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Particle velocity distribution in a blowing sand cloud is a reflection of saltation movement of many particles.
Numerical analysis is performed for particle velocity distribution with a discrete particle model. The
probability distributions of resultant particle velocity in the impact–entrainment process, particle horizontal
and vertical velocities at different heights and the vertical velocity of ascending particles are analyzed. The
probability distributions of resultant impact and lift-off velocities of saltating particles can be expressed by a
log-normal function, and that of impact angle comply with an exponential function. The probability dis-
tribution of particle horizontal and vertical velocities at different heights shows a typical single-peak pattern.
In the lower part of saltation layer, the particle horizontal velocity distribution is positively skewed. Further
analysis shows that the probability density function of the vertical velocity of ascending particles is similar to
the right-hand part of a normal distribution function, and a general equation is acquired for the probability
density function of non-dimensional vertical velocity of ascending particles which is independent of
diameter of saltating particles, wind strength and height. These distributions in the present numerical
analysis are consistent with reported experimental results. The present investigation is important for
understanding the saltation state in wind-blown sand movement.
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1. Introduction

Sand transport bywind is a type ofmovement ofmany sand grains.
The movement of particles in blowing sand transport is classified to
three processes (creep, saltation and suspension), of which saltation,
in which sand grains are propelled by wind along the surface in short
hops, is the dominant mode of blown sand movement, accounting for
about 75% of the total sand flux (Bagnold, 1941). Sand movement in
saltation cloud is very complex and related to many impact factors
such as wind velocity and inter-particle collisions in air. Hence, the
particle velocity in a blowing sand cloud at a fixed height is not a
constant and can show a particular probability distribution pattern.
The particle velocity distributions in a blowing sand cloud are im-
portant to understand this saltation movement state.

In the last two decades some numerical models of aeolian sand
transport have been developed and generally subdivided into several
different sub-processes, such as aerodynamic entrainment, grain tra-
jectories, grain-bed impacts, and wind field modification (Ungar and
Haff, 1987; Anderson and Haff, 1988; Anderson and Haff, 1991;
McEwan and Willetts, 1991, 1993; Spies et al., 2000; Spies and
McEwan, 2000). By linking these sub-processes, a negative feedback
mechanism is established to form a saltating equilibrium state. In
these numerical models, the grain-bed collision is generally treated
by an empirical way; the splash function (Ungar and Haff, 1987;
Anderson and Haff, 1988, 1991) or a set of the experimental data
(McEwan and Willetts, 1991, 1993) is used to specify the initial or
launch velocity distribution of saltating grains, which further affects
the simulated saltation path heights and lengths. The initial lift-off
velocity distribution of saltating grains is an important input para-
meter in these numerical models.

The lift-off velocity distribution of saltating grains is also a bridge
to link the micro- and macro-scale research, and the particle velocity
distribution in air is a reflection of saltation movement of many sand
grains. Therefore, it is important to accurately describe the lift-off
velocity distribution of saltating grains and the particle velocity dis-
tribution in air, which are helpful to estimate the statistical para-
meters of saltating grains.

By theoretical model, wind tunnel and field experiments, many
efforts have been made to acquire the parameters about particle
velocity distribution, such as the horizontal and vertical velocity dis-
tributions and the impact and lift-off velocity distributions (e.g.
Willetts and Rice, 1986; Anderson and Haff, 1991; Nalpanis et al.,
1993; Greeley et al., 1996; Zou et al., 2001; Dong et al., 2002; Namikas,
2003; Dong et al., 2004; Huang et al., 2006; Cheng et al., 2006).

Anderson and Haff (1988, 1991) used a Gaussian distribution for
the rebound velocity of particles and an exponential function for the

mailto:klq@sohu.com
mailto:kangliqiang@bnu.edu.cn
http://dx.doi.org/10.1016/j.geomorph.2009.10.001
http://www.sciencedirect.com/science/journal/0169555X


157L. Kang, D. Liu / Geomorphology 115 (2010) 156–171
ejected velocity. Sørensen (1991) used a normal function to describe
the distribution of the sand horizontal ejection velocity. Anderson and
Hallet (1986) and Raupach (1991) described the initial vertical velo-
city by an exponential distribution. Namikas (2003) introduced the
gamma and exponential launch velocity distributions into a numerical
model.

In the experiments of Nalpanis et al. (1993), the probability
distributions of ejection velocity and the ejection angle of sand grains
are similar to the log-normal distribution. Greeley et al. (1996) mea-
sured the sand speed in a field by analysis of high-speed motion
pictures of saltating grains; the results show that the velocity dis-
tributions of ascending and descending grains have a single peak, but
the distribution pattern is not given. The wind tunnel experiment of
Zou et al. (2001) gave the probability distribution of particle velocity
at different heights as a Pearson VII distribution pattern.

Dong et al. (2002, 2004) first used the particle dynamic analyzer
(PDA), which is a non-intrusive measurement using Doppler tech-
nique, to measure the blowing sand velocity in a wind tunnel. Dong
et al. (2002) gave that the velocity distribution of impacting and
entrained particles as described by a Weibull function, but the pro-
bability distribution of impacting and lift-off angles is complex and
cannot be expressed by a simple function. Dong et al. (2004) found
the probability distribution of the downwind sand velocity complies
with a Gaussian function, while that of vertical velocity is a Lorentzian
function for fine particles and complex for coarse particles.

Cheng et al. (2006) combined theoretical analyses with wind
tunnel experiment data to describe the lift-off parameters of saltating
grains. In their results the lift-off angles follow a LogNorm4 distri-
bution function, whereas the horizontal, vertical, and resultant lift-off
velocities follow a Gamma distribution function.

Zhang et al. (2007) used a high-speed digital camera to record the
saltating trajectories in a wind tunnel. In their results, the probability
distributions of resultant ejection velocity, ejection angle, horizontal
and vertical ejection velocities show a single peak; the probability
distributions of resultant impact velocity, impact angle and horizontal
impact velocity also show a single peak, and the distribution of ver-
tical impact velocity shows two sharp peaks for the smaller beach
sand and the desert sand.

From the above investigations, it can be seen that the particle
velocity distributions have many types of distribution patterns be-
cause of the complexity of the problem. It is necessary for us to
correctly predict the particle velocity distributions on the bed surface
and at different heights. Hence, further studies are needed.

Kang et al. (2008a,b,c) reported the particle velocity distributions
from wind tunnel experiments. In this paper, further studies of par-
ticle velocity distributions are focused on the numerical analysis. The
discrete particle simulation of aeolian sand transport was carried out
by Kang and Guo (2006) to analyze the macro-scale parameters, such
as the sand velocity profile, sand mass flux and wind velocity profile.
In this paper, the discrete particle model of aeolian sand transport is
applied to predict directly the particle velocity distributions (includ-
ing resultant impact and lift-off velocities, particle horizontal and
vertical velocities at different heights and the vertical velocity of
ascending particles). Then, themathematicalmodel for sand transport
by wind is described, the numerical method and simulated conditions
are given, the simulated results and discussions are considered, and
further analysis for vertical velocity distribution of ascending particles
is discussed.

2. Mathematical model

The discrete particle model is applied to describe sand transport
by wind. The model can give detailed information of particle mo-
tion in space at the individual particle level. Therefore, the particle
velocity distributions can be directly deduced from the simulation
results.
2.1. Equations of gas phase

Considering the Magnus force, the continuity and momentum
equations of gas can be described as (based on the model of Kang and
Guo, 2006):

∂
∂t ðαf ρf Þ + ∇⋅ðαf ρf uf Þ = 0 ð1Þ

∂
∂t ðαf ρf uf Þ + ∇⋅ðαf ρf uf uf Þ =
−αf∇p + ∇⋅ðαf τf Þ + αfρf g−fdrag−fMag

ð2Þ

where ρf, uf and p are the fluid density, velocity and pressure,
respectively; g is acceleration due to gravity; τf is the fluid shear
stress; αf is the volume fraction of fluid; fdrag is the volumetric fluid–
particle interaction force; and fMag is the volumetric Magnus force.

τf, αf, fdrag and fMag are expressed as follows:

τf = −2
3
ðμeff∇⋅uf Þδk + μeff ½∇uf + ð∇uf ÞT � ð3Þ

αf = 1−∑
n

i=1
Vpi =ΔV ð4Þ

fdrag =
1
ΔV

∑
n

i=1
Fdrag;i ð5Þ

fMag =
1
ΔV

∑
n

i=1
FMag;i ð6Þ

where μ eff is the fluid effective viscosity; δk is the Kronecker delta; ΔV
and Vpi are the volume of a computational cell and the volume of
particle i inside this cell, respectively; and n is the number of particles
in the cell. For the two-dimensional flow, ΔV=ΔxΔydp, Δx and Δy are
the lengths of a computational cell in x and y directions, respectively,
and dp is the particle diameter.

Fdrag is the fluid drag force on a particle, which can be described as
(Di Felice, 1994):

Fdrag =
Cd0

8
πd2pρfα

2
f juf−up j ðuf−upÞα−χ

f ð7Þ

where χ=3.7−0.65exp[−(1.5− logRep)2/2]; up is the translational
velocity of particle; and Cd0 and Rep are the fluid drag coefficient and
particle Reynolds number, respectively:

Cd0 = 0:63 +
4:8
Re0:5p

 !2

ð8Þ

Rep =
αf ρf dp juf−up j

μ f
ð9Þ

FMag is the Magnus force on a particle. The Magnus force is the lift
force due to rotation of the particle. Rubinow and Keller (1961) derived
the Magnus force for Reynolds numbers of the order of unity. Including
the flow rotation effects, the Magnus force can be expressed as (Crowe
et al., 1998):

FMag =
π
8
d3pρf

1
2
∇ × uf−ωp

� �
× ðuf−upÞ

� �
ð10Þ

where 1
2∇ × uf is the angular velocity of the local fluid rotation andωp

is the angular velocity of particle.
In this paper, the fluid turbulence is treated with standard k−ε

turbulent model, k is the turbulence kinetic energy and ε is the



Fig. 1. The structure of neighbor list. (The white particles are stored in the neighbor list
of the black particle).
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dissipation rate of k. The transport equations of standard k−ε tur-
bulent model can be expressed as:

∂
∂t ðαfρf kÞ + ∇⋅ðαfρf uf kÞ = ∇⋅ αf μ f +

μ ft

σk

� �
∇k

� �
+ αf G−αf ρf ε

ð11Þ

∂
∂t ðαf ρf εÞ + ∇⋅ðαf ρf uf εÞ = ∇⋅ αf μ f +

μ ft

σε

� �
∇ε

� �
+ αf

ε
k
ðc1G−c2ρf εÞ

ð12Þ

where μf and μft are the fluid dynamic viscosity and turbulent
viscosity, respectively. μeff=μf+μft, μft=cμρfk2/ε, G=μft∇uf·[∇uf+
(∇uf)T]. c1, c2 and cμ are constants; c1=1.44, c2=1.92 and cμ=0.09.
σk and σε are the turbulent Prandtl numbers for k and ε, respectively,
σk=1.0 and σε=1.3.

2.2. Equations of particle motion

The equations of particle translational and rotational motion are
expressed by:

mp
dup

dt
= mpg + Fdrag + FMag + ∑

nc

j=1
ð fn;ij + ft;ijÞ ð13Þ

Ip
dωp

dt
= ∑

nc

j=1
Tij + Tf ð14Þ

where mp, up and ωp are the mass, translational and angular velocity
of particle i, respectively; fn,ij and ft,ij are the normal and tangential
forces between particle i and j due to particle collision, respectively;
nc is the number of the particles in contact with particle i; Tij is the
torque between particle i and j due to particle collision; and Ip is the
moment of inertia of particle, Ip = 1

10mpd
2
p .

Tf is the flow torque acting on the particle in a fluid due to the shear
stress distribution on the particle surface. For a low Reynolds number
flow, the torque Tf on a spherical particle can be expressed as (Happel
and Brenner, 1973):

Tf = πμf d
3
p

1
2
∇ × uf−ωp

� �
ð15Þ

2.3. Inter-particle collision model

The soft sphere model is used to describe inter-particle collisions.
The soft spheremodel can treat themultiple particle contacts and give
the information about the transfer of inter-particle forces (Xu and Yu,
1997; Mikami et al., 1998; Crowe et al., 1998).

The inter-particle forces canbedescribed by a linear spring-damping
model as follows (Crowe et al., 1998):

fn;ij = −ksδn−ηvn;ij ð16Þ

ft;ij =
−ksδt−ηvt;ij; j ft;ij j≤μs j fn;ij j
−μs j fn;ij jt; j ft;ij j > μs j fn;ij j

�
ð17Þ

where ks and η are the stiffness and damping coefficient, respectively;
μs is friction coefficient; δ is displacement vector between two
contacting particles; v is the relative velocity vector between two con-
tacting particles, vn,ij=(vij·n)n, vt,ij=vij−vn,ij, vij=vi−vj+ωi×Ri−
ωj×Rj, R is a vector from themass center of particle to the contact point.
n is theunit vector from the center of particle i to that of particle j,n=Ri/
|Ri| and t is the unit tangential vector, t=vt,ij/ |vt,ij|.
3. Numerical method and simulated conditions

The equations of gas phase are solved by the conventional SIMPLEC
(Semi-Implicit Method for Pressure-Linked Equations — Consistent)
method. The finite volume method is applied to discretize the gas
equations on a non-staggered rectangular grid. The second-order cen-
tral difference scheme is used for the diffusion terms. The QUICK
(Quadratic Upwind Interpolation of Convective Kinematics) scheme is
used for the convective term of the momentum equation.

The motion equations of discrete particles are solved by the ex-
plicit time integration method.

In order to reduce the CPU time, for each particle the neighbor list
is used to store all of neighbors and a check for possible collisions is
performed only for the particles in this list. Fig. 1 shows the structure
of the neighbor list. Using a grid method, each particle control volume
(PCV) is defined. In Fig. 1, for the two-dimensional simulation, the
neighbor list of the black particle includes all the other particles
within the black particle PCV and its adjacent eight PCVs, hence, the
collision search for this black particle is only limited to the black
particle PCV and its eight neighbor PCVs. In order to avoid the re-
peated collision search, each particle is numbered, for the particle i
only the neighbor particle j (j> i)) in the neighbor list of particle i is
checked for collision search.

The three-dimensional simulation is better than the two-dimen-
sional simulation, but the two-dimensional simulation can also reveal
the characteristics of particle motion qualitatively. Moreover, the
three-dimensional simulation needs more computational conditions.
Hence, in this paper, the two-dimensional simulation is done for the
particle velocity distribution.

The computational domain is a two-dimensional rectangular region.
The structure of computational domain is shown in Fig. 2.

A periodic boundary condition is used for inlet and outlet. For
particles,whenparticles leave the computational domain fromtheoutlet,
they will enter the computational domain via the inlet; when particles
leave the computational domain from the inlet, they will enter the
computational domain from the outlet. For air, at the end of each time
step, the gas velocityuf, the turbulence kinetic energyk and its dissipation
rate ε at the outlet are given to the corresponding grid cell of the inlet.

The inlet initial velocity of the air is a logarithmical function
u = u⁎

κ ln y
y0

� �
, where κ is von Karman's constant, κ=0.4, y0 is the

roughness length, u⁎ is the friction velocity. In the initial state, the
inlet turbulent intensity of the air is 3.7%.

On the top boundary, the constant shear stress is set for the gas, the
reflective boundary condition is used for particles. Hence, at the steady
state, thewind velocity is mainly driven by the constant shear stress of



Fig. 2. The structure of computational domain.

Fig. 3. The state of sand bed for Case 1.
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air on the top boundary and is independent of the inlet initial velocity
of air.

On the wall boundary, the particle–wall collision is modeled in the
same manner as particle–particle collision, and the wall is considered
as one particle with infinitely large mass, infinitely large diameter and
zero velocity vector. For gas, the no-slip condition is used on the wall
boundary.

According to the results of Anderson and Haff (1988, 1991), the
grains due to aerodynamic entrainment can become rare at steady
state. Hence, in this paper, the aerodynamic entrainment is neglected,
and it is assumed that grain impact is the main mode to generate
many new saltation particles at steady state. Grains impacting the
sand bed are used to initiate the motion of sand particles on bed
surface. Near the bed surface, the motion of particles is determined
by inter-particle collisions, no other artificial treatment is applied.
In the present simulations, the bottom boundary of the computational
domain is the wall boundary and below the sand bed surface. The
simulated results are focused on the steady state.

The density of gas is 1.2 kg/m3, and the dynamic viscosity is
1.785×10−5Pas. The particle diameter is 0.33 mm and particle den-
sity is 2650 kg/m3.

The particle diameter of 0.33 mm is bigger in order to get larger
time step for computational efficiency, so the gas shear stress on the
top boundary is chosen as 14.7 Pa to drive more particles into the air.

The number of particles is 8030. If the number of particles is in-
sufficient, the statistical number of particles is not enough to achieve a
better probability distribution. If the number of particles is more than
sufficient, the computational time will be large. Hence, 8030 particles
were selected as an optimum. The sand bed at the initial state and
steady state for Case 1 is shown in Fig. 3. In the initial state, the sand
bed on the bottom boundary includes 8000 particles, and 30 particles
above the sand bed are used to impact the bed. From Fig. 3, the height
of the initial sand bed is about 5 mm. At the steady state, for Case 1, the
sand bed still exists and includes about 7 particle layers, and the height
of the sand bed surface is about 2.5 mm.

The friction coefficient is 0.4, stiffness coefficient is 1500 N/m, and
damping coefficient is 0.002.

Haff and Anderson (1993) noted that the precise value of friction
coefficient has little overall effect on the impact event when the
friction coefficient is between 0.25 and 2.0. However, the precise value
of friction coefficient is also unclear for natural sand particles. In the
present simulations, the friction coefficient is chosen as 0.4.

Haff and Anderson (1993) also reported that the bed response is
insensitive to stiffness ranging from 125 to 8000 N/m. Yuu et al. (1995)
studied the particle behavior in a rectangular hopper and found that the
value of stiffness had little effect on the particle behavior. Generally, the
typical stiffness in the calculations is the order of 1000 N/m. Another
reason is that the particle is softer artificially in order to increase the
time step for computational efficiency. In the present simulations, the
stiffness coefficient is chosen as 1500 N/m.
The choice of damping coefficient is to obtain the expected
restitution coefficient. For the linear spring-damping model, the
restitution coefficient is (e.g., Kuo et al., 2002):

e = exp
−ηπ

4mpks−η2

 !
ð18Þ

where e is the restitution coefficient; ks and η are the stiffness and
damping coefficient, respectively; and mp is the mass of particle.

Haff and Anderson (1993) adopted the restitution coefficient of
0.7. In the present simulations, the restitution coefficient is also
chosen as 0.7. From Eq. (18), the damping coefficient can be computed
as 0.002.

Tsuji et al. (1993) recommended that the time step for particle
should be less than one-tenth of the natural oscillation period of a
spring–mass system. For the linear spring system, there is:

Δtp <
π
5

ffiffiffiffiffiffiffi
mp

ks

s
ð19Þ

where Δtp is the time step for particles.
From Eq. (19), the bigger particle diameter and the smaller

stiffness can increase the time step for particle and improve the
computational efficiency. Under the condition of Eq. (19), the time
step for particle is chosen as 2.0×10−6s. The computational time step
for the fluid is chosen as 2.0×10−5s. That is to say, there are 10
integration steps for particle trajectory in every time step for fluid
motion.

Three cases are simulated as follows:

(1) Case1: The computational domain is a two-dimensional rectan-
gular region 0.35 m high and 0.15 m wide. No Magnus force is
included.



Fig. 4. Result of the comparison of two meshes for Case 1.

Fig. 5. The physical parameters of a saltating trajectory.
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(2) Case2: The wall at the bottom is a rough wall, i.e., the particle
adjacent to the bottom wall is stationary. The other conditions
are the same as that of Case 1.

(3) Case3: The Magnus force is considered. The height of com-
putational domain is 0.5 m. The other conditions are the same
as that of Case 1.

4. Results and discussions

We mainly focused on the probability distribution pattern rather
than the actual magnitude of particle velocity. In the following, the
simulated results are only used to explain the probability distribution
pattern.

4.1. Grid independence test

For Case 1, two grid sizes are considered: 75×100 and 100×150,
the numbers of grid cell are 7500 and 15,000, respectively.

Fig. 4 shows the comparison of the twomeshes for Case 1. In Fig. 4,
uf and up are the horizontal velocities of the fluid and particles,
respectively. It can be seen that the profiles of horizontal velocities of
fluid and particles are the same for grid sizes 75×100 and 100×150.
The variation of sandmass fluxwith height is also similar for grid sizes
75×100 and 100×150. Therefore, the simulated results of grid size
75×100 can be used to analyze the particle velocity distributions.

In the present simulation, for Case 2, the grid size is 75×100. For
Case 3, the grid size is 75×125 since the height of computational
domain is higher.

4.2. Probability distribution of resultant impact and lift-off velocities of
saltating particles

In the impact–entrainment process above sand bed surface, if the
vertical velocity of a particle is upward, the particle will be ascending
and is considered as the lift-off particle, otherwise it is the impacting
particle. The physical parameters of a saltating trajectory are de-
fined in Fig. 5. In Fig. 5, uI and uL are the resultant impact and lift-off
velocities of saltating grains, respectively, αI and αL are the impact
and lift-off angles, respectively.

In the simulated results, the particles within 1 mm height above
sand bed surface are used to calculate the resultant impact and lift-off
velocity distributions.

Figs. 6 and 7 show the simulated probability density distribution of
resultant impact and lift-off velocities of the saltating grains, respec-
tively. In Figs. 6 and 7, R2 is the correlation coefficient. It can be seen
that the probability distribution can be expressed by a log-normal
function. The following equation is used for this log-normal function:

PðuÞ = 1ffiffiffiffiffiffi
2π

p
Au

exp
−ðlnu− lnBÞ2

2A2

 !
ð20Þ

where P(u) is the probability density, u means the resultant impact
velocity or resultant lift-off velocity of the saltating grains. A and B are
the regression coefficients.

From Figs. 6 and 7, we also see that the simulated probability density
distribution is nearly same for Case 1, Case 2 and Case 3. Thismeans that
the bottomboundary condition and theMagnus force have no influence
on the simulated probability distribution.

The quantitative comparison between the simulated results and
the published experiments is difficult, so a qualitative comparison is
shown in Fig. 8. In Fig. 8, the uf0 is the free-streamwind velocity in the
wind tunnel experiments of Kang et al. (2008b,c). The non-
dimensional resultant impact velocity of particles is defined by the
ratio of resultant impact velocity to its average. The non-dimensional
resultant lift-off velocity of particles is defined by the ratio of resultant
lift-off velocity to its average. It can be seen from Fig. 8 that the
simulated probability density distributions of the non-dimensional
resultant impact and lift-off velocities of particles are accordant with



Fig. 7. Simulated distribution of resultant lift-off velocity.Fig. 6. Simulated distribution of resultant impact velocity.
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the experimental results. In the wind tunnel experiments, Kang et al.
(2008b) gave the resultant lift-off velocity of the saltating grains as
following a log-normal distribution, and Kang et al. (2008c) suggested
that the probability distribution of both resultant impact and lift-off
velocities can be described by a log-normal function. The present
simulated results are qualitatively consistent with these experimental
results.

4.3. Probability distribution of impact and lift-off angles of saltating
particles

Figs. 9 and 10 denote the simulated probability distribution
of impact and lift-off angles of saltating grains, respectively. The
probability density distribution of impact angle can be described as
an exponential distribution. The exponential function is expressed
as:

PðαIÞ =
1
A
exp −αI

A

� �
ð21Þ

where P(αI) is the probability density, αI is the impact angle of the
saltating grains. A is the regression coefficient.

The probability density distribution of lift-off angle of the saltating
grains seems to deviate from the exponential distribution at the lift-
off angle of less than 10°. Near the bed surface, the motion of particles
is determined by inter-particle collisions; no other artificial treatment
is applied. In the present simulations, the bottom boundary of the
computational domain is the wall boundary and below the sand bed



Fig. 8. Qualitative comparison of the simulated and experimental distributions for
resultant impact and lift-off velocities.

Fig. 9. Simulated distribution of impact angle.
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surface. This deviation may, therefore, be related to this treatment
near the bed surface. Further improvement is needed.

In their experiments, Kang et al. (2008b) described the distribution
of lift-off angle as an exponential distribution, and Kang et al. (2008c)
reported that the probability distribution of both impact and lift-off
angles can be described by an exponential function. Fig. 11 shows the
qualitative comparison of the simulated and experimental probability
density distributions for the non-dimensional impact and lift-off angles.
In Fig. 11, the non-dimensional impact angle of saltating particles is
defined by the ratio of the impact angle to its average. The non-
dimensional lift-off angle is defined by the ratio of the lift-off angle to its
average. It can be seen fromFig. 11 that the simulated and experimental
probability density distribution of the non-dimensional impact angle is
consistent and follows an exponential distribution. The simulated
probability density distribution of the non-dimensional lift-off angle
falls into the region of the experimental data, but deviates from the
exponential distribution. Therefore, the present simulation needs to be
improved for the distribution of lift-off angle near the sand bed surface.

4.4. Probability distribution of horizontal and vertical velocities of
saltating particles

In the following, the probability distributions of particle horizontal
and vertical velocities are analyzed at different heights. Three selected
heights are in the different part of the saltation layer, i.e., 4 mm,
20 mm and 80 mm.

Theparticle population is dense near the sandbed surface and sparse
at higher heights. The 4 mm height is selected for the dense particle
region near the sand bed surface, and at the lower height, the particle
collisions are stronger. In thepresent simulation, thenumberof particles
above the 80 mm height is not enough to get a better probability
distribution, so the 80 mm height is selected for the sparse particle
region. The 20 mmheight is selected for themiddle region between the
4 mmand80 mmheights, and is close to the4 mmheight in order to get
a more statistically significant number of particles.

Fig. 12 is the simulated distribution of particle horizontal velocity
at different heights. In Fig. 12, z is defined as the height above the
sand bed surface, not the y-coordinate of the computational region. It
can be seen that the shapes of these histograms have a typical peak.

At a height of 4 mm in the lower part of the saltation layer, the
probability distributions of the particle horizontal velocity are posi-
tively skewed. These horizontal velocity distributions are similar to
the distributions of grain horizontal velocity at 5 mm height reported



Fig. 10. Simulated distribution of lift-off angle.

Fig. 11. Qualitative comparison of the simulated and experimental distributions for
impact and lift-off angles.
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by Rasmussen and Sørensen (2005). The reason is explained by
Rasmussen and Sørensen (2005) as “during the splash maybe only a
single grain may receive a large part of the forward momentum of the
impinging grain while several grains will receive some momentum
and thus make low, short jumps”.

At themiddle and upper heights (20 mmand 80 mm), the skewness
of particle horizontal velocity distributions seems to be relative small.

Fig. 13 denotes the qualitative comparison of the simulated and
experimental probability density distributions for non-dimensional
particle horizontal velocity. The non-dimensional particle horizontal
velocity is defined as the ratio of the particle horizontal velocity to its
average. In Fig. 13, u⁎ is the friction velocity in the experiments of
Rasmussen and Sørensen (2005).
In the experiments of Kang et al. (2008c), the distributions of
particle horizontal velocity show a typical single-peak pattern, and at
4 mm height, the probability distributions of the particle horizontal
velocity are asymmetrical and show a positive skewness. It can be
seen from Fig. 13 that at the 20 mm and 80 mm heights the present
simulated probability density distributions of the non-dimensional
particle horizontal velocity accord with the experimental results of
Kang et al. (2008c), while at the 4 mm height, only the positive-skew
shape of probability density distributions of the non-dimensional
particle horizontal velocity is similar between the simulated and
experimental results. It is also seen from Fig. 13 that the present
simulated probability density distributions of the non-dimensional
particle horizontal velocity are qualitatively similar to the experi-
mental results of Rasmussen and Sørensen (2005).

Fig. 14 denotes the simulated distribution of particle vertical
velocity at different heights. The particle vertical velocity basically
ranges from −2.0 to 2.0 m/s. The probability distribution of particle
vertical velocity has a typical peak.

Fig. 15 shows the qualitative comparison of the simulated and
experimental probability density distributions for non-dimensional
particle vertical velocity. The non-dimensional particle vertical
velocity is defined as the ratio of the particle vertical velocity to the
averaged particle horizontal velocity.

In the experiments of Kang et al. (2008c), the probability dis-
tribution of particle vertical velocity at different heights can be
described as a normal function. While from Fig. 15, the simulated
probability density distributions of non-dimensional particle vertical
velocity at 4 mm and 20 mm heights slightly deviate from the normal
function. At 80 mm height, the simulated distribution of particle
vertical velocity can be expressed by a normal distribution function.



Fig. 12. Simulated distribution of particle horizontal velocity.
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Fig. 13. Qualitative comparison of the simulated and experimental distributions for
particle horizontal velocity.
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Therefore, the present model should be improved at the lower region
of the saltation layer.

It also can be seen from Figs. 6, 7, 9, 10, 12 and 14 that the simulated
probability density distribution is similar for Case 1, Case 2 and Case 3,
hence, the bottom boundary condition and the Magnus force have no
obvious effect on the simulated probability density distributions of
resultant impact and lift-off velocities, impact and lift-off angles, and the
horizontal and vertical velocities of saltating particles. TheMagnus force
can affect the trajectory of one individual particle, generally increase the
saltation height of one clockwise rotational particle and decrease the
saltation height of one anti-clockwise rotational particle. In the present
simulation, it is found that the number of anti-clockwise rotational
particles approximates to that of the clockwise rotational particles.
Therefore, from a statistical view for many particles, the Magnus force
has no obvious effect on these probability density distributions.

5. Further analysis for vertical velocity distribution of ascending
particles

5.1. Vertical velocity distribution of ascending particles on bed surface

It is assumed that:

(1) Each particle is identical with the same mass.
(2) Particle motion is in the equilibrium saltation state.
(3) The vertical component of drag force on the saltating particle is

neglected.
(4) The particle collisions in air are neglected.

For the identical particles with identical ejected vertical velocity
above the bed surface, as assumed in the saltation model of Owen
(1964) and Ungar and Haff (1987), the upward vertical mass flux of
particles is conservative in the height direction.

Hence, the upward vertical mass flux of saltation particles at
height z can be expressed as:

qvðzÞ = m∫+∞ffiffiffiffiffiffi
2gz

p n0 f ðv0Þv0dv0 ð22Þ

where qv(z) is the vertical mass flux of ascending particles at the
height z; m is the mass of a particle; g is gravitational acceleration; n0
is the number density of ascending particles on bed surface; v0 is the
vertical velocity of ascending particles on bed surface, v0>0; and f(v0)
is the probability density function of vertical velocity of ascending
particles on bed surface.

The above Eq. (22) can be rewritten as:

qvðzðv0ÞÞ = qvðv0Þ = m∫+∞
v0

n0f ðv1Þv1dv1 ð23Þ

where z is the function of v0, z=v0
2/2g.

According to Eq. (22), the upward vertical mass flux at bed surface
(z=0) is:

qv;0 = qvð0Þ = m∫+∞
0 n0 f ðv0Þv0dv0 ð24Þ

In order to calculate the density function f(v0), the profile of qv(z)
is needed. The experimental measurement of qv(z) is very difficult, so
the present simulated result is used for analysis. Fig. 16 shows the
present simulated profile of vertical mass flux of ascending particles
for Case 3. In Fig. 16, the fitted curve is done for z>0.02 m. The
simulated data fit better for an exponential function above 0.02 m
height, but below 0.02 m height the simulated vertical flux is higher
than the vertical flux predicted by the fitted curve.

According to the simulated result (Fig. 16), in this paper, it is
assumed that in the whole height region the vertical change of qv(z)
decays exponentially with height, as expressed by:

qvðzÞ
qv;0

= exp −a
z
dp

 !
ð25Þ

where a is a constant, a>0, dp is particle diameter.
Insert Eqs. (22) and (23) into Eq. (25), then:

m∫+∞ffiffiffiffiffiffi
2gz

p n0 f ðv0Þv0dv0
qv;0

= expð−az = dpÞ ð26Þ

m∫+∞
v0

n0 f ðv1Þv1dv1
qv;0

= exp −a
v20

2gdp

 !
ð27Þ



Fig. 14. Simulated distribution of particle vertical velocity.
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Fig. 14 (continued).

Fig. 15. Qualitative comparison of the simulated and experimental distributions for
particle vertical velocity.
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The derivative of Eq. (27) at v0 is:

−mn0f ðv0Þv0
qv;0

= − av0
gdp

exp −a
v20

2gdp

 !
ð28Þ

Then we get:

f ðv0Þ =
aqv;0

mn0gdp
exp −a

v20
2gdp

 !
ð29Þ

Since ∫+∞
0 f ðv0Þdv0 = 1, then:

a =
2gdp
π

mn0

qv;0

 !2

ð30Þ

The Eq. (29) can be rewritten as:

f ðv0Þ =
2mn0

πqv;0
exp −m2n2

0

πq2v;0
v20

 !
ð31Þ

Here, we set:

B =
1
π

mn0

qv;0

 !2

ð32Þ

Therefore, the probability density function of vertical velocity of
ascending particles from the bed surface can be expressed as:

f ðv0Þ =
2
ffiffiffi
B

p
ffiffiffi
π

p expð−Bv20Þ ð33Þ

where B is a coefficient, B>0. v0>0.
From Eq. (24), we can get qv;0 = mn0v0

―, where v0
― is the mean

vertical velocity of ascending particles on bed surface. Hence, the
Eq. (33) can be rewritten as:

f ðv0Þ =
2

πv0
―
exp − v20

πv0
―2

 !
ð34Þ

5.2. Vertical velocity distribution of ascending particles at different
heights

In the following, the probability density function of vertical
velocity of ascending particles at height z1 is deduced.
The upward vertical mass flux of saltating particles at height z can
be expressed as:

qvðzÞ = m∫+∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðz−z1Þ

p nz1f ðvz1Þvz1dvz1 ð35Þ

where z>z1. nz1 is the number density of ascending particles at height
z1; vz1 is the vertical velocity of ascending particles at height z1,
vz1>0; and f(vz1) is the probability density function of vertical
velocity of ascending particles at height z1.

The above Eq. (35) can be rewritten as:

qvðzðvz1ÞÞ = qvðvz1Þ = m∫+∞
vz1

nz1f ðv1Þv1dv1 ð36Þ

where z is the function of vz1, z=z1+vz1
2 /2g.



Fig. 16. Simulated profile of vertical mass flux of ascending particles.
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From Eq. (25), we get:

qvðzÞ
qvðz1Þ

= expð−aðz−z1Þ= dpÞ ð37Þ

Insert Eqs. (35) and (36) into Eq. (37), then:

m∫+∞
vz1

nz1f ðv1Þv1dv1
qvðz1Þ

= exp −a
v2z1
2gdp

 !
ð38Þ
Fig. 17. Simulated vertical velocity di
The derivative of Eq. (38) at vz1 is:

−mnz1f ðvz1Þvz1
qvðz1Þ

= − avz1
gdp

exp −a
v2z1
2gdp

 !
ð39Þ

Then we get:

f ðvz1Þ =
aqvðz1Þ
mnz1gdp

exp −a
v2z1
2gdp

 !
ð40Þ

Therefore, the probability density function of vertical velocity of
ascending particles at height z can be expressed as:

f ðvzÞ =
2
ffiffiffi
C

p
ffiffiffi
π

p expð−Cv2z Þ ð41Þ

where C is a coefficient, C = 1
π

mnz
qvðzÞ
� �2

> 0. vz>0.
Since qvðzÞ = mnz vz

― , where vz
― is the mean vertical velocity of

ascending particles at height z, hence, the Eq. (41) can be rewritten as:

f ðvzÞ =
2

π vz
―
exp − v2z

π vz
―2

 !
ð42Þ

It can be seen from Eqs. (34) and (42) that the vertical velocity
distribution pattern of ascending particles from the bed surface is the
same as that at different heights.
stribution of ascending particles.



Fig. 18. Experimental vertical velocity distribution of ascending particles.
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Fig. 19. Qualitative comparison of the simulated and experimental distributions for vertical velocity of ascending particles.
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Fig. 17 shows the simulated vertical velocity distribution of acending
particles. Fig. 18 is the experimental vertical velocity distribution of
ascending particles from Kang et al. (2008a,b). In Fig. 18, the uf0 is the
free-stream wind velocity in the wind tunnel experiments of Kang et al.
(2008a,b). In the Figs. 17and18, thefitting function is Eq. (34)or Eq. (42).
It can be seen that the fitted curves predicted by Eqs. (34) and (42) fit
better for the simulated and experimental data. The vertical velocity
distribution of ascending particles is similar to the right-hand part of a
normal distribution function.

It is noted that the probability density function of vertical velocity
of ascending particles (i.e., Eqs. (34) and (42)) is not restricted to one
fixed particle diameter, hence, in Fig. 18, the experimental results for
particle diameter of 0.17–0.30 mm and 0.30–0.36 mm are shown.

From the Eqs. (34) and (42), the probability density function of
non-dimensional vertical velocity of ascending particles can be ex-
pressed as a general form:

f ðv⁎p↑Þ =
2
π
exp −

v⁎ 2
p↑

π

 !
ð43Þ

where vp*↑ is the non-dimensional vertical velocity of ascending particles
from a sand bed surface and at different heights, which is defined as the
ratio of vertical velocity of ascending particles to its average, i.e.,
v⁎p↑ = vp↑ = vp↑

― , where vp↑ and vp↑
― are vertical velocity of ascending

particles and its average, respectively. f(vp*↑) is the probability density of
non-dimensional vertical velocity of ascending particles from the sand
bed surface and at different heights.

Fig. 19 shows the qualitative comparison of the simulated and
experimental probability density distributions for the non-dimensional
vertical velocity of ascending particles. It can be seen that the
simulated probability density distributions for non-dimensional
vertical velocity of ascending particles are consistent with the exper-
imental results from Kang et al. (2008a,b). Both the simulated and
experimental probability density distributions for non-dimensional
vertical velocity of ascending particles comply better with Eq. (43).
The probability density function of non-dimensional vertical veloc-
ity of ascending particles is independent of diameter of saltating
particles, wind strength and height.

6. Conclusions

Discrete particle simulation is carried out for particle velocity dis-
tribution in saltation. Some features are revealed as follows:

(1) In the impact–entrainment process, the probability density
functions of resultant impact and lift-off velocities of saltating
particles can be described as a log-normal function, and that of
impact angle is an exponential function.

(2) The probability distribution of particle horizontal and vertical
velocities at different heights has a typical single peak. In the
lower part of saltation layer, the particle horizontal velocity
distribution is positively skewed.

(3) The vertical velocity distribution pattern of ascending particles
on bed surface and at different heights is identical. The pro-
bability density function of vertical velocity of ascending par-
ticles is similar to the right-hand part of a normal function. The
probability density function of non-dimensional vertical veloc-
ity of ascending particles is independent of the diameter of
saltating particles, wind strength and height.
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The present discrete particle model can account for the main
characteristics of particle velocity distribution in aeolian sand tran-
sport. This model is therefore a powerful tool to further study the
saltation state in wind-blown sand movement.
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