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SUMMARY

An improved axisymmetric mathematic modeling is proposed for the process of hydrate dissociation
by depressurization around vertical well. To reckon in the effect of latent heat of gas hydrate at the
decomposition front, the energy balance equation is employed. The semi-analytic solutions for temperature
and pressure fields are obtained by using Boltzmann-transformation. The location of decomposition front is
determined by solving initial value problem for system of ordinary differential equations. The distributions
of pressure and temperature along horizontal radiate in the reservoir are calculated. The numeric results
indicate that the moving speed of decomposition front is sensitively dependent on the well pressure and
the sediment permeability. Copyright q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Gas hydrate in the permafrost and ocean sediments is a kind of crystalline solid composed of
natural gas and hydrogen-bonded water molecules, which is formed under the conditions of higher
pressure and lower temperature. It is usually called methane hydrate (CH4×(H2O)n), as the natural
gas in geological system involves mainly methane. As a future energy resource available, natural
gas trapped in the state of hydrate is estimated as several times to the known conventional natural
gas; therefore, developing methods for commercial production of natural gas from hydrates is
attracting considerable attention in energy engineering. There are three methods to decompose
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the hydrates: (1) increasing the temperature in geological system over the temperature of hydrate
formation and remaining the pressure, (2) decreasing the pressure in the system under the pressure
of hydrate formation at a constant temperature, (3) injecting inhibitors to shift the equilibrium
of pressure and temperature. Depressurization is generally considered as a favorable method in
natural gas production from hydrate.
Based on thermodynamics and continuum mechanics, several mathematic models of the hydrate
dissociation process have been reported in the references. The mass and heat transfer for the depres-
surization process in a hydrate reservoir overlaying a free natural gas zone has been simulated by
Holder et al. [1]. An extended model, which considering the effect of water produced by the dissoci-
ated hydrate on temperature, has been suggested by Burshears et al. [2]. One-dimensional model for
depressurization of natural gas hydrate has been discussed by Yousif and Sloan et al. In this model
the process of hydrate dissociation has been assumed to be isothermal, and an analytic solution for
pressure has been obtained [3]. Later, the model has been developed by considering region of phase
transition, and numerical solution has been obtained by using finite difference [4]. The gas produc-
tion from hydrate based on the thermal stimulation method has been calculated by Durgut and
Parlaktuna [5]. The hydrate formation and decomposition processes have been extensively reviewed
by Makogon [6] and Sloan [7]. The mass and energy balance equations at the decomposition
front have been introduced to an one-dimensional model, and relative analytic solutions have been
obtained by Tsypkin [8]. One-dimensional linearized model was used to find analytic solution by
Chuang ji et al. [9] and numerical solution reckoned in the energy balance at the decomposition
was subsequently obtained by the finite difference method [10].

Though one-dimensional models have been used to solve analytic and numeric solutions by
many authors, and also some of them have considered the energy balance at the decomposition
front, axisymmetric model could be a better option. As the actual status of the hydrate dissociation
around vertical well is process of horizontal radiating, pressure and temperature fields depend on
radial coordinate only. Recently, an axisymmetric linearized model was provided, and a set of
approximately analytic solutions for the variations of pressure, temperature and flow rate across
the reservoir have been obtained by Ahmadi et al. [11]; however, the effect of latent heat on energy
balance at the decomposition front is ignored.

The present investigation intents to analyze temperature and pressure fields in process of hydrate
dissociation by depressurization, and natural gas production from methane hydrate. In view of
the effect of latent heat of gas hydrate at the decomposition front, an improved axisymmetric
model including energy balance equation is suggested by authors. By the means of Boltzmann-
transformation, semi-analytic solutions for temperature and pressure fields are obtained. In order
to determine unknown functions in the semi-analytic solutions, numeric approach is employed.
The numeric results indicate the features of temperature and pressure fields in the process of
hydrate dissociation.

2. MATHEMATIC MODELING

2.1. The description of hydrate dissociation process

The hydrates in the south China sea are contained in porous medium, the porous medium is clay
sediment. The porosity of clay layer is 0.4, the saturation of hydrate is 30%, and the remainder of
the pore is water. As the saturation of water reaches 96% after the hydrate is decomposed fully,
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Figure 1. Schematic of hydrates decompose for axisymmetric model.

only the water pressure is considered here, that is, the effect of gas on pressure can be ignored. It
is assumed that there is a down-hole pressure well in the reservoir, the pressure of the reservoir
decreases while the pressure of the well is dropped, then the hydrates decompose if the pressure is
under the balance pressure PD at a specified temperature. It is assumed that the hydrates decompose
quickly when the pressure is under PD. The reservoir is divided into two zones: the decomposed
zone and the hydrate zone.

To describe in mathematics, the reservoir is divided into two zones: the decomposed zone and
the hydrate zone. In order to describe the pressure and temperature fields in around vertical well
for the decomposed zone and the hydrate zone, we introduce the column radial coordinate (r,�, z)
shown in Figure 1. In view of the actual status of hydrate dissociation, the pressure and temperature
fields are assumed to be axisymmetric, that is, they depend on space coordinate r and time t only.
The radius of well is denoted as r0 and the distance of the decomposition front to the well center
as r =rc(t). The decomposition front is interface between the decomposed zone (r0<r<rc) and
the hydrate zone (rc<r<+∞). Denote the pressure field as Pi (r , t) and the temperature field as
Ti (r, t) (i=1,2). In this paper, the subscript i identifies the region, with i =1 corresponding to the
decomposed zone and 2 to the hydrate zone, respectively.

2.2. The equations of pressure and temperature fields

On the basis of the mass balance and Darcy’s law for flow in an elastic porous medium, pressure
distributions in the reservoirs are described by the following equations:

�1
�P1
�t

− 1

r

�
�r

(
r
�P1
�r

)
= 0 (r0<r<rc) (1)
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�2
�P2
�t

− 1

r

�
�r

(
r
�P2
�r

)
= 0 (rc<r<+∞) (2)

where the coefficient

�i = Ei

3(1−2�i )

Ki

�
(i=1,2)

Ei and �i are Young’s modulus and Poisson’s ratio of the sediments as elastic porous medium,
respectively, � the viscosity of water, Ki the permeability.

As the conductivity of the sediments porous medium is tiny, the conductive heat transfer in
sediments is neglected. The heat is mainly transferred by convection and the influence of the
pressure on temperature field should be considered. To describe coupling effect of temperature
and pressure, Ahmadi has given the equations of heat convection as follows [9]:

�T1
�t

− cwk1
c1�

�P1
�r

(
�T1
�r

−�
�P1
�r

)
−�

�1cw
c1

�P1
�t

= 0 (r0<r<rc(t)) (3)

�T2
�t

− cwk2
c2�

�P2
�r

(
�T2
�r

−�
�P2
�r

)
−�

�2cw
c2

�P2
�t

= 0 (rc(t)<r<+∞) (4)

where the constant cw is the volume heat capacity of water in, � is the throttling coefficient, � is
the adiabatic coefficient of the water, ci is the heat capacity, and �i is the porosity of the sediment
porous medium (i=1,2).

2.3. The governing equations at the decomposition front

In terms of the phase equilibrium for natural gas and hydrate, the temperature and the pressure at
the decomposition front r =rc(t) have the relationship [9]

log10 PD=a0(TD−T0)+b0(TD−T0)
2+c0 (5)

where T0=273.15K−1, the empirical constants a0=0.0342K−1, b0=0.0005K−2, c0=6.4804.
PD and TD are the pressure and the temperature at the decomposition front, respectively.
Also, the water part produced from the decomposed hydrate should be reckoned in the mass

balance equation at the decomposition front, this results in

	1
�P1
�r

−	2
�P2
�r

=−drc
dt

(6)

where coefficients

	i =
Ki�i

�(ε
/
w −�1+�2)
(i=1,2),


w and 
 are, respectively, the density of water and sediment, and ε is the mass fraction of hydrates
in sediments.

Further, when the hydrate is decomposed at the decomposition front, it will absorb heat from
surrounding medium. Here, the effect of latent heat is considered, the energy balance equation at
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the decomposition front gives

−�1T1
�P1
�r

+�2T2
�P2
�r

= drc
dt

(7)

where coefficients �i =ki�i
wcw/�L
ε(i=1,2), L is the latent heat of hydrate.

2.4. The conditions to determine solution

Assume that the pressures and the temperatures in the wall of well and in the infinite are different
constants, the boundary conditions are

P1(r0, t) = Pe (8)

P2(+∞, t) = P0 (9)

T1(r0, t) = Te (10)

T2(+∞, t) = T0 (11)

The initial conditions are

P1(r,0)= P2(r,0) = P0 (12)

T1(r,0)=T2(r,0) = T0 (13)

The continuity conditions at the decomposition front are

P1(rc, t)= P2(rc, t) = PD(t) (14)

T1(rc, t)=T2(rc, t) = TD(t) (15)

Up to now, the problem to determine the pressure and temperature fields is, in mathemat-
ical, reduced into solving the mixed boundary value problem (1)–(15), for the partial differential
equations in the two zones with moving interface.

3. SEMI-ANALYTIC SOLUTION

3.1. The solution of pressure field

Introduce the Boltzmann-transformation [12]:

u= r2

4�1t
(16)

and denote

uc(t)=u|r=rc(t) =
rc(t)2

4�1t
, ue(t)=u|r=r0 = r20

4�1t
(17)
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Thus, the pressures P1 and P2 are thought to be functions of new variable u. The partial differential
equations (1)–(2) can be converted into

u
d2P1
du2

+(1+u)
dP1
du

= 0 (18)

u
d2P2
du2

+(1+Nu)
dP2
du

= 0 (19)

where the constant N =�1/�2.
The boundary conditions (8)–(9), the initial condition (12), and the continuity condition (14)

can be written as

P1(ue) = Pe (20)

P1(uc) = P2(uc)= PD (21)

lim
u→∞ P1(u) = lim

u→∞ P2(u)= P0 (22)

Integrating ordinary differential equations (18) and (19) yields

P1 =C11

∫ u

ue

e−s

s
ds+C12 (23)

P2 = −C21

∫ +∞

u

e−Ns

s
ds+C22 (24)

Using the boundary conditions (20)–(22), we can determine the integral constants Ckl(k, l=1,2).
Therefore, the semi-analytic solutions for the pressure field are given by

P1(u) = Pe+(PD−Pe)

∫ u
ue
e−s/s ds∫ uc

ue
e−s/s ds

(25)

P2(u) = P0−(P0−PD)

∫ +∞
u e−Ns/s ds∫ +∞
uc

e−Ns/s ds
(26)

3.2. The solution for temperature field

Using Boltzmann-transformation (16) again and substituting (25)–(26) into equations (3)–(4)
lead to (

u+C11
cwk1
c1��1

e−u
)
dT1
du

−C2
11
cwk1�

c1��1

e−2u

u
−C11

��1cw
c1

e−u = 0 (27)

(
u+C21

cwk2
c2��1

e−Nu
)
dT2
du

−C2
21
cwk2�

c2��1

e−2Nu

u
−C21

��2cw
c2

e−Nu = 0 (28)
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The boundary conditions (10) and (11), the initial condition (13), the continuity condition (15)
can be written as

T1(ue) = Te (29)

T1(uc) = T2(uc)=TD (30)

T2(+∞) = T0 (31)

Solving the boundary value problem of ordinary differential equations (27)–(31), we have the
semi-analytic solutions for temperature field:

T1(u) = Te+(TD−Te)

∫ u
ue
G1(s)ds∫ uc

ue
G1(s)ds

(32)

T2(u) = T0+(TD−T0)

∫ +∞
u G2(s)ds∫ +∞
uc

G2(s)ds
(33)

where

G1(u) =
[
k1�

��1

(PD−Pe)∫ uc
ue

e−s/s ds

e−u

u
+��1

][
c1
∫ uc
ue

e−s/s ds

cw(PD−Pe)
ueu+ k1

��1

]−1

,

G2(u) =
[
k2�

��1

P0−PD∫ +∞
uc

e−Ns/s ds

e−Nu

u
+��2

][
c2
∫ +∞
uc

e−Ns/s ds

cw(P0−PD)
ueNu+ k2

��1

]−1

3.3. Determination of unknown functions

The above solutions (25)–(26) and (32)–(33) are not fully determined, as PD(t) and TD(t) are
unknown functions. This section presents the process of determination of the unknown functions
PD(t) and TD(t). The Boltzmann-transformation (16) is used at the decomposition front u=uc(t)
(r =rc(t)), then the mass and the energy balance equations (6) and (7) become(

	1
dP1
du

−	2
dP2
du

)∣∣∣∣
u=uc

rc(t)

2�1t
=−drc

dt
(34)

(
�1TD

dP1
du

−�2TD
dP2
du

)∣∣∣∣
u=uc

rc(t)

2�1t
=−drc

dt
(35)

Comparing the two sides in equations (34) and (35) yields

(	1−�1TD)
dP1
du

∣∣∣∣
u=uc

= (	2−�2TD)
dP2
du

∣∣∣∣
u=uc

(36)
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Substituting the solutions (25)–(26) and (17) into (34) and (36), respectively, we have

drc
dt

= − 2	1�1t (PD(TD)−Pe)e−r2c /4�1t

rc

[
Ei

(
− r2c
4�1t

)
−Ei

(
− r20
4�1t

)]

+2	2�1t (PD(TD)−P0)e−Nr2c /4�1t

rcEi

(
− Nr2c
4�1t

) (37)

(	1−�1TD)(PD(TD)−Pe)

(	2−�2TD)(PD(TD)−P0)
=

Ei

(
− r2c
4�1t

)
−Ei

(
− r20
4�1t

)

Ei

(
− Nr2c
4�1t

) e
(N−1) r2c

4�1t (38)

in which the unknown PD can be expressed from the phase equilibrium equation (5) as

PD= PD(TD)=10a0(TD−T0)+b0(TD−T0)2+c0 (39)

where Ei is the exponential integral function defined as

Ei(−u)=−
∫ ∞

u

e−x

x
dx (0<u<+∞)

Then, introduce new variable

y(t)=r2c (t)/4�1 (40)

From equation (37) and the initial condition rc(0)=r0, we can obtain

dy

dt
= f1(t, y,TD), y(0)= y0 (41)

where the function

f1(t, y,TD)=− 	1(PD(TD)−Pe)e−y/t

�1[Ei(−y/t)−Ei(−y0/t)] + 	2(PD(TD)−P0)e−Ny/t

�1Ei(−Ny/t)

and the initial value y0=r20/(4�1).
From the condition (10) and (15), we know TD(0)=T1(r0,0)=Te. Then, giving derivation of

equation (38) yields

dTD
dt

= f2(t, y,TD), TD(0)=Te (42)
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where the function

f2(t, y,TD) = F1(TD)

F2(t, y)
f1(t, y,TD)

F1(TD) = (	1�2−	2�1)(PD−Pe)

(	2−�2TD)2(PD−P0)
+ (	1−�1TD)(Pe−P0)

(	2−�2TD)(PD−P0)2
PD ln10(a0+2b0(TD−T0))

F2(t, y) = t e−Ny/t

y Ei(−Ny0/t)
+ [Ei(−y/t)−Ei(−y0/t)](1−N )e−(1−N )y/t

t Ei(−Ny0/t)

Up to now, determination of unknown functions is reduced to solve the initial value problem of
ordinary differential equations (41) and (42).

3.4. Numerical solving procedure

The procedure of numerical calculation are given as below:

(1) Give initial values y(0)= y0, TD(0)=Te, (41) and (42) can be solved by the Runge–Kutta
method, then y(t) and TD(t) were determined;

(2) The decomposition pressure PD and the location of decomposition front rc can be solved
by (39) and (40);

(3) After the value above-mentioned has been obtained, any given time t and distance r , we
can get the distribution of the pressure by (25)–(26) and the distribution of temperature by
(32)–(33).

3.5. The gas production rate

The gas production rate can be calculated by the following formation:

dQ

dt
=q

ε



h
·2�hrc(t)drc(t)

dt

Table I. Values of parameter.

Parameter Value Parameter Value

Water volume heat capacity cw 4200J/kg◦C Density of water 
w 1000kg/m3

Sediment volume heat capacity c, 1500J/kg◦C Density of sediment 
 2000kg/m3

Gas produced after 1m3

hydrate decompose q 164m3 Sediment Poisson’s ratio �1 0.4
Throttling coefficient � 8×10−7K/Pa Sediment Poisson’s ratio �2 0.3
Adiabatic coefficient � 8×10−7K/Pa Sediment Young’s modulus E1 10MPa
Porosity of the sediment �1 0.4 Sediment Young’s modulus E2 50MPa
Porosity of the sediment �2 0.28 Viscosity of water � 1.3×10−6 ps
Mass fraction of hydrate ε 5.4% Latent heat of hydrate L 4.3×105 J/kg
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Figure 2. (a) The pressure profiles at 30, 60, 90 days for a well pressure of 4MPa and a well temperature
of 275K (k1=14md,k2=4md) and (b) the temperature profiles at 30, 60, 90 days for a well pressure of

4MPa and a well temperature of 275K (k1=14md,k2=4md).

where Q is the volume of gas produced, q is gas produced by 1m3 gas hydrate, h is the thickness
of hydrate layer [13]. Using (40) and (41), we have

dQ

dt
=q

�hε


2�1
h
f1(t, y(t),TD(t)) (43)

4. RESULTS

Numerical results are presented in this section. The pressure and temperature profiles in reservoir
for different times, the decomposition front location profiles over time under different conditions
are obtained. The influence of permeability and the well pressure on the speed of decomposition
front is discussed below. It is assumed that the initial pressure of the reservoir is 8MPa and
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Figure 3. (a) The curves of decomposition front radius rc(t) for various permeabilities k1
and k2 (Pe =4MPa) and (b) the relationship between the location of the decomposition

front and time at different permeability (k1=14md,k2=4md).

the initial temperature of the reservoir is 283K. As an example of numerical computation, the
parameters are given as below (Table I).

Figure 2 shows the pressure and temperature profiles for different times under the conditions
that K1=14md, K2=4md, Pe=4MPa, Te=275K. As shown in Figure 2, the pressure and the
temperature decrease from the decomposition front to the well in zone 1, and the gradient of
pressure and temperature is largest near the well. The pressure and the temperature change sharply
near the decomposition front in the hydrate zone, and the gradient of pressure and temperature is
low in the distance far from the decomposition front.

For different permeabilities of sediment and well pressure, the time variation of decomposition
front location is presented in Figure 3. As shown in Figure 3(a), the well pressure and temperature
are kept 4MPa and 275K, the decomposition moves slower with time, if the permeability in zone
1 or 2 be improved, the distance of decomposition front increases evidently. Figure 3(b) shows
the influence of the well pressure on the distance of decomposition. For a well pressure of 6MPa,
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Figure 4. (a) The relationship between the pressure PD on the decomposition front and time and (b) the
relationship between the temperature TD on the decomposition front and time.

the decomposition front is about 22m to the well center after 200 days, and for a well pressure
of 4MPa, the distance is about 35m under the same conditions. This shows that the well pressure
has much influence on the speed of decomposition front, the decomposition front moves faster
when the well pressure decreases.

Figure 4 compares the variations of the pressure and the temperature at the decomposition
front with time under different conditions. As can be seen from Figure 6, the pressure and the
temperature at the decomposition front change sharply at initial time, and become nearly a constant
after a short time.

The changes of pressure PD and temperature TD at the decomposition front as the well pressure
changes under different conditions are compared in Figure 5. As can be seen from Figure 5(a), PD
increases linearly almost as the well pressure increases. As PD is determined by the mass and heat
balance equation at the decomposition front, the well pressure has effect on the pressure gradient
at the decomposition front, subsequently it has an evident influence on the decomposition pressure
PD. As there is relationship between TD and PD shown in equation (5), TD has similar variation
rule shown in Figure 5(b).
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Figure 5. (a) The relationship between the pressure PD on the decomposition front and well pressure and
(b) the relationship between the pressure TD on the decomposition front and well pressure.

Figure 6 presents gas production rate changes with well pressure and permeability of sediment.
As shown in Figure 6(a), dropping well pressure can increase gas production rate obviously.
As shown from Figure 6(b), the permeability of sediment has strong influence on the gas production
rate. If the permeability of sediment increases, the gas production rate of gas increases evidently.
It also shows that the gas production rate becomes slower in initial period, and becomes a constant
after a short time.

5. CONCLUSIONS

The Stephen problem during gas production from gas hydrates was solved by the method
Boltzmann-transformation. The semi-analytic solutions for pressure and temperature distribution
were obtained in which the mass and energy balance equations at the decomposition front were

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2010; 34:1831–1845
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Figure 6. (a) Gas production rate changes with time at different well pressure and (b) gas production rate
changes with time at different permeability.

considered, and the latent heat of gas hydrate was reckoned in. The numerical results could predict
the volume of gas produced and provide some possible routes for raising gas production rate in
the actual production. The following conclusions were drawn from the solutions:

(1) As the energy balance equation on the decomposition front joins to the mathematical
modeling, the effect of latent heat of gas hydrate on the front temperature TD is consid-
ered. The obtained semi-analytic solutions indicate sharp changes of the front temperature
TD and the pressure PD in initial time. With time, the front temperature TD and the pressure
PD reach asymptotically a constant.

(2) The influence of the well pressure and the sediment permeability on the gas production rate
is evident. In the case of constant well pressure, the gas production rate is close to a constant
after a short initial time. Decreasing well pressure could increase the gas production rate.

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2010; 34:1831–1845
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