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a b s t r a c t

Crystal formation process of charged colloidal particles is investigated using Brownian dynamics (BD)
simulations. The particles are assumed to interact with the pair-additive repulsive Yukawa potential.
The time evolution of crystallization process and the crystal structure during the simulation are charac-
terized by means of the radial distribution functions (RDF) and mean square displacement (MSD). The
simulations show that when the interaction is featured with long-range, particles can spontaneously
assemble into body-centered-cubic (BCC) arrays at relatively low particle number density. When the
interaction is short-ranged, with increasing the number density particles become trapped into a stagnant
disordered configuration before the crystallization could be actualized. The simulations further show that
as long as the trapped configurations are bypassed, the face-centered-cubic (FCC) structures can be
achieved and are actually more stable than BCC structures.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

To further explore the processes involved in crystal growth
including the mechanisms of the growth, there are still enormous
challenges ahead. Charged colloidal particles suspended in de-ion-
ized water under appropriate conditions can be self-assembled
into highly ordered arrays of particles: colloidal crystals [1,2]. This
self-assembly process of colloids directly appears analogous to
their atomic or molecular counterparts and therefore can provide
a useful model system for studying general principles of the crys-
tallization of materials. Since time and length scales in colloidal
crystals are several orders of magnitude larger than those of atomic
or molecular crystals, one can acquire various more suitable tools
and instruments for observation and measurement in investigation
of crystallization to gain an insight into crystal growth.

Understanding the mechanisms underlying transition dynamics
of colloidal crystallization is of fundamental importance to assess
the validity of classical crystal growth theories and to control crys-
tal morphology. Much recent work has been focused on colloidal
interactions and phase transitions [3,4]. The spatial ordering of
colloidal particles has been intensively studied and standard crys-
tal growth theories are applied to explain the mechanisms of
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colloidal crystallization [5,6]. The computer simulations have
contributed considerably to the investigation of the behavior of
colloidal crystallization at the particle level. Monte Carlo (MC) sim-
ulation is capable of predicting the thermodynamic and structural
properties of a system and it has been used to study the phase dia-
gram of suspensions of charged colloids [7,8]. However, MC meth-
od is not suitable for providing the information of dynamic
behavior, including the nucleation pathways. Molecular dynamics
(MD) simulation has also been adopted to study the colloidal crys-
tallization [9,10]. But it is not adaptable to simulate both colloidal
particles and solvent particles motion, because the timescale char-
acterizing the motions of the colloidal particles and the solvent
particles can differ by several orders of magnitude. To solve this
problem, the colloidal particles are taken as MD particles, and
the force of solvent particles is ignored for such MD simulation
[10], in which the system is quenched and super-cooled and the
temperature rescaling method is applied. On the other hand, the
Brownian dynamics (BD) technique, as a mesoscopic method, is
more suitable for characterizing the motion of colloidal particles
because of its ability to average out these fast modes of the solvent
allows one to simulate much larger time scales. Accordingly, the
solvent molecules’ impacts on the colloidal particles are modeled
by a combination of random and frictional force terms. Therefore,
BD method mimics the behavior of colloidal particles much more
properly, and can provide a simplified and useful model of the
colloidal particles motion. BD simulation has been used to study
the two-dimensional colloidal systems and found new aspects of
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Fig. 1. Yukawa potential as a function of e (a) and j (b).
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colloidal ordering process which are quite different from the
classical nucleation theory [11]. However, two-dimensional model
has its limitations in revealing the real complex three-dimensional
world of crystal growth in colloidal systems, especially when deal-
ing with spatial structures, dynamic process, etc.

In this paper, we present three-dimensional BD simulation for
dynamic properties of charged colloidal crystallization. The results
show that, BCC crystals are evolved spontaneously from a disor-
dered, randomly dispersed system. But an ordered FCC structure
is not directly accessible from a disordered state under the condi-
tions in which a stable FCC state is expected. However, a transition
from BCC to FCC structure could be achieved if the initial state is
BCC. The reasons for the simulation results are also explained in
detail in this study.

2. Materials and methods

In BD simulation, the governing equation of the motion of par-
ticles is the Langevin equation, and the diffusive motion of the par-
ticles is simulated by adding random displacements, proportional
to the square root of the time step [12,13]. The algorithm for the
particles motion in the simulation based on the Langevin equation
is of the form,

rðt þ DtÞ ¼ rðtÞ þ D
kBT

FðtÞDt þ DrG; ð1Þ

where the component DrG is chosen from Gaussian distribution
with zero mean.

In the simulation of this work, we consider a system composed
of charged colloidal particles. Interactions between the colloidal
particles are approximated by the repulsive Yukawa potential
[8,14], which is given by

uðrÞ ¼ e
r
� exp½�jðr � dÞ�; ð2Þ

where e basically represents the amplitude of the Yukawa repulsion
in units of kBT, and kB denotes the Boltzmann constant. And j is the
inverse screening length. The dependence of u(r) on the two param-
eters, e and j, is shown in Fig. 1.

Yukawa potential has been widely used for modeling and anal-
ysis of charge-stabilized colloidal suspensions, with its parameters
continuously tunable from Coulomb to hard-sphere-like interac-
tions. For large j, the potential is shorter ranged and approaches
hard-sphere-like interactions. On the other hand, small j corre-
sponds with long-range repulsion as well as a soft interaction.
The total interaction energy is given by the sum of all pairs and
thus has the form:

UðrÞ ¼
XN

i<j

uðrijÞ: ð3Þ

For real systems, however, the interaction between any two
charged particles is strongly influenced by other particles surround-
ing the two particles in consideration. These so-called screening ef-
fects have been directly observed in the experiments with the aid of
optical tweezers by Brunner et al. [15] as well as our group [16,17].
When the distance between the two particles is larger than the aver-
age pair separation, more particles may come in between them,
making the screening effects stronger, and thus the interaction be-
tween the two particles rapidly decays [18]. Therefore, Eq. (1) no
longer holds at large inter-particle distance. To partially take these
effects into consideration, u(r) is set to be zero at larger distances,
and this procedure is called ‘‘a truncated Yukawa potential with a
density-dependent cut-off” [14]. Its a simple measure to manifest
the screening effects in the computer simulations. In this way, the
cutoff of the interaction between the particles is chosen with some
care. The reduced cut-off distance at large j as for long-ranged inter-
actions was taken to be 3.045 in units of the relevant length scale in
this study. This value is, to some extent, larger than that suggested in
some previous studies [10], as the weekly screened system consid-
ered in this study requires a larger cutoff radius [18].

A cubic simulation box with periodic boundary conditions was
used. The initial configuration was constructed by placing a num-
ber of particles randomly inside the three-dimensional simulation
box. The simulation was carried out at constant volume.

The calculation parameters are set as follows: the simulation time
step Dt = 2.0 � 10�6 s, the viscosity of the solvent g = 1.0 � 10�3 Pa s,
the temperature T = 293.15 K. The time step Dt is much larger than
the velocity relaxation time s = mD/kBT = 2.0 � 10�10 s, and much
smaller than the diffusion time sD = a2/D = 1.26 � 10�4 s, where the
radius of the particle a is 60 nm, D is the Stokes–Einstein diffusion
coefficient which is given by,

D ¼ kBT
6pga

: ð4Þ

The relevant length scale is chosen to be

L0 ¼
6N
pV

� ��1=3

; ð5Þ

where N is the total number of the particles, and V denotes for the
system volume. Thus N/V is the particle number density of the sys-
tem. So the reduced parameters are as follows: r is the radial dis-
tance between two particles, and d is the particle diameter. The
other units of the parameters are set as follows: temperature units
T0 = 293.15 K, energy units u0 = kBT, time units t0 ¼ L2

0=D0. Thus the
normalized parameters are T� = 1, e� = e/kBT. The time step and dif-
fusion coefficient are normalized together as ðDtÞ� ¼ Dt=L2

0.
All the variables normalized above are summarized in Table 1.
A number of approaches, such as the structure factor [19],

Lindemann parameter [20], and Bond-Order parameters [21]
have been used to characterize crystallization. For instance, the



Table 1
The normalization scheme of the simulation variables.

Calculation
parameters

Units of the
parameters

The normalized
parameters

T = 293.15 K T0 = 293.15 K T� = 1
Dt = 2.0 � 10�6 s u0 = kBT e� = e/kBT
a = 60 nm t0 ¼ L2

0=D0 ðDtÞ� ¼ Dt=L2
0
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structure factor, which is the Fourier transformation of radial
distribution functions (RDF), is a useful indicator in analyzing
long-range order of the system. The method of Bond-Order param-
eters provides a useful approach to assessing local as well as global
order structures. However, since in our simulations the structure’s
evolution did not clearly demonstrate a tendency that crystal
growth extends from local to global structure and also random
motions cause some fluctuations for the values of Bond-Order
parameters, for simplicity and efficiency, the RDF method is
adopted in this study. The methods of RDF and MSD are used
together to determine the evolution of the system.

The method RDF was used to analyze the ordering process and
distinguish the structure of the resulting crystals. The RDF is
defined as

RDF ¼ qðrÞ
q

: ð6Þ

Here q is the average density of the system, while q(r) is the lo-
cal density at distance r from a chosen ‘‘central” particle. RDF gives
the probability of finding a particle in the distance r from the cen-
tral particle. A system that is in liquid state typically has a smooth
RDF with a small number of peaks at short distances, and decay to
one after the first peak at longer distances. In a system of crystal
state, the RDF has many sharp peaks whose separations and
heights are characteristic of the lattice structure. And the first peak
denotes the position of the nearest neighbor of the particles. So
RDF is useful to describe the structure of a system and thus can
be adopted to measure the extent of the system’s ordering.

The mean square displacement (MSD) measures the distance
that a particle travels during the simulation process. MSD is calcu-
lated by aver aging over all the particles in the system and thus is
given by

MSD ¼ hr2ðtÞi ¼ 1
N

XN

i¼1

h riðtÞ � rið0Þð Þ2i: ð7Þ

MSD can be used to characterize whether particle’s motions are
restricted to local regions or not.
Fig. 2. Time-dependent change of RDF during the simulation at j = 0.72, e = 120,
U = 0.03 for N = 10,976 as a function of the scaled inter-particle distance r. Three
lines are showed at t = 0.002 s, t = 0.1 s, t = 0.5 s, respectively. See Fig. 3 for details.
3. Results and discussions

The MC [7,8] and MD [9,10] methods have already been used to
study the phase behavior of colloidal systems with Yukawa poten-
tials, in which the two-phase coexistence lines are determined uti-
lizing the methods of Helmholtz free energy calculations and the
Kofke integration [22]. The results indicate that BCC structure is
thermodynamically stable for relatively small j, but the dynamics
of the crystallization were not discussed. However, the crystalliza-
tion processes of charged colloidal suspensions are quite complex
according to experimental observations in laboratory. Different
crystalline structures are displayed by controlling the interactions
of the particles [23], and even more the system ordering process
may be inhibited to form glass phase [24,25]. So it is necessary
to study the dynamics of the colloidal crystallization to further
gain insight into the ordering process.
3.1. The structure at small j

In this subsection, we focus on the case of soft interaction, i.e.
the value of j is comparatively small. In this case, the inter-particle
interactions are featured with long-range repulsion. Since the
repulsion range varies with j, for each pair of j and e, there is a
minimum particle number density that required for crystallization.
This required particle number density can be quite small for the
long-range repulsion. As a typical case, j = 0.72, e = 120, U = 0.03
were chosen in the simulation for the crystallization study. The
simulation was started from a cubic box with particles randomly
distributed. The results show that ordered BCC structures gradually
emerge in different domains with time elapsing and eventually ex-
tend to all over the simulation box. The evolution of the RDF is
illustrated by Fig. 2.

From Fig. 3a we can see that, at the initial stage of the simula-
tion, some peaks appear and the position of the first peak is 0.87.
However, the peak number is fewer and the heights of the peaks
are rather low (except the first peak), which is consistent with
the snapshot showing that the system is still in a disordered state.
During the crystallization process, as shown in Fig. 3b–d, more
peaks of the RDF line appear and the heights of the peaks increase
obviously. Correspondingly, the snapshots show that some BCC
structures appear in different parts of the simulation box. Some
typical independent ordered parts in Fig. 3b with different orienta-
tions are displayed in Fig. 4.

With regard to the final structure after 250,000 time steps, the
resulting RDF line shows obviously a lot of peaks, the positions of
which fit the BCC crystal structure, as is shown in Fig. 3d. However,
the peaks are not so sharp as RDF lines for perfect BCC structures,
because the random force makes the particles vibrate around the
lattice sites. The position of the first peak is 0.87, which is consis-
tent with the position of the first nearest neighbor of BCC structure
and the value apparently remains unchanged from the beginning
of the ordering process. According to the standard BCC structure,
the second and the third peaks should be separated. However,
these two peaks are so close that they are not well distinguishable
in the RDF line. Actually, we can see that there is a split appears in
the second peak of the RDF line, as shown in Fig. 3d, indicating that
a highly ordered BCC structure has formed in the simulation after
t = 0.5 s. It has been reported that improper choice of particle
number may mislead the resulted crystal structure due to the
restriction of periodic boundary condition, especially when the
simulation box is not large enough [26,27]. We purposely chose
the particle number of 10,976 (=4 � 143) to match the number of
lattice points for FCC structure in the simulation box. The simula-
tion result that the particle number favorable for FCC structure still
forms the BCC structure indicates that the latter is more stable. On
the other hand, to match the BCC structure, the particle number
should be 9826 (=2 � 173), as the closest choice for the cubic



Fig. 3. Time-dependent change of RDF and snapshots of the colloidal system during the simulation at j = 0.72, e = 120, U = 0.03 for N = 10,976. The comparison of RDF of BCC
structure in the simulation with its theoretical one is given in the inset of the left plot in (d). Parts of the simulation box of the axis from�5 to 5 of three dimensions are showed.
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box. Since the particle number we choose is not right for BCC
structure, some defects appear in the final BCC crystal arrays due
to the presence of excess particles.
As the height of the first peak in RDF can be used to assess the
extent of ordering, its evolutions are exhibited in Fig. 5. We can
see that during the crystallization, the height of the first peak



Fig. 4. Snapshots of typical independent ordered parts of the simulation box with different orientations, t = 0.1 s.

Fig. 5. The maximal height of the first peak of RDF line as a function of time,
j = 0.72, e = 120, U = 0.03, N = 10,976.

Fig. 6. MSD as a function of time, j = 0.72, e = 120, U = 0.03, N = 10,976.
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continues increasing with time, until it reaches a comparatively
steady value after several thousands time steps (t = 0.20 s), at which
all over the simulation box is full of the BCC structures (see Fig. 3c).
After t = 0.20 s, the height of the first peak in RDF line fluctuates
around a constant value as a result of the particles’ vibration. The
average height of the first peak is 3.2 from t = 0.20 s to t = 0.5 s.
The average is from five independent runs as shown in Fig. 5.

The change of MSD shown in Fig. 6 is consistent with the time
evolution of the RDF line of Fig. 5. The MSD exhibits an obvious in-
crease since the ordering process starts, and then reaches a plateau
at t = 0.20 s, which reflects the particles are moving only around
their equilibrium positions with advancing crystallization. The
average plateau value is 2.9 from t = 0.20 s to t = 0.5 s, which is also
sampled from the five independent runs.
3.2. The structure evolution at large j

As mentioned above, the Yukawa potential of Eq. (1) with large j
is close to the feature of the hard-sphere interaction. The formation
of the FCC crystal structure in suspensions of hard-sphere colloids at
high volume fraction was firstly predicted by computer simulations
and then confirmed by experiments [28,29]. On the other hand,
experimental studies on colloidal particles with repulsive interac-
tion have also shown that the possibility of the formation of FCC
crystal structures [3,22]. Actually, MC and MD simulations have
already verified that the FCC is a thermodynamically stable state
for the systems featured with the Yukawa potential with large j
[7–10]. As is well known, however, the thermodynamically favored
structures are not necessarily dynamically directly reachable.
Unfortunately, as a matter of fact, the dynamic evolution from liquid
to the ordered FCC structure by computer simulations could hardly
be actualized [10]. Extensive computational techniques, utilizing
the classical nucleation theory and the free energy calculations, have
been adopted to evaluate the nucleation rate and trace the crystalli-
zation process. It is argued that the nucleation probability is so small
that the system could hardly crystallize spontaneously within a
reasonable computation time. However, there remain discrepancies
between the predictions of simulations and experiments [30,31].

In order to examine the dynamic possibility of FCC formation,
BD simulations of colloidal particles interacting by the Yukawa
potential with large j are implemented in this study. With large
j corresponding to short-ranged repulsion, the required particle
number density for crystallization has to be increased, compared
with the case of small j discussed in previous subsection. The sim-
ulations with several different sets of j, e and U have been carried
out and the relevant simulation results are basically similar. One of
them with parameters j = 1.9, e = 50, U = 0.10 are typically illus-
trated in Fig. 7. The cut-off distance of the interaction was set to
be 2.175 with respect to the short-ranged repulsion. A number of
long-run simulations demonstrate that the crystallization is basi-
cally impossible, and the particles are eventually jammed to form
rather disordered structures before any tendency of crystallization



Fig. 7. Time-dependent change of RDF and snapshots of the system during the simulation at j = 1.9, e = 50, U = 0.10, for N = 4000.
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could show up. In this case, the particles are frozen and only oscil-
late locally with rather small amplitude. The result is displayed in
Fig. 8, which shows that the RDF line does not change much from
t = 0.01 s to t = 0.6 s, and the average height of the first peak is
around 2.3.

In Fig. 9 the time dependence of MSD is plotted. The MSD line
reach its maximum at t = 0.3 s, and the average value from
t = 0.3 s to t = 0.6 s is 8.36. This value remains the same for a long
time, implying the system is no longer in the liquid state whose
long-time MSD should grow linearly with time. Yet the system is
still in a disordered state. Apparently, the colloidal particles are
jumbled together and their motions are inhibited by the surround-
ing neighboring particles as in a glass state, which is shown in
Fig. 7.

In fact, the colloidal model system has already been used to
study the glass transition in experiments [31]. And it has also been
observed that the interaction potential plays a determinant role in
the system structure, as the charged colloidal suspension may get
into glass or gel if the range of the repulsion is shortened at higher
particle number density [20,21].
3.3. The transit from BCC to FCC at large j

It is shown in the previous subsection, that FCC structure is not
directly accessible because particles are trapped into a stagnant dis-
ordered configuration. To examine whether the FCC structure is pos-
sible and which one would be more stable between BCC and FCC
structures at large j, instead of randomly distributed configuration,
the BCC structure developed with the parameters described in sub-
section A was taken to be the initial configuration of the simulation.
All the simulation parameters were kept the same as presented in
Fig. 8. The maximal height of the first peak of RDF line as a function of time, j = 1.9,
e = 50, U = 0.10, for N = 4000.
the previous subsection, namely, j = 1.9, e = 50, U = 0.10, and the
cut-off distance of the interaction was still set to be 2.175. For this
set of parameters, random displacements of the particles are much
greater than displacements associated with the interaction between
particles so that the transition from BCC structure to FCC structure
becomes very slow. To accelerate the BCC–FCC transition process
in the simulation, random displacements are reduced to 10 percent
of their values in the calculation.

In the simulation, a transition from BCC to FCC structure can be
detected according to the change of RDF in Fig. 10. The height of
the first peak increases slightly as crystals of the FCC structure
emerge, which is shown in Fig. 11. The average value of the height
of the first peak from t = 0.1 s to t = 0.4 s is 7.34. Meanwhile the po-
sition of the first peak moves to larger r, and the final position of
the first peak is 0.91. After 200,000 time steps, steady FCC structure
is well established in the system, according to the peak distribution
of RDF line which fits the FCC structure, as is shown in Fig. 10d.

As plotted in Fig. 12, the time dependence of MSD reach its
maximum after t = 0.1 s, and the average value from t = 0.1 s to
t = 0.4 s is 0.94.

Considering that the particle number (4000 = 4 � 103) used in
the BCC–FCC transition exactly matches the number of lattice
points for FCC structure, which may lead to the consequent FCC
structure, the simulation with the initial particle number 9826
(2 � 173), which purposely matches the number of lattice points
for BCC structure, was also carried out. In this case, BCC–FCC struc-
tural transition still occurred, further confirming the result that
FCC phase is more stable than BCC, which is consistent with the
phase diagram showing FCC is stable [7–10].

Our simulation shows that, although the FCC structure cannot
form from liquid state as discussed in the previous subsection, a
BCC–FCC transition can be actualized under the conditions that
Fig. 9. MSD as a function of time, j = 1.9, e = 50, U = 0.10, for N = 4000.



Fig. 10. RDF and snapshots of the BCC–FCC transition, j = 1.9, e = 50, U = 0.10, for N = 4000. The comparison of RDF of FCC structure in the simulation with its theoretical one
is given in the inset of the left plot in (d).
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Fig. 11. The maximal height of the first peak of RDF line as a function of time,
j = 1.9, e = 50, U = 0.10, for N = 4000.

Fig. 12. MSD as a function of time, j = 1.9, e = 50, U = 0.10, for N = 4000.
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can make the FCC structure stable. From the results that the FCC
structure is stable under certain interaction parameters and number
densities but is not directly reachable from randomly distributed
configurations, it can be reasonably inferred that there may exist
an energy barrier between the disordered (liquid) state and ordered
FCC structure. Thus the system will not crystallize unless the energy
barrier is overcome or bypassed. This argument based on the simu-
lation is in accordance with the predictions, according to the classi-
cal nucleation theory, showing that the spontaneous crystallization
in short-ranged (large j) and weakly-charged colloids is inaccessi-
ble within a reasonable time scale of computer simulation [5].

To alternatively examine whether FCC structure is more stable
than the ‘‘glass state”, we performed a simulation starting with a
special configuration in which the particles in a small region of
the simulation box were pre-arranged with FCC structure, while
the particles in the rest part of space were in the glass state. During
the simulation process we found that, boundaries of the FCC region
were gradually expanding towards the glass domain, suggesting
the FCC state is more stable than glass state.

According to all clues drawn from the simulation, for the case
with large j, a ranking of above-mentioned phases from most
unstable to most stable are the disordered (liquid) state, the disor-
dered glass state, BCC structure and FCC structure with a barrier
between glass state and FCC.

4. Conclusion

In this paper, we present BD simulation to studying the dynam-
ics of crystallization of charged colloidal system, in which the
interaction between particles is approximated by the pair-additive
repulsive Yukawa potential. The time evolution of crystallization
process and the crystal structure during the simulation are de-
tected by means of RDF and MSD. The simulations show that
depending on the interaction parameters and particle number den-
sity, the system can be developed into one of the three possible
states: to remain in liquid state; to be jammed in glass state or
to form a stable crystal structure. The results in the manuscript
are qualitatively in agreement with the phase diagram and the sta-
tic results obtained by Chaikin et al. [32], which show that the solid
state is BCC for long-range repulsions (j is smaller) and FCC for
short-range repulsions (large j). The basic finding of this study
can be summarized as two cases:

(I) When the inter-particle interactions are featured with long-
range repulsion (j is smaller), particles, at proper particle
number densities, can spontaneously assemble into BCC
arrays, but FCC structure is not stable.

(II) When particles have the short-ranged, hard-sphere-like
interactions (large j), the system either remains in liquid
state (when particle number densities is low) or jammed
to form disordered, glass state (at larger particle number
densities). This glass state prevents the system from the
crystallization possibility. When the glass state can be
bypassed, FCC structure can be achieved and is more stable
than BCC structure.
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