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The available experimental results have shown that in time-periodic motion the
rheology of fluid mud displays complex viscoelastic behaviour. Based on the measured
rheology of fluid mud from two field sites, we study the interaction of water waves
and fluid mud by a two-layered model in which the water above is assumed to be
inviscid and the mud below is viscoelastic. As the fluid-mud layer in shallow seas
is usually much thinner than the water layer above, the sharp contrast of scales
enables an approximate analytical theory for the interaction between fluid mud and
small-amplitude waves with a narrow frequency band. It is shown that at the leading
order and within a short distance of a few wavelengths, wave pressure from above
forces mud motion below. Over a much longer distance, waves are modified by
the accumulative dissipation in mud. At the next order, infragravity waves owing
to convective inertia (or radiation stresses) are affected indirectly by mud motion
through the slow modulation of the short waves. Quantitative predictions are made
for mud samples of several concentrations and from two different field sites.
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1. Introduction
Fluid mud is a mixture of water and highly cohesive clay particles often transported

from inland rivers into the estuary and then deposited along the coast. Its motion
changes the seabed, affects the wave climate and shapes the coastline in the long run.
The problem of wave–mud interaction has been treated by considering a two-layered
system in which water and mud are assumed to be Newtonian fluids with vastly
different viscosities (Dalrymple & Liu 1978; Liu & Chan 2007). For monochromatic
waves of infinitesimal amplitudes, the linearized problem is solved to obtain the
dispersion relation between wavenumber k and frequency ω. For the general depth
ratio the complex wavenumber is solved numerically. The imaginary part of k then
gives the rate of spatial attenuation. Mud has also been modelled as a Kelvin–Voigt
viscoelastic body by MacPherson (1980), Hsiao & Shemdin (1980) and Maa & Mehta
(1988), where the coefficients of viscosity and elasticity are assumed to be constants.
Second-order theories on the mass transport in fluid mud have been reported by
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Shibayama, Okuno & Sato (1990), Foda, Hunt & Chou (1993) and Piedra-Cueva.
Recently Zhang & Ng (2006) and Ng & Zhang (2007) further hypothesized a nonlinear
constitutive relation accounting for finite strain.

Owing to the importance of fluid mud in river hydraulics, abundant data exist
for steady flow conditions under which mud rheology is essentially Bingham plastic
(Wan & Wan 1994; Coussot 1997). Earlier theories are based on the assumption
that fluid mud is either Newtonian (Dalrymple & Liu 1978) or Bingham plastic
(Liu & Mei 1989). Experimental data for mud in periodic or transient motion are
much scarcer in the published literature. With samples taken from different sites
(Kerala coast of Southern India, Okeechobee Lake in Florida and Mobile Bay in
Alabama) as well as from laboratory mixtures of attapulgite and kaolinite, Jiang &
Mehta (1995) have found the stress–strain relation for simple harmonic motion to be
distinctly viscoelastic. When fitted to a three-parameter Voigt model, the coefficients
of elasticity and viscosity are functions not only of the solid concentration but also
of wave frequency. Independent tests have also been performed by two of the present
authors for both steady and periodic flows, using field samples from two different
sites along the eastern coast of China, namely Hangzhou Bay of Zhejiang Province
(Huhe & Huang 1994) and Lianyungang of Jiangsu Province (Huang, Huhe & Zhang
1992). The measured results for periodic flows are consistent with those of Jiang &
Mehta (1995). Since the range of frequencies in their tests coincides with those of sea
waves, their findings are considered to be the relevant basis for coastal studies.

In this paper, we shall investigate wave–mud interaction with an emphasis on the
fate of waves. Fluid mud is modelled as a viscoelastic material. The primary waves
will be assumed to be nearly sinusoidal with long-scale modulation because of a
small frequency spread. Attenuation and wavenumber shift in the primary waves will
be deduced first by a multiple-scale perturbation analysis. Infragavity waves forced
by radiation stresses will then be found at the next order. In line with available
experimental data, water is assumed to be inviscid, since the viscosity is typically
103 Pa s for fluid mud and 10−3 Pa s for pure water. Interfacial mixing is also ignored.
Mud is assumed to be linearly viscoelastic. The characteristic wave amplitude a0, and
hence the vertical displacement at the water–air interface η, will be assumed to be
small compared with the water depth h or the wavelength λ= 2π/k:

η = O(a0), kη = O(ka0) = O(ε) � 1. (1.1)

Referring to figure 1, we shall consider the water depth h to be constant and compa-
rable to the wavelength so that kh = O(1). The fluid-mud depth d is also assumed to
be constant over a region greater than the attenuation distance to be defined later. In
coastal waters the typical mud depth d is usually below O(0.5 m) and much smaller
than the depth of water h above so that

d

h
= O(ε) � 1. (1.2)

As a consequence Liu & Mei (1989) showed that the vertical displacement of the
mud–water interface, ζ , is much smaller than that of the free surface:

kζ ∼ O(ε2) � 1 or ζ = O(εη). (1.3)

This fact has been employed in Ng (2000) to simplify the full dispersion relation of
two layers of Newtonian viscous fluids. Taking advantage of this disparity, we shall
use a multiple-scale perturbation analysis to further reduce the approximate analysis
in order to reveal the physics for a viscoelastic mud. In particular at the leading order
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Figure 1. A thin mud layer over seabed.

in wave steepness, mud is forced to move passively by the hydrodynamic pressure
from the surface waves above, resulting in viscous dissipation within. Over very long
distance, mud dissipation gradually alters the leading-order waves above by creating a
complex shift of wavenumber, which amounts to attenuation of wave amplitude and
change of wavelength. Also at the second-order, long-scale modulation of the mud-
affected primary waves leads to set-down and infragravity waves which are indirectly
affected by mud. Quantitative predictions for different mud samples of contrasting
properties are moreover examined in the paper.

2. Dynamic rheology of fluid mud
We present in this section some data on dynamic rheology of fluid mud from

Hangzhou Bay of Zhejiang Province (Huhe & Huang 1994) and Lianyungang
Harbour of Jiangshu Province (Huang et al. 1992) on the eastern coast of China.
To achieve a range of concentrations, the field samples were mixed with salt water
having a salinity of 0.15 %. Dynamic measurements were made for a broad range
of frequencies by using a strain-controlled rotary shear rheometer (Model RMS-605,
Rheometrics Mechanical Spectrometer, Piscataway, NJ). The temperature maintained
was 15◦C during the measurements.

For a mud sample of bulk density ρ(m), the volume concentration φ can be calculated
from ρ(m) = φρ(s) + (1 − φ)ρ(w), where ρ(s) is the mineral density (grain density) and ρw

the density of water. The Hangzhou Bay mud is made of relatively coarse sediments
with D50 = 90 μm. The grain density is ρ(s) = 2650 kg m−3, and the bulk density of
the natural mud sample is ρ(m) = 1670 kg m−3. In the rheology measurements, volume
concentrations of solid varied from φ =0.02 to φ = 0.34, corresponding to the bulk
density range of ρ(m) = 1048–1670 kg m−3. The Lianyungang Harbour mud is very
fine with D37 = 5 μm, D85 = 50 μm. The grain density ρ(s) = 2750 kg m−3, and the bulk
density of natural mud ρ(m) = 1720 kg m−3. Again by mixing with salt water, volume
concentrations ranging from φ = 0.06 to φ = 0.50 were generated, corresponding to
the bulk density range of ρ(m) = 1100–1590 kg m−3. Other information on Hangzhou
Bay mud and Lianyungang mud can be found in Huang et al. (1992) and Huhe &
Huang (1994).
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For steady unidirectional mud flows the stress–strain relation was found to be
essentially Bingham plastic, in accord with nearly all past experiments. However
for time-harmonic tests within the frequency range 0.1 <ω < 70 rad s−1, the relation
was decidedly viscoelastic. The data were originally fitted to a simple Kelvin–Voigt
relation between shear stress τ ′ and strain rate ∂E′/∂t ,

τ ′ =

(
μm +

iGm

ω

)
∂E′

∂t ′ , (2.1)

where E′ = ∂U ′/∂y ′ and U ′ represents the time-harmonic fluid displacement. All
physical variables are distinguished by primes. The coefficients Gm and μm were
found to depend not only on mud properties (chemistry, salinity, density and sediment
concentration and the like) but also strongly on the frequency. Specifically, the shear
modulus Gm increased, while the viscosity coefficient μm decreased with increasing
frequency. The range of frequencies in both studies coincides with the common range
of sea waves and hence is of direct relevance to coastal/ocean engineering.

For analysing general transient or nonlinear problems, it is desirable to express the
constitutive relation in the generalized form (Malvern 1969),

N∑
n=0

αn

∂nτ ′
ij

∂t ′n =

N∑
n=0

βn

∂nE′
ij

∂t ′n , (2.2)

so that the real coefficients (αn, βn) depend only on material properties but not on
the frequency. For applications to linearized problems of monochromatic waves, this
representation is in principle not necessary. It suffices to express the stress–strain
relation formally in the Newtonian form,

τ ′ = μd(ω)
∂E′

∂t ′ , (2.3)

where

μd(ω) = Re(μd(ω)) + iIm(μd(ω)) = |μd(ω)| eiθ(ω) (2.4)

is the complex viscosity depending on frequency. We have converted the discrete data
for the mud from Hangzhou Bay and Liangyungang into the form of (2.2) in order
to obtain μd for a continuous range of frequencies. For the later purpose of scaling
we define μ0 to be the real part of μd extrapolated at ω = 0, i.e.

μ0 ≡ Re(μd |ω=0). (2.5)

From the converted Hangzhou Bay data, the magnitude and phase of μd are
shown as functions of frequency in figure 2, where the fitted curves are determined by
truncating (2.2) with only four pair of coefficients and matching data at four different
frequencies in the range 0.1 <ω < 10 rad s−1, which are of interest for wind waves in
nature. Note that the phase angle θ is not close to π/2; hence Hangzhou Bay mud is
closer in character to a viscous fluid than an elastic solid.

Similar conversion of Lianyungang data is shown in figure 3. Note that the
magnitudes of the complex viscosity of Lianyungang mud samples are considerably
higher than those of Hangzhou Bay mud. Note further that θ is closer to π/2; hence
the fine particles in Lianyungang mud increase the elasticity of the mixture, unlike the
mud in Hangzhou Bay but similar to the Mobile Bay data of Jiang & Mehta (1995).
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Figure 2. (a) Magnitude and (b) phase of complex viscosity of mud samples from East
Pilot Navigation Channel, Hangzhou Bay: symbols, data; lines, fitted curve by generalized
viscoelastic model.
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Figure 3. (a) Magnitude and (b) phase of complex viscosity of mud samples from
Lianyungang: symbols, data; lines, fitted curve by generalized viscoelastic model.

Within the frequency range of coastal interest, however, none of the field samples is
strictly viscous or elastic.

3. Theoretical formulation
3.1. Dimensionless conservation laws

We consider a water layer of constant mean depth h over a shallow layer of fluid mud
with depth d � h. Long-crested progressive surface waves propagate in the positive
x ′- direction. Let rectangular coordinates x ′, y ′ be used to describe a vertical plane
with its origin on the mean sea surface, as sketched in figure 1. Primes are used to
distinguish all dimensional variables from their dimensionless counterparts.

Let Φ ′ denote the velocity potential in the inviscid water layer and η′ the free-
surface displacement. In the fluid-mud layer below, u′, v′ are the velocity components
and ζ ′ is the interface displacement. The viscoelastic stress and strain tensors in mud
are denoted by τ ′

ij and E′
ij . Finally (p(w)′

, p(m)′
) and (ρ(w), ρ(m)) denote the dynamic

pressure and density, with the superscripts w and m indicating water and mud,
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respectively. The static and total pressures will be denoted by p′
s and P ′, respectively,

with P ′ = p′
s + p′. In addition, the total stress will be denoted by T ′

ij = −P ′δij + τ ′
ij .

Let ω and a0 be the frequency and the reference amplitude of the surface waves.
For the water layer the following normalization is used:

(x ′, y ′, h) =
g

ω2
(x, y, H ), t ′ = ω−1t, k′ =

ω2

g
k,

Φ ′ =
a0g

ω
Φ, η′ = a0η,

(
P (w)′

, p(w)′)
= ρ(w)ga0

(
P (w), p(w)

)
. (3.1)

We have chosen the deep-water wavelength g/ω2 as the principal length scale for
the purpose of examining the effects of varying depths of water. In dimensionless
variables (without primes) the velocity potential is governed by

∂2Φ

∂x2
+

∂2Φ

∂y2
= 0. (3.2)

Let us define

ε =
ω2a0

g
� 1, (3.3)

which is a small parameter characterizing the wave slope. In dimensionless form, the
total pressure P (w) in water is related to Φ by Bernoulli’s equation,

−P (w) = −p(w)
s − p(w) =

y

ε
+

∂Φ

∂t
+

ε

2

[(
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2
]

, (3.4)

where p(w)
s = y/ε and p(w) are the static and dynamic pressures, respectively.

For the mud layer, a new vertical coordinate measured from the mud bottom is
introduced,

Y ′ = y ′ + h + d. (3.5)

The total stress T′
ij is related to the mud pressure P (m)′

and viscoelastic stress τ ′
ij by

T′
ij = −

(
p(m)

s

′
+ p(m)′)

δij + τ ′
ij , (3.6)

where

p(m)
s

′
= ρ(w)gh − ρ(m)g(h + y ′) = ρ(w)gh + ρ(m)g(d − Y ′) (3.7)

is the hydrostatic pressure and p(m)′
the hydrodynamic pressure. We further assume

that the mud depth d is comparable to the wave amplitude a0, i.e.

d/a0 = O(1), a0/h = O(d/h) = O(ε) � 1, (3.8)

and define the dimensionless variables as follows:

x ′ =
g

ω2
x, Y ′ = dY t ′ = ω−1t, ζ ′ = εa0ζ,

u′ = a0ω u, v′ =

(
εa0ω

d

a0

)
v, (p′, P ′) =

(
γρ(m)ga0

) (
p(m), P (m)

)
,

T′
ij =

(
γρ(m)ga0

)
Tij , τ ′

ij =
μ0ωa0

d
τij , Ė

′
ij =

ωa0

d
Ėij ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(3.9)

where γ = ρ(m)/ρ(w) is the ratio of mud density to water density and μ0 is defined in
(2.5). Note that the same stress scale is used in both water and mud. Inside the mud
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layer, 0 <Y < 1, and mass conservation requires that

∂u

∂x
+

∂v

∂Y
= 0. (3.10)

The dimensionless momentum equations read

∂u

∂t
+ ε

(
u

∂u

∂x
+ v

∂u

∂Y

)
= −γ

∂p(m)

∂x
+

1

Re

a0

d

(
∂τ xy

∂Y
+ ε

d

a0

∂τ xx

∂x

)
(3.11)

and(
ε

d

a0

)2 [
∂v

∂t
+ ε

(
u

∂v

∂x
+ v

∂v

∂Y

)]
= −γ

∂p(m)

∂Y
+

ε

Re

(
∂τ yy

∂Y
+ ε

d

a0

∂τ xy

∂x

)
, (3.12)

where Re denotes the characteristic Reynolds number defined by the characteristic
viscosity in (2.5),

Re =
ρ(m)a0ωd

μ0

. (3.13)

As a rough estimate we take ρ(m) = 1600 kgm−3, a0 = d = 1 m, ω = 0.5 rad s−1 and
μ0 = 103–104 Pa s = 103–104 N s m−2; then Re = 0.08–0.8, which will be regarded as
being of order unity. Hence viscous effects throughout the mud layer must be treated
without the boundary-layer approximation.

In dimensionless form, the total stress (static and dynamic) is

Tij = −
(
p(m)

s + p(m)
)
δij +

ε

γRe
τ ij , (3.14)

where

p(m)
s =

H

ε
+ γ (1 − Y ). (3.15)

Finally the dimensionless strain tensor is given by

{Eij } =

(
Exx Exy

Eyx Eyy

)
=

⎛⎜⎜⎜⎝
2ε

d

a0

∂U

∂x

∂U

∂Y
+

(
ε

d

a0

)2
∂V

∂x

∂U

∂Y
+

(
ε

d

a0

)2
∂V

∂x
2ε

d

a0

∂V

∂Y

⎞⎟⎟⎟⎠ .

3.2. Dimensionless boundary conditions

On the free surface SF of water we impose the kinematic condition that the flow can
only be tangential:

∂η

∂t
=

∂Φ

∂y
− ε

∂η

∂x

∂Φ

∂x
, y = εη. (3.16)

Assuming uniform atmospheric pressure, the dynamic boundary condition is

−η =
∂Φ

∂t
+

ε

2

[(
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2
]
, y = εη. (3.17)

The two conditions above can be combined to give

Γ Φ + ε

[
∂

∂t
+

ε

2

(
∂Φ

∂x

∂

∂x
+

∂Φ

∂y

∂

∂y

)][(
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2
]

= 0, y = εη, (3.18)



40 C. C. Mei, M. Krotov, Z. Huang and A. Huhe

where Γ denotes the differential operator

Γ =
∂2

∂t2
+

∂

∂y
. (3.19)

On the mud–water interface SI is described equivalently by

Y = 1 + ε
a0

d
ζ, or y = −H + ε2ζ, (3.20)

where H is the normalized water depth; the kinematic condition is

∂Φ

∂y
= ε

∂ζ

∂t
+ ε2 ∂ζ

∂x

∂Φ

∂x
, y = −H + ε2ζ, (3.21)

for water, and

∂ζ

∂t
=

d0

a0

v − εu
∂ζ

∂x
, Y = 1 + ε

a0

d0

ζ, (3.22)

for mud. Continuity of total (hydrostatic and dynamic) stress on the mud–water
interface then requires

Txxnx + Txyny = −
(
p(w)

s + p(w)
)
nx, (3.23)

Tyxnx + Tyyny = −
(
p(w)

s + p(w)
)
ny (3.24)

on Y = 1 + ε(a0/d)ζ (or equivalently y = − H + ε2ζ ). The components of the unit
normal are

nx =

ε2 d

a0

∂ζ

∂x√
1 + ε4

(
d

a0

∂ζ

∂x

)2
, ny =

1√
1 + ε4

(
d

a0

∂ζ

∂x

)2
. (3.25)

At the bottom of the mud layer, we impose the following no-slip condition:

u = v = 0, y ′ = 0. (3.26)

4. Multiple-scale analysis
For small-amplitude waves, it is natural to employ the asymptotic method of

perturbations. Anticipating that damping will become significant only after a very
long distance and that the waves may have a narrow frequency band and hence
a long time scale inversely proportional to the bandwidth, we define the following
multiple-scale coordinates in terms of ε:

x, x1 = εx, t, t1 = εt. (4.1)

Each of the unknowns F, which may represent ζ, η, Φ, u, v, . . . , will be expanded as
power series,

F = F0 + εF1 + ε2F2 + . . . , (4.2)

where (ηn, ζn) depend on (x, x1; t, t1) only, Φn on (x, x1; y; t, t1) in water and (un, vn)
on (x, x1; Y ; t, t1) in fluid mud. Expansions of the form of (4.2) are first substituted
into all conservation laws, yielding perturbation equations after separating the orders.
On either the free surface or the interface, the boundary conditions are first Taylor-
expanded about the static levels, which are y =0 for the free surface and y = −H or
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y ′ = 1 for the mud–water interface. Then the multi-scale series are substituted into
the results to give perturbation boundary conditions at separate orders.

5. Perturbation problems in water
We consider the surface waves to be narrow-banded, i.e. nearly simple harmonic

with slowly varying amplitude,

η = η0 + O(ε) =
1

2
A(x1, t1) eiψ + c.c. + O(ε), (5.1)

where A(x1, t1) is the slowly varying amplitude and

ψ = k0x − t (5.2)

is the phase of the carrier waves. The perturbation unknowns at order n are then
expressed in sums of harmonics up to ±n,

Fn =

n∑
m=−n

Fnmeimψ. (5.3)

After separating orders and harmonics, the boundary value problem for each index
pair (n, m) is then obtained.

The analysis of the potential in water is standard and similar to that for waves over
a rigid bed (see, e.g., Mei 1989). Omitting the details we only cite the key results here.
The fast variations of the perturbation potentials Φnm are governed by the following
boundary value problems. In particular, Laplace’s equation gives

∂2Φnm

∂y2
−m2k2

0Φnm = Fnm, n = 0, 1, 2, . . . , m = 0, ±1, . . . , ±n, −H < y < 0. (5.4)

On the free surface the combined kinematic and dynamic conditions gives

∂Φnm

∂y
− m2Φnm = Gnm, n = 0, 1, 2, m = 0, ±1, . . . , ±n, y = 0. (5.5)

The forcing terms Fnm and Gnm are known from harmonics of orders lower than ±n

and are the same as those for a rigid seabed (see Mei 1989). In particular

F00 = F01 = 0, G00 = G01 = 0. (5.6)

On the water–mud interface, the kinematic boundary condition gives

∂Φnm

∂y
= Lnm, n = 0, 1, 2, m = 0, ±1, . . . , ±n, y = −H, (5.7)

where Lnm are the results of small vertical displacement of the water–mud interface.
However, at the leading order L00 = L01 = 0. Results at higher orders (n= 1, 2, . . .)
will be given later.

Since at the leading order (n= 0) the boundary value problems for both Φ00 and
Φ01 are homogeneous, the solutions describing the fast variations are simple. The
zeroth harmonic is

Φ00 = Φ00 (x1, t1), (5.8)
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which represents long waves. For the first harmonic Φ01 we take a plane progressive
wave corresponding to (5.1),

Φ01 = − iA

2

coshQ

cosh q
, where Q ≡ k0(y + H ), q ≡ k0H, (5.9)

and k0 satisfies the dispersion relation,

k0 tanh k0H = 1. (5.10)

The dependence of A(x1, t1), Φ00(x1, t1) on slow coordinates is yet to be found.
At higher orders the problems for the potentials of these two harmonics are in

general inhomogeneous and hence must be subjected to solvability conditions. For
Φn0, n =1, 2, . . . , we integrate the governing equations from y = −H to y =0 and
apply the boundary conditions to get∫ 0

−H

dyFn0 = Gn0 − Ln0, n = 1, 2, . . . . (5.11)

For Φn1 we apply Green’s formula to the governing conditions for Φ01 and Φn1 and
get ∫ 0

−H

dyFn1

coshQ

cosh q
= Gn1 − Ln1, n = 1, 2, . . . . (5.12)

We shall seek the evolution equations for the short-wave envelope (A(x1, t1)) and
the long-wave potential (Φ00(x1, t1)). As in the simpler case of pure water over a rigid
bed (see Mei 1989), the first and second solutions are found respectively from the
solvability conditions of εΦ11 and ε2Φ20. The seemingly complex analysis of mud
motion can be in part lessened by the fact that the solvability of Φ11 depends only
on ζ01 through the kinematic condition on the mud–water interface. Similarly it will
be shown shortly that the solvability of Φ20 depends also on the mud dynamics O(1).
Hence there is no need to go to the higher-order analysis of mud unless its nonlinear
physics such as induced streaming is wanted.

6. Mud motion at the leading order
Since there is no forcing pressure at the long scale from water at O(1), mud response

is limited to short scales and to the first harmonic,(
u0, v0, p

(m)
)

=
(
u01, v01, p

(m)
01

)
eiψ + c.c., 0 < Y < 1. (6.1)

Since there is no zeroth-harmonic forcing from above at this order, we have

p
(w)
00 = 0 and u00 = v00 = ζ00 = 0, 0 < y ′ < 1. (6.2)

The problem for the first-harmonic amplitude u01 is similar to that of Stokes
oscillatory boundary layer. Mass conservation requires

∂v01

∂Y
+ ik0u01 = 0, 0 < y ′ < 1. (6.3)

The constitutive relation reduces to

(τ ij )01 = μ(ω)(Ėij )01, where (Ėij )01 =

⎛⎜⎝ 0
∂u01

∂Y
∂u01

∂Y
0

⎞⎟⎠
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and

μ(ω) ≡ μd/μ0 (6.4)

is the dimensionless complex viscosity. Momentum conservation requires

−iu01 = −ik0γp
(w)
01 +

μ

Re

a0

d

∂2u01

∂Y 2
, 0 < Y < 1, (6.5)

∂p
(m)
01

∂Y
= 0, 0 < Y < 1. (6.6)

On the water–mud interface the dynamic boundary conditions are

μ
∂u01

∂Y
= 0, Y = 1, (6.7)

p
(m)
01 |Y=1 = p

(m)
01 |

y=−H
=

A

2 cosh q
. (6.8)

The hydrostatic pressure on the interface is p(m)
s = H/ε + γ εζ , which is essentially

uniform and has no dynamic influence. On the mud bottom we have

u01 = v01 = 0, Y = 0. (6.9)

Thus mud is forced to move only passively by the dynamic pressure from above.
Equation (6.5) can be written as

∂2u01

∂Y 2
− σ 2u01 = −σ 2 k0γA

2 cosh q
, (6.10)

where

σ 2 ≡ −i
Re

μ

d

a0

. (6.11)

The solution to (6.7), (6.9) and (6.10) is easily found to be

u01(Y ) =
γ k0A

2 cosh q
[1 − cosh(σY ) + tanh(σ ) sinh(σY )] .

Integrating the mass conservation equation and using the no-slip boundary condition
at the bottom we obtain the vertical velocity profile:

v01(Y ) = −i
γ k0A

2λ0 sinh q
[σY − sinh(σY ) + tanh σ [cosh(σY ) − 1]]. (6.12)

Finally, the amplitude of the interface displacement ζ01 follows from the kinematic
boundary condition:

ζ01 = i
d

a0

(v01)|Y=1 = γ
d

a0

k0A

2 sinh q
G(σ ), (6.13)

where

G(σ ) = 1 − tanh σ

σ
. (6.14)

The complex constant σ characterizes the fluid mud and depends on frequency. For
later convenience we define the (dimensional) Stokes boundary-layer depth δS and
the depth ratio D of the mud layer to the Stokes layer,

δS ≡

√
2|μ′

d |
ρ(m)ω

, D ≡ d

δS

. (6.15)
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Since μ(ω) = |μ|eiθ we have

σ (D , θ) =

√
−i

Re d

μ a0

= D
√

2e−i( θ
2 + π

4 ) ≡ −i(α + iβ)D , (6.16)

which defines the real coefficients α, β:

α ≡
√

2 sin

(
θ

2
+

π

4

)
, β ≡

√
2 cos

(
θ

2
+

π

4

)
. (6.17)

As ω varies, the phase of σ is confined in the fourth quadrant of the complex plane
since 0 <θ < π/2, and its amplitude increases with the depth ratio D , and hence with
ω, and decreases with increasing μ.

7. Water motion at O(ε)

The zeroth-harmonic problem is again homogeneous, governed by ∂2Φ10/∂y
2 = 0

and subjected to the boundary conditions ∂Φ10/∂y = 0 at y = 0, 1. Therefore, the
potential depends only on the slow coordinates

Φ10 = Φ10(x1, t1) (7.1)

which can be absorbed in Φ00 and are omitted from here on. The corresponding
hydrodynamic pressure and mean free-surface displacement are related to the long-
wave potential Φ00, which is yet unknown:

p
(w)
10 = −∂Φ00

∂t1
− |A|2

4 sinh2 q
cosh(2Q), (7.2)

η10 = −∂Φ00

∂t1
− |A|2

4 sinh2 q
. (7.3)

The first harmonic is governed by

∂2Φ11

∂y2
− k2

0Φ11 = F11 = −2ik0

∂Φ01

∂x1

= −k0

coshQ

cosh q

∂A

∂x1

(7.4)

and is subjected to the boundary conditions on the free surface:

∂Φ11

∂y
− Φ11 = G11 =

∂A

∂t1
, y = 0. (7.5)

The potential now receives feedback from the displacement of the interface,

∂Φ11

∂y
= L11 = −iζ01, y = −H (7.6)

Invoking the solvability condition (5.11) and using (6.13) we arrive at the evolution
equation of the free-surface wave amplitude A:

∂A

∂t1
+ Cg

∂A

∂x1

= ik1CgA, (7.7)

where

Cg =
1

2k0

(
1 +

2q

sinh 2q

)
(7.8)
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is the dimensionless group velocity. The right-hand side of (7.7) signifies the feedback
from the mud layer on the long-scale variation of the leading-order wave. The complex
shift of wavenumber k1 is

k1 = kr
1 + iki

1 = −γ
d

a0

(
2k2

0

2q + sinh 2q

)
(G(σ )). (7.9)

Note from (6.13) that both ζ01 and k1 depend on σ through the common factor G(σ ).
Now the first-harmonic problem can be explicitly solved to give

Φ11 = ik1CgA sinh q sinhQ − Q sinhQ

2k0 cosh q

∂A

∂x1

, (7.10)

p
(w)
11 =

i

2k0 cosh q

(
k0

∂A

∂t1
coshQ − Ax1

Q sinhQ

)
− k1CgA sinh q sinhQ, (7.11)

η11 =
i

2

∂A

∂t1
− k1CgA sinh2 q − i

q sinh q

2k0 cosh q

∂A

∂x1

. (7.12)

In the absence of the mud layer, k1 = 0, and the solution reduces certainly to that for
the inviscid water waves propagating over a solid bottom (Mei 1989).

The second-harmonic potential Φ12 is needed for examining the solvability of Φ20.
The governing equation in water and the free-surface conditions are no different from
those for the case of pure water waves. In particular the kinematic condition on the
interface z = −H is ∂Φ12/∂z =0, since εζ0 = εζ01e

−it + c.c. consists of only the first
harmonic. Hence the second-harmonic solutions are formally the same as those for a
rigid bed (see Mei 1989) and are listed below for later reference:

Φ12 =
3i

16

A2

sinh4 q
cosh 2Q, (7.13)

p
(w)
12 = −1

8

1

sinh2 q
A2

(
1 + 3

cosh 2Q

sinh2 q

)
, (7.14)

η12 =
A2

8

1

sinh2 q

(
2 sinh2 q − 1 − 3i

sinh2 q

)
. (7.15)

8. Physics of the leading order
8.1. Envelope of narrow-banded waves

Let us consider a narrow-banded wavetrain entering a long region of muddy bed.
As a simple model the incident wave is assumed to be sinusoidally modulated before
entering the mud region,

A(0, t1) = A0 cos Ωt1, (8.1)

where A0 is the normalized wave amplitude which can be taken to be unity. It is easy
to see that the surface wave amplitude for x1 > 0 is

A(x1, t1) = A0e
ik1x1 cos(Kx1 − Ωt1), x1 > 0, (8.2)

where Ω = KCg with Cg being the group velocity of the carrier wave. The bandwidths
of wavenumber and frequency are measured by εK and εΩ = εKCg respectively. The
limit of K = 0 corresponds to monochromatic waves. Equation (8.2) gives the slow
evolution of the surface wave amplitude in time and space.
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8.2. Damping rate and wavenumber shift

Since k1x1 = εk1x, the real part εkr
1 is the shift of the wavenumber per unit propagation

distance, and the imaginary part εki
1 = 2π/L is the local rate of spatial attenuation,

which defines the distance of attenuation L. Recalling ε = ω2a0/g, we rewrite (7.9) as

εk1

k0

= −γ
d0

h
Fk(k0H )G(σ ), (8.3)

where Fk(k0H ) is a real factor characterizing the wave motion in water,

Fk(q) =
2q

2q + sinh (2q)
> 0, (8.4)

and it is plotted in figure 4.
The fractional wavenumber shift and relative attenuation rate can be written as

�k = Re

(
εk1

k0

)
= −γ

d

h
Fk(q)Re {G(σ )} , (8.5)

λ

L
= Im

(
εk1

k0

)
= −γ

d

h
Fk(q)Im {G(σ )} , (8.6)

where λ ≡ 2π/k0 denotes the wavelength and L the local length scale of attenuation.
Thus both damping and wavenumber shift decrease exponentially with decreasing
wavelength or increasing depth. As expected, mud has negligible effect on the waves
for either very short waves or great water depth (k0H 	 1).

The complex factor G(σ ) defined in (6.14) embodies the effects of mud rheology.
If the Stokes layer is much thinner than the mud depth, d 	 δS (D 	 1), then
tanh σ/σ ∝ 1/D ≈ 0 and G ≈ 1. Mud is then a thin layer of practically inviscid fluid
of a different density. Attenuation is insignificant; only the wavenumber is shifted.
On the other hand when mud is so viscous that D → 0, Re(G), Im(G) → 0 , which
leads to G(θ, D ) → 0. In this limit mud does not move and hence has no effect on
waves. Therefore, wave attenuation is zero when D is either very small or very large
and must be the greatest for some intermediate D . Note also that for small |σ |,

G ∼ σ 2

3
if |σ | � 1; (8.7)



Short and long waves over a muddy seabed 47

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

|G
|

0

0.5

0.9

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

 0

P
h
as

e 
o
f 

G

0

0.5

0.9

0

–1

–2

–3

–4

1

2

3

4

D

0 1 2 3 4 5 6

D

R
e 

G

–1

–2

–3

–4

–5

–6

0

Im
 G

0.9

0.5
0

0.9

0.5

0

(a) (b)

(c) (d)

Figure 5. (a, b) Magnitude and phase of G. (c, d ) Real and imaginary parts of G for
different values of D = δ/δS and the degree of elasticity θ × 2/π = (0.0, 0.5, 0.9).

hence the phase of G is in the range −π < arg(G) < 0. For large |σ |,

G ∼ 1 − 1

σ
= 1 − 1

D
ei(θ/2+π/4) if |σ | 	 1, (8.8)

which is in the fourth quadrant of the complex σ plane slightly below the real axis.
For intermediate values of |σ |, we use (6.16) and (6.17) to obtain

tanh(σ ) =
sinh(βD ) cosh(βD ) − i sin(αD ) cos(αD )

cos2(αD ) cosh2(βD ) + sin2(αD ) sinh2(βD )
. (8.9)

The real and imaginary parts of G (figure 5), which are proportional respectively to
the wavenumber shift and attenuation rate, are

ReG = 1 − 1

2D
[−αIm(tanh λ) + βRe(tanh λ)]

= 1 − 1

2D

(
α sin(αD) cos(αD) + β sinh(βD) cosh(βD)

cos2(αD) cosh2(βD) + sin2(αD ) sinh2(βD)

)
, (8.10)

ImG = − 1

2D
[αRe(tanh λ) + βIm(tanh λ)]

= − 1

2D

(
α sinh(βD ) cosh(βD) − β sin(αD) cos(αD)

cos2(αD) cosh2(βD) + sin2(αD) sinh2(βD)

)
. (8.11)
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The Newtonian limits of (8.5) and (8.6) are obtained by taking θ = 0,

�k = Re

(
εk1

k0

)
= −γ

d

h

(
2q

2q + sinh(2q)

)(
1 +

1

2D

sinD cosD + sinhD coshD

cos2 D cosh2 D + sin2 D sinh2 D

)
,

(8.12)

λ

L
= Im

(
εk1

k0

)
= γ

δS

h

(
q

2q + sinh(2q)

)(
sinhD coshD − sinD cos D

cos2 D cosh2 D + sin2 D sinh2 D

)
, (8.13)

which agree with the result of Ng (2000) if the water viscosity is ignored.
Note from (8.9) that the denominator of G(θ, D ) vanishes if

cos(αD ) = sinh(βD ) = 0, (8.14)

i.e. when

θ =
π

2
, D =

(
1

2
+ m

)
π√
2
, where m is an integer. (8.15)

Thus large amplification signifies resonance and may occur if the mud is highly
elastic (θ ∼ π/2) and if the ratio of the mud-layer depth to its Stokes’ boundary-
layer thickness has the special value given by (8.15). In particular the first few
peaks of |G| are at D = 1.11, 3.33, 5.55 for m =0, 1, 2. Since with increase in
k0H , D = d/δS increases monotonically and the wave factors Fz(k0H ) and Fk(k0H )
decay exponentially, only the first value, D = 1.11, can lead to significant interface
displacement and damping.

8.3. Interface displacement

From (6.13) we obtain the ratio of the interface amplitude to the surface wave
amplitude,

R = |R|eiθR ≡ ζ ′
01

η′
01

=
εζ01

A
≡ γ

d

h

q

sinh q

(
1 − tanh σ

σ

)
= γ

d

h
Fz(k0H )G(σ ). (8.16)

The factor

Fz(k0H ) =
k0H

sinh(k0H )
(8.17)

represents solely the water-wave properties; it decreases exponentially for large water
depth, as also shown in figure 4.

8.4. Numerical results of first-order predictions

In this section, we present the relative displacement of the interface according to
(8.16) and the damping rate and the wavenumber shift for both Hangzhou Bay mud
and Lianyungang mud. Several mud concentrations and mud-layer thicknesses are
examined for fixed water depth h = 10 m.

8.4.1. Interface displacement

Results for Hangzhou Bay mud are presented in figure 6. One can see that for
shorter water waves the interface and the free surface are more in phase with each
other. Owing to the relatively weak elasticity, the interface displacement is at most a
few per cent that of the free surface, for mud depth no greater than 10 % of the water
depth. Results for unlikely deep mud layer with d/h = 0.2 show a greater interface
amplitude. As expected, higher mud concentration is associated with smaller interface
displacement.
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Figure 6. Modulus and phase of the ratio of complex vertical displacements R = εζ10/A for
Hangzhou Bay mud samples: (a, b) φ = 0.20; (c, d ) φ = 0.24; (e, f ) φ = 0.34.

Interface displacements for Lianyungang mud are shown in figure 7. For the
smallest concentration (φ =0.17) and a sufficiently deep mud layer with d/h = 0.1,
the interface displacement can be as high as 15 % of the free-surface displacement.
For the unlikely deep mud with d/h = 0.2 the interface displacement can be as high
as 45 % of that of the free surface. This is clearly due to the high elasticity which
permits relatively strong resonance. Again, higher concentration leads to smaller
interface motion.

8.4.2. Damping rate and wavenumber shift

The damping rate and the wavenumber shift for Hangzhou Bay mud are shown in
figures 8. Note that as the concentration increases the maximum (resonant) damping
decreases and the waves become longer. This is because the mud movement is
reduced with increase in concentration. For the same reason damping increases, and
wavelength increases with the mud depth.
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Figure 7. Modulus and phase of the ratio of complex vertical displacements R for
Lianyungang mud sample: (a, b) φ = 0.17; (c, d ) φ = 0.26; (e, f ) φ = 0.50.

We now turn to the results for Lianyungang mud which has much larger viscoelastic
coefficients. The damping rate and wavenumber shift are plotted for three solid
concentrations in figure 9 for depth ratios d/h = 0.03, 0.05, 0.1, 0.2. Again when
the solid volume fraction increases, the interface moves less; hence the damping
rate decreases and the wavenumber further reduces. The resonant peaks are shifted
to shorter wavelengths (larger k0H ). For large k0H the wavenumber shift become
increasingly positive, and the wavelengths tend to become shorter.

9. Infragravity waves
It is well known in the classical theory of waves over a rigid bottom that radiation

stresses in narrow-banded short waves force set-down and infragravity waves of long
periods and wavelengths (Longuet-Higgins & Stewart 1964). Without strong reflection
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the long wave propagates with the envelope of the short waves and is called the bound
long wave.

With reference to (5.4), (5.5) and (5.7), the forcing function F20 and G20 are formally
the same as those for a rigid seabed:

F20 = −g
∂2Φ00

∂x2
1

, (9.1)

G20 =
k0

2

∂ |A|2
∂x1

− 1

4 sinh2 q

∂ |A|2
∂t1

− ∂Φ00

∂t1
, (9.2)

L20 =
∂ζ00

∂t1
= 0. (9.3)

The interface velocity vanishes trivially (L20 = 0) since ζ00 = 0. Therefore the equation
governing the long-wave potential remains the same as if the bed were rigid without
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mud (see Mei 1989),

∂2Φ00

∂t2
1

− H
∂2Φ00

∂x2
1

=
k0

2

∂ |A|2
∂x1

− 1

4 sinh2 q

∂ |A|2
∂t1

. (9.4)

However, mud motion influences the long (infragravity) wave indirectly through the
slow variation of A governed by (7.7).

In the muddy region, the forcing term on the right-hand side of (9.4) is

ik0K

4
A2

0

{
2i

ki
1

K
e−2ki

1x1 +

[
1 + i

ki
1

K
+

Cg

sinh(2k0H )

]
e2i[(K+iki

1)x1−Ωt1]

−
[
1 − i

ki
1

K
+

Cg

sinh(2k0H )

]
e−2i[(K−iki

1)x1−Ωt1]

}
= iPA2

0e
−2ki

1x1

{
2iQ + [1 + iQ] e2i[Kx1−Ωt1] − [1 − iQ] e−2i[Kx1−Ωt1]

}
(9.5)



Short and long waves over a muddy seabed 53

with the real parameters

P =
k0K

4

(
1 +

Cg

sinh(2k0H )

)
(9.6)

and

Q =
ki

1

K

⎛⎜⎜⎝ 1

1 +
Cg

sinh(2k0H )

⎞⎟⎟⎠ . (9.7)

Note that

ki
1

K
=

εki
1/k0

εK/k0

, (9.8)

which depends on several length ratios (d/a0, k0H and the relative bandwidth εK/k0).
The long-wave solution is easily found to be

Φ00(x1, t1) = A2
0e

−2ki
1x1

[
PQ

2H
(
ki

1

)2 +

(
iR∗P

4K2
(
H − C2

g

)e2i[Kx1−Ωt1] + c.c.

)]
. (9.9)

The complex parameter R is defined by

R =
1 − iQ

1 − 2i
H

H − C2
g

ki
1

K
− H

H − C2
g

(
ki

1

K

)2
, (9.10)

which depends on wave and mud properties.
From the long-wave potential (9.9) the mean horizontal velocity εU is derived:

U =
∂Φ00

∂x1

= 〈U〉 + Re(Ũe2i(Kx1−Ωt1)), (9.11)

where Re stands for ‘real part of’ and 〈U〉 for the steady current,

〈U (x1)〉 = ε
∂Φ00

∂x1

= −e−2ki
1x1

2ki
1PQ

2H
(
ki

1

)2 = −k0A
2
0

4H
e−2ki

1x1, (9.12)

which is in the direction opposite to the waves and diminishes forward as the waves
are damped. This return current is the consequence of requiring the net mass flow
to be zero, possibly because of the presence of a wall at x ∼ +∞, and can also be
derived from mass conservation:〈∫ εη

−H

u dz

〉
= 0, i.e. ε〈U〉H + ε

〈∫ 0

−H

ηu0 dz

〉
+ O(ε2) = 0, (9.13)

where the overline denotes the wave-period (short-time) average. Therefore,

〈U〉 = − 1

H

〈∫ 0

−H

ηu0 dz

〉
, (9.14)

which gives the same result as (9.12). It should be noted that any uniform current is
a solution to (9.4) and can be added to the current above. The magnitude can only
be determined by imposing the boundary condition at either infinity. The velocity
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amplitude of the bound long wave is

Ũ = −k0A
2
0

4

1 +
Cg

sinh 2k0H(
H − C2

g

) R∗
(

1+i
ki

1

K

)
e−2ki

1x1 . (9.15)

In the limit of no mud, R = 1, ki
1 = 0; then the horizontal velocity of the bound wave

over the rigid bed (denote by the subscript ‘RB’) has the amplitude of the classical
result owing to Longuet-Higgins & Stewart (1964),

ŨRB = −k0A
2
0

4

1 +
Cg

sinh 2k0H(
H − C2

g

) , (9.16)

which is independent of the bandwidth K . We note that in shallow water

H =
1

k2
0

(
1 +

(k0H )2

3
+ · · ·

)
, Cg =

1

k0

(
1 − (k0H )2

3
+ · · ·

)
from (5.10) and (7.8) for k0H � 1, so that H −C2

g ∼ 1/(k0H )4 becomes unbounded. In
shallow water, (9.16) derived by Stokes’ expansion loses validity and must be replaced
by Boussinesq’s approximation, as is well known.

Let us rewrite (9.15) as

Ũ = Ψ URB e−2ki
1x1, where Ψ = R∗

(
1+i

ki
1

K

)
. (9.17)

With the help of (9.8), the dependence of the ratio |Ψ | on εK/k0 is shown for the
two mud samples and two concentrations in figures 10 and 11. Note that for all
mud concentrations, |Ψ | ≈ 1 when k0H > 1. In intermediate depths the bound long
wave is still affected by mud and attenuates with distance. For k0H → 0, (9.17) is
no longer valid, although it can be shown that |Ψ | → 1. As the mud concentration
increases, |Ψ | is closer to unity. This is particularly so for the heavy and shallow mud
in Lianyungang with φ = 0.50 and d/h = 0.05, which is hardly moved by the short
wave and hence does not modify the bound long wave.

The mean sea level η10 is deduced from Φ00 according to (7.3):

η10 = 〈η〉 + Re
(
N e−2ki

1x1 e2iK(x1−Cgt1)
)
, (9.18)

where the first term is the steady-state set-down,

〈η〉 = − A2
0

8 sinh2 k0H
e−2ki

1x1, (9.19)

which increases monotonically from the largest negative value (set-down) at the initial
station, x1 = 0, to zero at sufficiently large x1 when short waves are damped out. The
second term represents the bound long wave of amplitude N where

N = −A2
0
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⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (9.20)
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Figure 10. Factor Ψ of bound long wave for Hangzhou Bay mud: (a, b) φ = 0.20; (c, d )
φ = 0.24; (e, f ) φ = 0.34. The thick solid line represents εK/k0 = 0.2; the chain represents
εK/k0 = 0.1; the thin solid line represents εK/k0 = 0.05.

If there is no mud (ki
1/K =0), the seabed is rigid; the bound-long-wave amplitude

after using the dispersion relation (5.10) and the group velocity (7.8) is
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(9.21)
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Figure 11. Factor Ψ of bound long wave for Lianyungang mud: (a, b) φ = 0.17 for
d/h =0.05, 0.1; (c, d ) φ = 0.26 for d/h =0.05, 0.10; (e, f ) φ = 0.50 for d/h = 0.1, 0.2. For
the densest mud with d/h =0.05, |Ψ | ≈ 1 for all k0H and is not plotted. The thick solid
line represents εK/k0 = 0.2; the chain represents εK/k0 = 0.1; the thin solid line represents
εK/k0 = 0.05.

In dimensional terms, the last expression is

N ′
RB = − A′

0
2

4
(
gh − C ′

g
2
) (2C ′

g

C ′ − 1

2

)
, (9.22)

which is the classical result of Longuet-Higgins & Stewart (1964).
Let us rewrite (9.20) as

N = ΠNRBe−2ki
1x1, (9.23)
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The behaviour of Π on εK/k0 and k0H for the mud samples from two field sites is
very close to that of Ψ and is not plotted here.

In addition to the low-frequency wave, second-harmonic short waves are also
present and contribute to the free-surface height at the second order, i.e. O(ε), given
by (7.13)–(7.15). It is evident that the amplitude of the second-harmonic decays in
half of the distance as the first.

10. Concluding remarks
We have derived an approximate theory for the propagation of narrow-banded

surface waves over a thin horizontal layer of fluid mud at the sea bed. Since typical
viscosity of mud is far greater than that of water, we treat water as inviscid. The
fluid mud is modelled as a viscoelastic material with a frequency-dependent complex
viscosity. At the first order, analytical expressions of interface displacement, wave
attenuation and wavenumber shifts are found and discussed. It is found that the mud
motion can be significantly enhanced by resonance if the mud elasticity is strong and
the mud layer is relatively thick. Second-order effects of mean set-down and bound
long waves are examined. Owing to attenuation of short waves the second-order set-
down diminishes with the distance of wave propagation and induces a reverse current
that increases in strength in the backward direction. The amplitude of the bound long
wave is smaller for higher concentration and larger bandwidth. The second harmonic
also decays with distance twice as fast as the first-harmonic primary waves. In very
shallow water, the present (Stokes) theory breaks down.

Extensions to gradually decreasing water depth and broad-banded random waves
will be of practical interest. Accounting for strong nonlinearity by Boussinesq
approximation to avoid the breakdown of Stokes expansions is needed, as in Liu &
Chan (2007) who modelled the mud layer as a Newtonian fluid. Mass transport
(induced streaming) and other second-order effects in the mud layer can be carried
out by advancing the mud dynamics to O(ε). Since the long-scale motion corresponds
to low frequencies, one should start from the general constitutive law (2.2) instead of
(2.1) and apply the multiple-scale analysis. In nature, fluid mud is only the upper layer
mobilized from an initially consolidated soil of much higher density and little fluidity.
It is of fundamental importance to predict the depth and the density variation of the
mobile layer. This is an immense challenge in the fluid dynamics of sediment transport.

This research was funded by US Office of Naval Research as a part of the
Multidisciplinary University Research Initiative (MURI) programme under grant
N00014-06-1-0718.
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