2
0 < P1, there satisfies P < 0 and Q > 0. ω0 = constant lies on the

surface of a cone centered about the k2-axis (see Fig. 1c).
(3) if n2ω2

0 = N2, then P = 0, the surface of constant ω0 degenerates to a pair of planes (see Fig. 1b).

The above conclusions agree with that proposed by LeBlond and Mysak (1978), who followed a
different way. It is worth noting that P equals –1 if N2 = f2. In this regard, there is only one possibility
for the dispersion relation: if Q1 < n2ω2

0 < Q2, ω0 = constant lies on the surface of a cone centered about
the k2-axis, provided n2ω2

0 /= N2. In order to determine an exact delineation of the spatial structures
of internal waves, we should obtain expressions for the water movement in various environmental
conditions.
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Fig. 1. Contour plots of the dispersion relation. � = 30◦ , N = 1.4 × 10−3, ω0 = 1.4 × 10−4; (a)–(c) correspond to n = 1, 10, and 11.
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3.1. Relevance of the non-traditional approximation

The dispersion relation (21) together with (22) make clear that the non-traditional approximation
can become indispensable, or, in other words, the horizontal component of the earth’s rotation vector
plays a crucial role in the internal tide generation when P(z) is much less than Q(z), especially for the
extreme situation P(z) < 0 is satisfied. This corresponds to two possibilities for the frequency ranges,
i.e., the buoyancy frequency N is less than the tidal frequency ω0, whilst ω0 is larger than the vertical
component of Coriolis vector f; or, N > ω0, whilst ω0 < f

The precondition for the second frequency window can become true at the oceans where the
latitude is higher than the critical value, as stressed in the introduction. Under this situation, the
non-traditional approximation can reasonably explain the activities of internal tides above the critical
latitude. In what follows, we point out the practical background for the aforementioned first situation.

According to the traditional theory, freely propagating internal gravity waves (in the layer where
N > f) will be reflected as approaching the layers where N < f and only evanescent waves (amplitudes
of which decay exponentially) can exist. However, in deep oceans, stratification can usually be very
weak (N approaches f) and the horizontal component of the earth’s rotation vector becomes more
important for the generation of gyroscopic waves. In this situation, the traditional approximation
turns to be inapplicable, as was pointed out by LeBlond and Mysak (1978). The limiting wave type for
N → 0 is called pure gyroscopic internal waves. Recently, the existence of gyroscopic waves in deep
Mediterranean Sea has been evidenced by Van Haren and Millot (2005). Obviously, the non-traditional
approximation has thus been confirmed irreplaceable for elucidating the properties of internal tide
in nearly homogeneous deep layers. On the other hand, the weak stratification assumption is in fact
not suitable for the whole depth of the ocean and the propagation and transition of internal waves
between well-stratified and homogeneous layers are worthy of discussion, but are beyond the scope
of the current paper.

4. Solutions for constant stratification

For N(z) constant, the general solution of (20) is

ϕ(z) = inω0
sin Kz

sin(−Kh0)
exp

(
iffhk2

n2ω2
0 − f 2

h0

)
(24)

Substituting the above equation into (17) and (19) and applying the inverse Fourier transform, one
obtains

W = −1
2


∑
n

inω0einω0	

∫ ∞

−∞

∫ ∞

−∞
¯̄H(k1, k2)

sin Kz

sin Kh0
Jn(�)eik1�+ik2[�+((ffh(z+h0))/(n2ω0

2−f 2))]dk1dk2

(25)

For the dispersion relation there exist three possibilities, which thus result in the following three
kinds of wave types.

4.1. 0 < P < Q

It is desirable to introduce the following transformation:

(
k1
k2

)
= kr

⎛
⎜⎜⎝

cos ˇ√
P

sin ˇ√
Q

⎞
⎟⎟⎠ ,

(
�

� + ffh (z + h0)
n2ω2

0 − f 2

)
= r

(√
P cos ˛√
Q sin ˛

)
, r > 0, 0 ≤ ˛ < 2
, − ∞ < kr < ∞, 0 ≤ ˇ ≤ 


(26)
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(25) turns to

W = −
n0∑

n=−n0

inω0

2

einω0	

∫ 


0

∫ ∞

−∞

¯̄H(kr, ˇ)√
PQ

sin Kz

sin Kh0
Jn(�)eikr r(ˇ)|kr |dkrdˇ (27)

where

(ˇ) = cos(ˇ − ˛), K = |kr | (28)

Here, the tidal excursion parameter

� = kr

ω0

(
cos ˇ√

P
U0 + sin ˇ√

Q
V0

)
(29)

satisfies

�(kr, ˇ + 
) = �(−kr, ˇ) = −�(kr, ˇ)

One can readily identify that for K > 0, the poles of the integrand involved in (27) lie on the real
k-axis:

|krm| = m


h0
, m = 1, 2, 3, . . . (30)

To estimate the inner integrand of (27), Lighthill’s method (1978) is employed which suggests using
ω0 − iε to replace frequency ω0. Then, exp(iω0t) is replaced by exp(εt + iω0t), giving the source a slow
exponential growth from zero at t = −∞ to its present level. Looking exclusively for the associated
growing waves, varying with time like exp(εt + iω0t), the danger of the solution being contaminated
by other wave energy generated ‘at infinity’ is then excluded. (Here, ε is a small positive number which
is later allowed to tend to zero.) Thus, in keeping with Cauchy’s theorem, for r(ˇ) > 0, raising the poles
with a distance k′ (k′ tends to zero when let ε → 0), giving a contribution of (+2
i) times the residuum
from each. Similarly, for r(ˇ) < 0, lowering the poles with a distance k′, giving a contribution of (−2
i)
times the residuum from each.

Furthermore, from the dispersion relation (21), it is not difficult to derive that the group velocities
along (kr, ˇ) are(

∂ω

∂kr

∣∣∣∣
ω=nω0

,
∂ω

∂ˇ

∣∣∣∣
ω=nω0

)
= �

(
kr

nω0
, 0
)

(31)

where

� = (n2ω2
0 − f 2)

3

(n2ω2
0 − f 2)

2
(k2

1 + k2
2 + K2) + k2

2f 2fh
2

(32)

This indicates that sgn(∂ω/∂kr) = sgn(nkr) provided that n2ω0
2 > f2. For simplicity, we only present

the case of n2ω0
2 > f2 and that for n2ω0

2 < f2 can be derived in a similar way.
For r(ˇ) > 0 and n > 0, only the poles, – krm, are moved over the axis with a distance

ik′(k′ = εnω0/�krm), provided that ω0 is raised by an increment – iε. Similarly, for r(ˇ) > 0 and n < 0,
if ω0 is increased by an increment iε, only the poles, krm, are moved over the axis with a distance ik′.
As the limit ε → 0 is approached, the inner integral looks like

W =
∞∑

m=1

2m


h0
2

sin
(

m


h0
z
) n0∑

n=1

(−1)m+n+1 nω0√
PQ

∫ 


0

¯̄H(krm, ˇ)

× Jn[�(krm, ˇ)] cos[krmr(ˇ) − nω0	]dˇ (33)
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Similarly, for r(ˇ) < 0, the solution reads

W =
∞∑

m=1

(−1)m+1 2m


h0
2

sin
(

m


h0
z
) n0∑

n=1

nω0√
PQ

∫ 


0

¯̄H(krm, ˇ)

× Jn[�(krm, ˇ)] cos[krmr(ˇ) + nω0	]dˇ (34)

where we have made use of the relationship:

J−n(x) = Jn(−x) = (−1)nJ(x) (35)

Suppose the bottom function is written as

H(x, y) = F(x)F(y) (36)

Then F(y) = 1 represents the solution in the one dimension limit. In this limit, the solution of (33)
and (34) reduces to:

W(�, z, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2
√

2

m
√




∞∑
n=1

∞∑
m=1

(−1)m+nkmnω0Jn

(
U0km

ω0

)
sin

m
z

h0
× H̄(km) cos(km� − nω0t), � > 0

−2
√

2

m
√




∞∑
n=1

∞∑
m=1

(−1)mkmnω0Jn

(
U0km

ω0

)
sin

m
z

h0
H̄(km) cos(km� + nω0t), � < 0

(37)

Abandoning the non-traditional approximation, namely, removing the horizontal components
of the Coliolis vector in (1), the above solution is consistent with Khatiwala’s solution (Khatiwala,
2003).Furthermore, when r → ∞, the integrand in (33) has stationary points ˇ = ˛ (for 0 < ˛ < �), or
ˇ = ˛ − 
 (for 
 < ˛ < 2�), satisfying ∂(ˇ)/∂ˇ = 0. Ultimately, the stationary phase approximation (see,
for instance, Nayfeh, 1973) yields:

W(r, ˛, z, 	) =
∞∑

m=1

n0∑
n=1

(−1)m+n+1 2


h0
3/2

√
2m

r

nω0√
PQ

sin
(

m


h0
z
)

¯̄H(krm, ˛)

× Jn[�(krm, ˛)] cos
[

krmr − nω0	 − 


4

]
(38)

where we have assumed that

¯̄H(kr, ˛ − 
) = ¯̄H(kr, ˛) (39)

4.2. P < 0, Q > 0

In this case, (25) can be simplified with help of the following transformations:

(
k1
k2

)
= kr

⎛
⎜⎝

cos ˇ√−P
sin ˇ√

Q

⎞
⎟⎠ ,

⎛
⎝ �

� + ff2(z + h0)

n2ω2
0 − f 2

⎞
⎠ = r

(√−P cos ˛√
Q sin ˛

)
, r > 0, 0 ≤ ˛ < 2
, − ∞ < kr < ∞, 0 ≤ ˇ ≤ 


(40)

A notable distinction of the appearance of wave field comparing with the former case is that prop-
agation of the internal waves is now confined in the area surrounded by two lines, Pk1

2 + Qk2
2 = 0,
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namely:∣∣∣k2

k1

∣∣∣>

√
− P

Q
(41)

After a lengthy and similar derivation, the final result for the wave filed, as r → ∞, can be given
asymptotically by:

W(r, ˛, z, 	) =
∞∑

m=1

n2∑
n=n1

(−1)m+n+1 2


h0
3/2

√
2m

r

nω0√
−PQ

sin
(

m


h0
z
) ¯̄H(krm, −˛)

(− cos 2˛)1/4

× Jn[�(krm, −˛)] cos
[

m


h0
r
√

− cos 2˛ − nω0	 − 


4

]
(42)

4.3. P = 0

In this case, the original (3D) model degenerates to a 2D one and internal waves travel in two
2D planes. As this article is chiefly focused on the 3D situation the 2D case that has been discussed
exhaustively by previous studies is hence omitted in this text.

4.4. Demarcation of wave types

Before visualizing and examining wave structures, it is necessary to present a proper demarcation
of wave types. The most straightforward way is to estimate the sign of parameter P, as discussed
previously. On the other hand, in the previously reported 2D investigations the wave types are well
classified by analyzing the directions of internal wave rays (Fan and Singh, 2008), which, however, can
be proved insufficient for the classification of wave types in the 3D space. Actually, the 3D problem
is complicated in that internal waves may have different shapes in the horizontal plane even if the
rays keep the same angles as those in the 2D case. To properly distinguish the various wave types, the
method used by LeBlond and Mysak (1978) for analyzing the dispersion relation can be applied (see
Appendix B).

It is found that the wave types can be demarcated by three limitations of the frequency, namely,
n2ω2

0, Nc
2 and f2 (see Fig. 2 and Table 1). Specifically, the types that are generated below the critical

latitude (n2ω2
0 − f2 > 0) are (a), (d), (e) and (f), where the buoyancy frequency satisfies N2 > n2ω2

0,

Fig. 2. Illustration for the demarcation of wave types. (a)–(l) corresponds to each wave type that is depicted in Table 1.
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Table 1
Twelve kinds of typical wave types corresponding to each possibility of frequency ranges.

Wave types Ranges of buoyancy frequency

N2 > n2ω2
0 N2

c < N2 < n2ω2
0 N2 = N2

c N2 < N2
c

Ranges of latitudes

n2ω2
0 > f 2

(a) (d) (e) (f)
OP OP OEOV EW RD
EL HL HL HL PH

n2ω2
0 < f 2

(b) (g) (h) (i)
PW PW OPOV OP RD
HL EL EL EL PH

n2ω2
0 = f 2

(c) (j) (k) (l)
OHOP OHOP OHOV OHOE RD
OHL OHL OHL OHL PH

Note here RD means ray directions with respect to vertical; PH means projection in horizontal plane; OP means opposite; OEOV
means one equator-ward and the other vertical; OPOV means one poleward and the other vertical; OHOP means one horizontal
and the other poleward; OHOV means one horizontal and the other vertical; OHOE means one horizontal and the other equator-
ward; EW means both equator-ward; PW means both poleward; EL means ellipse; HL means hyperbolic lines; OHL means one
branch of hyperbolic lines.

N2
c < N2 < n2ω2

0, N2 = N2
c ; and N2 < N2

c , respectively. In the same ranges of buoyancy frequency, the
wave types (c), (j), (k), and (l) correspond to those generated at the critical latitude, where n2ω2

0 − f 2 =
0; and (b), (g), (h), and (i) to those created above the critical latitude (n2ω2

0 − f 2 < 0). Comparing (b)
and (g), one can find a common feature that the rays are both poleward in both cases. However, in the
horizontal plane the wave shapes are quite different. This prominent characteristic that arises for the
3D internal wave structures cannot be distinguished with a 2D case.

4.5. Examples for visualizations of solutions

Before commenting on the former solutions for wave fields, it should be mentioned that unlike
the complicated ring type topography discussed in Bühler and Muller (2007) we focus entirely in this
paper on a single Gaussian hump, defined by:

H2(xs, ys) = H0e−(xs/a)2/2−(ys/b)2/2 (43)

where (xs, ys) denotes the major axis of the topography. It should be stated that such a single Gaus-
sian topography is, though, simpler but is sufficient to investigate the abnormality of non-traditional
properties of internal tides.

4.5.1. (a) P > 0
As a first step, cases at the lower latitude are examined, where parameters are � = 30◦, N = 1.4 × 10−3,

ω0 = 1.4 × 10−4, n = 1, a = b = 104 m, U0 = 0, V0 = 0.01 m/s, h0 = 5000 m, and H0 = 500 m, which fall into the
effective range of a real deep ocean (St. Laurent and Garrett, 2002). For these parameters the excursion
parameter, � ∼ O(V0/aω0) = 10−2, is much less than 1. Thus, the term for n = 1, the lowest harmonic,
dominates the Bessel function in (38) (St. Laurent and Garrett, 2002; Garrett and Kunze, 2007). As a
consequence, we merely need to examine the situation for n = 1 in the ensuing discussion. Parameters,
P and Q, involved in the dispersion relation (21) are, respectively, 135.6 and 137.1, which indicates the
wave types belong to that discussed in Section 4.1.

Fig. 3. The two-dimension plots of the wave fields in the x–y plane (z = −h0/2). The common parameters in (a)–(c) are � = 30◦ ,
N = 1.4 × 10−3, ω0 = 1.4 × 10−4, �0 = 103 kg/m3, n = 1, h0 = 5000 m, and H0 = 500 m. The tidal current conditions are, in turns, U0 = 0,
V0 = 0.01 m/s (in Fig. 3a and c) and U0 = V0 = 0.01 m/s (in Fig. 3b). Lengths of the major axes of the bottom topography are
a = b = 104 m (in Fig. 3a and b) and a = 2 × 104 m and b = 0.5 × 104 m (in Fig. 3c). To facilitate the visualization, the horizontal
coordinate is normalized, hereinafter, by the total horizontal length Y = 200 km.
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Fig. 4. Contour plots of the buoyancy field in the x–z plane where y = 0 (a), and in the x–y plane where z = −h0/2 (b). Comparing
to Fig. 3(a) different parameters are: � = 74◦ , N = 0.4 × 10−4 and U0 = 0.01, V0 = 0 m/s.

Fig. 3(a) is a 2D plot in the x–y plane at half the total depth z = −h0/2, where the characteristic of
plane waves is clear. The waves of constant phase are nearly in circles, mostly attributed to the fact that
parameters P and Q for dispersion relation are approximately identical. Besides, another phenomenon
is prominent and deserves attention. The waves are intensified in the y-direction (the direction of tidal
flow). This is likely attributed to the consideration of the basic tidal flow retained in the governing
equation (1). The effect of superposition of the basic flow forces the propagation of internal waves in
the tidal direction much more than in other directions. This shows that the effect of the basic flow is
not only the reason for the occurrence of higher harmonics as proposed first by Bell (1975a) but also
enhances the wave strength in the direction of basic flow.

Besides, tidal flow in different direction is considered and wave fields are plotted in Fig. 3(b) where
the direction of tidal flow is changed by 45◦. It is seen in Fig. 3(b) that the constant wave phases that
have been strengthened by the basic tidal flow are inclined with respect to the x-direction at an angle
45◦, which is just the direction of the tidal flow. The influence of asymmetry of the bottom profile is
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Fig. 5. Contour plots of the buoyancy field in the x–z plane where y = 0 (a), and in the x–y plane where z = −h0/2 (b). Comparing
to Fig. 3(a) different parameters are: � = 75◦ , N = 4 × 10−4.

illustrated in Fig. 3(c) where the lengths of major axes of topography are changed to a = 2 × 104 m and
b = 0.5 × 104 m. The waves of constant phases are not in circles any longer, but in thick and short arcs
parallel in the x-direction, showing that the 2D characteristics of internal waves emerge due to the
increased length ratio between the major axes of topography.

4.5.2. (b) P < 0
In the above discussion, parameter P is positive and the appearance of constant phase planes

look like circles, straight lines, or ellipses. Besides these easily understood wave shapes, the wave
characteristics for P less than zero are also noteworthy and need to be examined. Fig. 4 depict inter-
nal wave generations at latitude � = 74◦, with the parameter different from Fig. 3, as N = 0.4 × 10−4

(<Nc = 1.34 × 10−4). Fig. 4(a) plots the buoyancy field in the x–z plane (y = 0), where the pair of inter-
nal wave rays appear equator-ward. This generates a hyperbolic constant phase plane, as illustrated
in Fig. 4(b). Furthermore, according to (22), values for P and Q are −338.3 and 10,789, respectively.
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Substituting into (41), one can find that slopes of degenerate lines are |tan � | = k1/k2 = (−Q/P)1/2 = 32,
which are in agreement with what has been shown in Fig. 4(b).

Another case for P < 0 is shown in Fig. 5, where the latitude � = 75◦ (>�c) and the buoyancy fre-
quency N = 4 × 10−4 (>ω0). Accordingly, the values for P and Q are −1025.3 and 455.8, respectively. In
contrast to Fig. 4(a), the directions of internal beams are utterly different, which are both poleward.
The differences between ray slopes are not great, which lead to the appearance of two branches of the
hyperbolic constant phase lines, as illustrated in Fig. 5(b). Note that the slopes of degenerate lines here
are |tan � | = 0.44, much less than those in Fig. 4(b).

5. Summary and conclusions

In this paper the model of internal tide generation over two-dimensional topographies is described,
in which the horizontal components of the earth’s rotation are retained and the effect of basic flow is
taken into consideration. Unlike previous studies focusing primarily on the tidal energy conversion, the
major objective of this paper is to provide an overall and a detailed description for the wave structures
under various parameter conditions. For this purpose, Lighthill’s method is employed to derive the
resulting wave fields. For a homogeneous ocean, the wave configurations can have, basically, three
kinds of projections on the horizontal plane: the ellipse, hyperbolic lines, and a pair of lines. This
result is easily understood from the known conformation of the dispersion relations. Besides this
fundamental understanding of the internal wave structures, more prototypes of wave structures are
identified and demarcated by scrutinizing the relationship between the cone angle of the wave number
surface and the angle formed by the axes of the cone and the earth’s Cartesian coordinates.

The various possible wave types can be classified specifically into 12 kinds by comparing the magni-
tudes of 4 frequency types: the buoyancy frequency, N, and its critical value, Nc, the wave frequencies,
nω0, and the vertical component of the earth’s rotation, f. This finding shows a remarkable contrast to
the previous 2D results, in which five kinds of modes for internal beams are identified. In a 2D theory,
the vertical structures of internal waves with N > Nc display a common characteristic that internal wave
rays are in opposite directions (or both poleward) with respect to the vertical, provided nω0 > f(nω0 < f).
However, the difference of wave patterns on the horizontal plane cannot be distinguished, unless a 3D
theory is implemented. In fact, the waves with N > nω0 show ellipses on the horizontal plane below
the critical value, whilst those with N < nω0 show arcs of hyperbolic lines, although for both N > Nc.

Finally, the effect of basic tidal flow is found to be twofold. As suggested by the previous investi-
gations, not only the internal waves of the basic tidal frequency but also the higher harmonics can be
generated if the basic tidal current is taken into consideration. On the other hand, the wave strength
gets amplified in the tidal direction as a consequence of the superimposed effect of the tidal current.
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Appendix A. Fourier representation of bottom topography in the polar coordinates

If the bottom function in the coordinates of the major axis of the topography (xs, ys) can be expressed
as:

H2(xs, ys) = H0e−(xs/a)2/2−(ys/b)2/2 (44)

where subscript s denotes the quantities in the coordinates of the major axis of the topography, then
the Fourier transform of the bottom function in the coordinate system (kr, ˇ) can be written as:

¯̄H(kr, ˇ) = H0abe−(kr
2/2)[a2(cos �(cos ˇ/

√
P)+sin �(sin ˇ/

√
Q ))

2+b2(cos �(sin ˇ
√

Q )−sin �(cos ˇ/
√

P))
2

] (45)
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where � is the angle between the coordinates (x, y) and (xs, ys), satisfying(
xs

ys

)
=
(

cos �, sin �
− sin �, cos �

)(
x
y

)
(46)

Appendix B. Explanations for the wave type demarcation

Let us go back to (18), the basic equation for the vertical movement of water whose periodic wave
solution can be assumed as:

wn = Wn · ei(k1�+k2�+k3z−nω0	) (47)

Substitution of (47) into (18) yields the dispersion relation:

(N2 − n2ω2
0)k1

2 + (N2 − n2ω2
0 + fh

2)k2
2 + 2ffhk2k3 − (n2ω2

0 − f 2)k3
2 = 0 (48)

To eliminate the cross-term, LeBlond and Mysak (1978) introduced a rotating transform, defined
as: (

k1
k2
k3

)
=
(

1 0 0
0 cos � − sin �
0 sin � cos �

)(
K1
K2
K3

)
(49)

where the angle of rotation � about the �-axis is given as:

tan 2� = 2ffh

N2 − f 2 + fh
2

= sin 2�

N2/4˝2 + cos 2�
(50)

Applying (49), the dispersion relation (48) takes on a more concise and symmetric form:

(N2 − n2ω2
0)K2

1 + (ωa
2 − n2ω2

0)K2
2 + (ω2

b − n2ω2
0)K2

3 = 0 (51)

where

ω2
a = f (f + fh cot �) = Q2,

ω2
b

= f (f − fh tan �) = Q1
(52)

Note Q1 and Q2 are two roots of Q [see (23)]. With the assumption of 0 < � < 
/2 it may be shown that
ωa and ωb are the upper and lower limits for wave frequencies, namely, w2

a > (N2, n2ω2
0, f 2) > ω2

b
.

The emphasis of this study is aimed at an exact elucidation of the relation between cone angles �w

(the angle between the wave number cone and axis k2 in the y–z plane) and �g (the angle between the
group-velocity cone and axis k2 in the y–z plane) and the tilt angle �, which is found to be the most
efficient method for the demarcation of wave types. From (51), one can readily find that for N2 > n2ω0

2

the cone angle of the wave number cone, �w, is

tan2 �w = n2ω2
0 − ω2

b

ω2
a − n2ω2

0

(53)

The group-velocity cone is centered on the k3-axis as well and is perpendicular to the wave number
cone. Thus, the cone angle of the group-velocity cone, �g, satisfies �g = 90◦ − �w, or

tan2 �g = cot2 �w = ω2
a − n2ω2

0

n2ω2
0 − ω2

b

(54)

Substituting (52) into (53) yields

tan2 �w = tan2 �
ffh + (n2ω2

0 − f 2) cot �

ffh − (n2ω2
0 − f 2) tan �

(55)

Similarly, (54) can be rewritten as:

tan2 �g = tan2 �
n2ω2

0 − f 2 + (N2 − n2ω2
0 + f 2

h
) cot2 �

n2ω2
0 − f 2 + (N2 − n2ω0

2 + f 2
h

) tan2 �
(56)
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From (55), it is clear that{
�w = 90◦ − �g ≥ �, if n2ω0

2 − f 2 ≥ 0;
�w = 90◦ − �g < �, if n2ω0

2 − f 2 < 0
(57)

Furthermore, it is not difficult to prove from (56) that if N2 /= N2
l

there satisfies{
�g ≥ �, if N2 ≥ N2

c ;
�g < �, if N2 < N2

c
(58)

where N2
c = n2ω2

0 − f 2
h

and N2
l

= f 2 − f 2
h

. Particularly, if N2 = N2
l

, one can recognize from (50) that
� = 45◦ and (56) is thus inapplicable. In this regard, the appropriate result for �g can be found by
substituting � = 45◦ into (52) and (54), which hence leads to

tan2 �g = ffh − (n2ω2
0 − f 2)

ffh + (n2ω2
0 − f 2)

(59)

(59) clearly shows that{
�g > � = 45◦, if n2ω2

0 − f 2 < 0;
�g < � = 45◦, if n2ω2

0 − f 2 > 0
(60)

In general, the wave patterns formed in various ray angles can be deduced from the above rela-
tionship between �g and �. For example, let us consider the case of N2 > n2ω2

0 and n2ω2
0 − f 2 > 0.

This leads directly to 90◦ –�g > �, as indicated clearly from (57). Moreover, (58) states that �g > �
as N2 > n2ω2

0 > N2
c . This therefore shows that in the original earth’s Cartesian (y, z) plane the rays

emanate in opposite directions with respect to the vertical direction. The wave pattern that is projected
on the horizontal plane is as ellipsoidal.
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