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A linear spatio-temporal stability analysis is conducted for the ice growth under
a falling water film along an inclined ice plane. The full system of linear stability
equations is solved by using the Chebyshev collocation method. By plotting the
boundary curve between the linear absolute and convective instabilities (AI/CI) of
the ice mode in the parameter plane of the Reynolds number and incline angle, it is
found that the linear absolute instability exists and occurs above a minimum Reynolds
number and below a maximum inclined angle. Furthermore, by plotting the critical
Reynolds number curves with respect to the inclined angle for the downstream and
upstream branches, the convectively unstable region is determined and divided into
three parts, one of which has both downstream and upstream convectively unstable
wavepackets and the other two have only downstream or upstream convectively
unstable wavepacket. Finally, the effect of the Stefan number and the thickness of
the ice layer on the AI/CI boundary curve is investigated.

1. Introduction
The effect of ice formation under a gravity-driven water film is of great practical

importance in aircraft icing and shallow drainage conduits used in diverse engineering
structures subject to moisture collection. In order to study ice growth in a pipe, Gilpin
(1979) performed a series of experiments and found that for the entire range of the
Reynolds numbers obtainable in the experiment (up to 14 000), there exists a final
steady-state ice profile with a cyclic variation in height along the pipe. Interestingly,
he observed that the ice-band structure forms in the following way (Shapiro 2004).
Initially, ice grows uniformly until some height is gained, afterwards a sharp expansion
of the flow passage forms near the exit of the cooled section; moreover, this expansion
migrates upstream; as the first expansion migrates upstream, another ice growth may
form near the pipe exit and propagates upstream in its turn. From the absolute and
convective instability point of view, the development of the ice-band structure shows
that the ice growth is convectively unstable and the unstable wavepacket spreads
upstream.

Since Kapitza & Kapitza (1949) experimentally studied the isothermal liquid film
on an inclined plane, the mechanisms of the film instability have been extensively
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studied by theoretical linear and nonlinear approaches. Benjamin (1957) and Yih
(1963) first performed a linear stability analysis of isothermal falling films and
identified the surface wave instability through a long-wave asymptotic approach.
DeBruin (1974), Floryan, Davis & Kelly (1987) and Woods & Lin (1996) revealed
the short shear instability (Tollmien–Schlichting wave) occurring at a slightly inclined
angle (<1◦). Naturally, if the water film flows on a flat ice layer with a finite
thickness, the traditional film model produces an excellent starting point for the
analysis of the icing instability. Such a generalization is first adopted by Shapiro &
Timoshin (2006) for the stability study of ice growth. They first derived an analytic
solution to the stability problem in the long-wave limit, which shows that the presence
of the ice layer generates an additional wave mode, named ice mode by them.
Furthermore, by using this long-wave solution as an initial guess, they found the
ice mode in the numerical solution of the complete Orr–Sommerfeld problem and
investigated its stability boundary behaviour numerically for a wide range of problem
parameters, especially giving out fruitful information about the variation of the critical
parameters with respect to different inclined angles, Stefan numbers and ice layer
thickness.

The linear absolute and convective instabilities for a single-layer isothermal falling
film have been studied intensively by Brevdo et al. (1999). They focused on the full
linearized Navier–Stokes equations to investigate the characteristics of the absolute
and convective instability through the exact Briggs–Bers collision criterion. They
explored a large region of the parameter space and pointed out that the one-layer film
flow is convectively unstable, which agrees with all done experiments. The absolute
and convective instability analysis of ice growth under a falling water film is performed
by Shapiro & Timoshin (2007) through the numerical investigation of the evolution
of a spatially localized initial disturbance. They adopted an asymptotic double-deck
theory to derive a system of nonlinear evolution equations which is suitable for large
Reynolds and Froude numbers, and further used a novel global marching-type scheme
to solve the evolution equations and investigate the effects of nonlinearity of the ice
instability. They successfully discovered an upstream-propagating instability arising
from the interaction of the ice surface with the water film flow. This convectively
unstable characteristic agrees with the Gilpin’s experiment (Gilpin 1979). So far, the
spatio-temporal instability analysis on the full linearized Navier–Stokes equations for
the ice growth is still not performed. Because of the potential application of the
stability analysis in aircraft icing, especially ice formation corresponding to upstream
convective instability or absolute instability will change the aircraft profile greatly
from streamlined to non-streamlined, and then the performance of aircraft will
reduce violently even leading to catastrophic accidents. Thus, a detailed theoretical
study of the linear absolute and convective instabilities of ice growth is necessary,
especially investigated within a large parameter region, which is the main focus of
this paper.

2. Formulation
2.1. Dimensionless governing equations

We are concerned with an ice growth from an undercooled thin water film flowing
down an inclined plane with angle β . As sketched in figure 1, there exist two layers:
water layer and ice sheet with finite thicknesses. In this model of ice growth, the
temperature of the cold solid wall is below freezing point and the temperature
of the water surface is above freezing point. We will use subscripts L and I to
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Figure 1. Schematic of the water film falling along an ice plane.

refer to the properties of liquid layer and ice sheet, respectively. The system is
dimensionalized by the water film thickness h0 for length, the free surface undisturbed
velocity u0 = gh2

0 sinβ/2νL for velocity, μLu0/h0 for pressure and �T = Ta − Tf for
temperature. Here, ρL denotes the density of water, μL and νL denote the dynamic
and kinematic viscosities of water, respectively, Tf denotes the freezing temperature
of water, and Ta denotes the temperature of the surrounding air, which is assumed to
be constant.

Using these characteristic values and the usual notation for velocity and pressure,
and neglecting the buoyancy effect, the governing system of equations can be written
in non-dimensional form as

∇ · v = 0, (2.1a)

Dv

Dt
= − 1

Re
∇p +

1

Re
∇2v +

1

Fr2
eg, (2.1b)

DθL

Dt
=

1

PrRe
∇2θL, (2.1c)

∂θI

∂t
=

χIL

PrRe
∇2θI . (2.1d)

Here, ∇ = (∂x, ∂y), v = (u, v) and eg = (sin β, − cosβ) are vectors of the gradient
operator, dimensionless fluid velocity and gravity acceleration unit vector, p is
the dimensionless fluid pressure, θL and θI are the corresponding dimensionless
temperatures of the water layer and the ice sheet, respectively. The dimensionless
parameters appearing in the above governing equations are Reynolds number, Prandtl
number and Froude number and are defined as

Re =
u0h0

νL

, Pr =
νL

χL

, Fr =
u0

(gh0)1/2
. (2.2)

Also, χIL = χI/χL is the ratio of thermal diffusivities of the ice and the water.
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The dimensionless boundary conditions at the free surface y = ξ (x, t) are

ξt + uξx = v, (2.3a)

T · ns + We κns = 0, (2.3b)

θL = 1, (2.3c)

where ns is the unit outward vector normal to the free surface, the stress tensor T
and mean curvature κ/2 are represented as

T = −p I +
(
∇v + (∇v)T

)
, (2.4a)

κ = −∇ · ns, (2.4b)

and We is the Weber number defined as

We =
2σ

ρLgh2
0 sin β

= Re−2/3

(
3

2
sin β

)−1/3

ζ. (2.5)

Here, σ is the surface tension coefficient, which is assumed to be independent of the
temperature, i.e. the thermocapillary effect is neglected. Moreover, ζ = [3ρLσ 3/gμ4

L]1/3

is the surface tension parameter that depends only on media properties.
The dimensionless boundary conditions at the water–ice interface y = η(x, t) are

φIL ηt + uηx = v, (2.6a)

(λIL∇θI − ∇θL) · ni =
PrRe

St

[
1 + Λ1

(v − us)
2 − u2

s

2

]
v · ni + Λ2(v − us) · S · ni , (2.6b)

θL = θI = 0, (2.6c)

where S = (∇v + (∇v)T) is the deviatoric stress tensor, us is the interface velocity of
phase change, ni is the unit vector normal to the interface that directs from the ice to
the water, φIL = 1 − ρI/ρL is a positive constant involving only the densities of the
ice and and water, λIL = λI /λL is the ratio of thermal conductivities of the ice and
the water, and the Stefan number St , Λ1 and Λ2 are defined as

St =
(ρL − ρI )CpL�T

ρIHLI

, Λ1 =
u2

0

HLI

, Λ2 =
μLu2

0

λL�T
. (2.7)

Here, CpL is the water-specific heat and HLI is the latent heat, which is defined by
the amount of heat required to change a unit mass of solid into liquid at the freezing
temperature. We argue that the definition of Stefan number here is different from
that of Gilpin (1979) for there is an additional part (ρL − ρI )/ρI .

The boundary condition at the bottom cold wall is only the temperature condition
due to no motion of the ice sheet:

θI = TW = constant . (2.8)

Note that the Stefan boundary condition (2.6b) is deduced from the complete form
of mass, momentum and energy balance equations (Lin & Hudman 1996) at the
ice–water interface. Furthermore, there exist two nonlinear terms that arise from the
work done by the viscous stress and the kinetic energy, respectively. However, for
most situations with moderate scale of velocity, the dimensionless parameters in (2.6b)
have

Λ1 � 1, and Λ2 � PrRe

St
, (2.9)
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Name Symbol SI unit Water Glaze ice

Density ρ kg m−3 999.8 920
Thermal conductivity λ Jm−1 s−1 K−1 0.561 2.24

Specific heat Cp J kg−1 K
−1

4218 2092.7
Thermal diffusivity χ m2 s−1 1.3303 × 10−7 1.17 × 10−6

Dynamic viscosity μ kg m−1 s−1 0.001792 −
Latent heat HLI J kg−1 3.334 × 105 −

Table 1. Physical properties of water and ice at 273 K.

and thus these nonlinear terms could be neglected. For the typical case studied here,
if h0 ∼ 3 × 10−3 m, β ∼ 10−2 and �T ∼ 10 K are selected, and by using the physical
properties of water and ice at 273 K shown in table 1, then we have Re ∼ 103,
St ∼ 10−2, Λ1 ∼ 10−6, Λ2 ∼ 10−5 and PrRe/St ∼ 106, so the above conditions (2.9)
are satisfied very well. In the following section, the considered basic flow is a Nusselt
laminar flow without the motion of the ice–water interface, just like the water film
falling along a solid plate. Then, even if the nonlinear terms are not neglected in
advance, they will also be regarded as higher-order small terms and will not appear
in the linearization equations.

2.2. Linear stability equations

The base steady-state solution (2.1) independent of the x-coordinate is given by a
half-parabolic streamwise velocity profile, linear pressure distribution in the water
and linear temperature distributions in both liquid and solid phases, which can be
written as

velocity: U (y) = 1 − y2, V (y) = 0,

pressure: P (y) = 2y cot β,

temperature: ΘL(y) = 1 − y, ΘI (y) = TW (y − 1)/(H0 − 1),

(2.10)

where y = H0 gives the coordinate of the cold wall. From the energy flux balance
(2.6b) written at the ice surface for the unperturbed basic flow, it follows that
TW = (1 − H0)/λIL. Around the basic state, the disturbed flow can be decomposed as
u = U + u′, v = v′, p = P + p′, θL = ΘL + θ ′

L, θI = ΘI + θ ′
I , ξ = ξ ′ and η = 1 + η′,

then we can obtain the linearized perturbation equations and linearized boundary
conditions. We expand the two-dimensional infinitesimal perturbations in the form of
normal modes as

(u′, v′, p′, θ ′
L, θ ′

I , ξ
′, η′) = [û(z), v̂(z), p̂(z), θ̂L(z), θ̂I (z), ξ̂ , η̂]ei(kx−ωt), (2.11)

where k is the complex wavenumber in the x direction, ω is the complex frequency.
Substituting the normal modes into the linearized perturbation equations and
linearized boundary conditions, and eliminating the eigenfunctions û and p̂, we
can obtain the linear instability equations

(D2 − k2)2v̂ = iRe[(Uk − ω)(D2 − k2) − D2Uk]v̂, (2.12a)

PrRe[i(Uk − ω)θ̂L − v̂] = (D2 − k2)θ̂L, (2.12b)

−iωPrReθ̂I = χIL(D2 − k2)θ̂I , (2.12c)
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and linear boundary conditions

ξ̂ = − i

Uk − ω
v̂(0), (2.13a)

(D2 + k2)v̂(0) − k

Uk − ω
D2Uv̂(0) = 0, (2.13b)

[D2 − 3k2 − iRe(Uk − ω)]Dv̂(0)

−
[
k2Re−2/3

(
3

2
sinβ

)−1/3

ζ + 2 cotβ

]
ik2

Uk − ω
v̂(0) = 0, (2.13c)

θ̂L(0) − i

Uk − ω
DΘLv̂(0) = 0, (2.13d )

η̂ =
i

φILω
v̂(1), (2.13e)

Dv̂(1) +
kDU (1)

φILω
v̂(1) = 0, (2.13f )

λILDθ̂I (1) − Dθ̂L(1) =
PrRe

St
v̂(1), (2.13g)

θ̂L(1) = − i

φILω
DΘLv̂(1), (2.13h)

θ̂I (1) = − i

φILω
DΘI v̂(1), (2.13i )

θ̂I (H0) = 0. (2.13j )

Here, D = d/dy. According to the media properties of the water and glaze ice at
273 K summarized in table 1, we use Prandtl number Pr = 13.47, the ratio of
thermal conductivities λIL ≈ 4.0, the ratio of thermal diffusivities χIL ≈ 0.1137 and
φIL ≈ 0.0798 in this paper.

2.3. Numerical method and validations

The linear stability equations are ordinary differential equations in terms of v̂, θ̂L and
θ̂I , and can be regarded as a two-point boundary value problem. If there exists a
nontrivial solution for the equations, a corresponding dispersion relation

D(k, ω; Re, St, ζ, H0, β; Pr, λIL, χIL, φIL) = 0 (2.14)

should be satisfied, and we need to solve an eigenvalue problem. Because it is
impossible to find the explicit analytical dispersion relation if there is no further
simplification, the dispersion relation has to be obtained numerically. A compact
fourth-order accurate finite-difference scheme is used to discretize the linear stability
equations and boundary conditions by Shapiro & Timoshin (2006) for this problem.
In this paper, the Chebyshev collocation method (Canuto et al. 1988) is used to
discretize the eigenvalue problem and the QZ algorithm to solve the resulting general
eigenvalue problem. By using our spectral code, the surface mode, shear mode and ice
mode of instability for small inclined angles are found, and the same neutral curves
as the figure 5(a) in Shapiro & Timoshin (2006) are reproduced within 1 % precision.
Furthermore, a detailed quantitative comparison of the critical parameters of the ice
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Hu et al. Shapiro & Timoshin

ζ = 0 ζ = 4899.38 ζ = 0 ζ = 4899.38
Rec 2866.5 3032.0 2884.7 3041.4
kc 0.775 0.798 0.772 0.796
crc −7.87 ×10−5 −7.49 ×10−5 −7.93 ×10−5 −7.53 ×10−5

Table 2. Comparisons between Shapiro & Timoshin (2006)’s results and ours on the critical
parameters of the ice mode. St = 0.0625, H0 = 10, β = 0.002.

mode is listed in table 2. Fine agreeable values are obtained from our code for critical
Reynolds number, critical wavenumber as well as critical phase velocity. In § 3, the
linear absolute and convective instabilities of the ice mode are studied in detail with
our validated spectral code.

3. Linear absolute and convective instabilities
Before we consider the spatio-temporal instability of the ice growth under the falling

water film flows along an inclined ice plane, let us recall the basic concepts of the
absolute/convective instability theory (AI/CI), which originated from plasma physics
(Briggs 1964; Bers 1973). A good introduction to this theory is given by Huerre &
Monkewitz (1985, 1990), who first applied such a spatio-temporal stability analysis
to spatially developing flows. They analytically investigated the absolute/convective
nature of the instability through the asymptotic response of Green’s function at
large time. Furthermore, they indicated that periodic forcing on the boundary can be
spatially amplified only when the system is convectively unstable.

Basically, when an amplifying wavepacket is convected away from its local
position, the wavepacket would be said to be convectively unstable. If, otherwise, the
amplification can be observed locally, the wavepacket would be said to be absolutely
unstable. Generally, the absolute/convective nature of the instability is determined by
the sign of the absolute growth rate ω0i = Im[ω(k0)] defined at the saddle point k0 of
the dispersion relation, i.e. when (dω/dk)|k0

= 0. In these expressions, k is a complex
wavenumber and ω is a complex frequency. If the absolute growth rate ω0i is greater
than zero (lower than zero), the flow is said to be absolutely (convectively) unstable,
and the boundary between absolute and convective instabilities is then determined
by a zero absolute growth rate, i.e. ω0i . However, note that the saddle point k0 used
to identify AI/CI must satisfy the Briggs–Bers collision criterion, i.e. the saddle point
must be a pinch point produced by two distinct spatial branches of solutions of
the dispersion relation, k±

n (ω), coming, respectively, from the upper and lower half k

planes and commonly referred to as the upstream and downstream branches. In this
paper, the saddle points have all been found to satisfy the collision criterion.

In order to clearly investigate the spatio-temporal evolutionary characteristics of
the unstable flow, it is necessary to study the response of the flow to a localized
disturbance along an arbitrary fixed spatio-temporal ray, V = x/t , as t → ∞. This is
equivalent to analysing how the response evolves in a reference frame moving at the
velocity V . Upon introducing the Doppler-shifted frequency ωv = ω −V k and kv = k,
the dispersion relation in the moving coordinate system would be

Dv(k
v, ωv) = D(kv, ωv + V kv) = 0. (3.1)
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Figure 2. (a, c) Temporal growth rates ωi of the ice mode as a function of real wavenumber
kr and (b, d ) local spatio-temporal growth rates ωv

0i of the ice mode as a function of the ray
velocity V for different Reynolds numbers. St = 0.0625, ζ = 0, H0 = 10, β = 0.002.

Because of dωv/dkv = 0, the saddle point k̃ will take place at

D(k̃, ω̃) = 0 and
dω

dk
(k̃, ω̃) = V, (3.2)

and then the absolute growth rate in the moving frame is obtained at kv
0 = k̃ through

ωv
0 = ω̃ − V k̃. (3.3)

Here also, the saddle point k̃ obtained from (3.2) must verify the Briggs–Bers
collision criterion mentioned above. The saddle points in this paper will be obtained
numerically by Newton-type iterations (Deissler 1987; Yin et al. 2000).

First, for the unstable ice mode of the flow system, the temporal growth rates ωi

versus real wavenumber kr and local spatio-temporal growth rates ωv
0i as a function

of observer velocity V for different Reynolds numbers are plotted in figure 2. As
is well known, the maximum growth rates for the temporal instability and spatio-
temporal instability are equivalent for the zero imaginary part of the saddle point
occurs at that point. Thus, it is clearly seen from figures 2(a) and 2(b), there exist
two separate unstable branches in the flow system: one is long-wave unstable and the
long-wave disturbance convects upstream (upstream branch), the other branch has
finite wavelength and its unstable wavepacket propagates downstream (downstream
branch). With increasing the Reynolds number from Re =3000 to Re =6000, the
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maximum growth rates increase for the upstream and downstream branches, and
the flows are convectively unstable because the amplification of disturbance cannot
be obtained locally in the laboratory framework, i.e. the absolute growth rate ω0i is
less than zero. In figure 2(a), the temporal unstable region of the real wavenumber
kr for both upstream and downstream branches becomes large, while the unstable
wavenumber increases for the upstream branch and decreases for the downstream
branch. Accordingly in figure 2(b), the spatio-temporal unstable region of the
convective velocity V for both upstream and downstream branches becomes small,
while the convective velocity increases for the upstream branch and decreases for the
downstream branch. Thus, from both temporal and spatio-temporal point of view, the
two branches become more unstable and move closer. For Re = 4000, the downstream
branch is already unstable even for Re = 3000, while the upstream branch is stable
now. The two branches will determine two critical curves such as the Re–β critical
curves shown later. Furthermore, across the critical curves, there exist not only the
critical wavenumber kc for the temporal instability but also the critical convective
velocity Vc for the spatio-temporal instability.

Furthermore when increasing the Reynolds number from Re = 7500 to Re = 11 000,
as shown in figures 2(c) and 2(d ), the unstable regions of the real wavenumber and
the observer velocity for the two branches become more closer and have already
connected into one branch at Re = 9000, which produces a local minimum where
the growth rate is greater than zero. Also, it is easily seen from figure 2(d ) that the
absolute growth rate is greater than zero for Re = 9000, then the flow system becomes
absolutely unstable. When Re = 10 000, the upstream maximum growth rate further
increases as well as the local minimum, while the downstream maximum growth rate
decreases. When Re = 11 000, the upstream maximum growth rate and the local
minimum growth rate disappear, thus the connected branch has only one maximum
growth rate which corresponds to the origin downstream branch.

Secondly, because of the existence of the transition between the linear absolute
and convective instability, it is important to plot the AI/CI boundary curve in the
parameter region. As shown in figure 3, the AI/CI boundary curve and critical
Reynolds number curves for the downstream and upstream branches are plotted in
the Re–β parameter region. It is found that with increasing the inclined angle from
0.004, the Reynolds number on the AI/CI boundary curve decreases and arrives at a
minimum value where the inclined angle is about 0.0208; then the AI/CI transition
Reynolds number increases slowly with the increase of the inclined angle, or in
other words with the increase of the Reynolds number, the inclined angle on the
AI/CI boundary curve increases and quickly arrives at a maximum value where
the Reynolds number is about 814; finally, across that maximum point the AI/CI
transition-inclined angle decreases when increasing the Reynolds number. From the
AI/CI boundary curve, it is easily seen that when the Reynolds number is smaller
than the minimum value or the inclined angle is larger than the maximum value, the
absolute instability does not exist.

Beyond the absolute instability region, the critical curve for the downstream branch
(dashed line) intersects with the upstream branch (dash-dotted line) and the AI/CI
boundary curve (solid line). Note that the critical curve for the downstream branch
disappears near Re = 829.8 and β = 0.01345 because the local maximum growth
rate for the branch does not already exist, and a very small piece of the critical curve
is located at the absolute instability region though it is not obvious from figure 3.
The critical convective velocities Vc on the two critical curves are always positive
and negative for the downstream and upstream branch, as shown in figure 4. It is
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Figure 3. AI/CI boundary curve with solid line and critical Reynolds number curves with
dashed line for the downstream branch and the dash-dotted line for the upstream branch as a
function of the inclined angle. St = 0.0625, ζ = 0, H0 = 10.
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Figure 4. Critical convective velocities Vc on the critical curves of the downstream (solid line)
and upstream (dash-dotted) branches as a function of the inclined angle. St = 0.0625, ζ = 0,
H0 = 10.

found that for the downstream branch the critical convective velocity disappears near
Vc = 0.00002, while the critical convective velocity of the upstream branch is always
below Vc = 0.0 and approaches to it with decreasing the inclined angle. Thus, the
intersection of the two critical curves divides the convective unstable region into three
parts: parts I, II and III. These parts have different features as follows.
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Part β Re

I 0.005 2000
II 0.003 2400
III 0.009 1000

Table 3. Selected points in the convectively unstable region. St = 0.0625, ζ = 0, H0 = 10.
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Figure 5. Spatio-temporal growth rates ωv
0i as a function of the (a) positive and (b) negative

ray velocities V at different inclined angles and Reynolds numbers. St = 0.0625, ζ = 0,
H0 = 10.

(i) Part I: under local disturbance of the basic flow, there exist the two convectively
unstable wavepackets. One propagates downstream because of the downstream
unstable branch and the other upstream due to the upstream unstable branch.

(ii) Part II: there exists one convectively unstable wavepacket that propagates only
downstream because of the downstream unstable branch and upstream stable branch.

(iii) Part III: there exists one convectively unstable wavepacket that propagates
only upstream because of the upstream unstable branch and the downstream stable
branch or because of the non-existence of the downstream branch for larger inclined
angles (β > 0.01345).

In order to exhibit the above different convectively unstable characteristics for the
three parts, a group of parameters is selected for the inclined angle and Reynolds
number, as shown in table 3, to plot local growth rates ωv

0i as a function of observer
velocity V , as shown in figure 5. These two figures clearly show that the flow with
β = 0.005 and Re = 2000 in part I has both downstream and upstream convectively
unstable wavepackets; while the flow with β = 0.003 and Re = 2400 in part II has
only downstream convectively unstable wavepacket, and the flow with β = 0.009 and
Re = 1000 in part III has only upstream convectively unstable wavepacket.

Finally, the AI/CI boundary curves in the parameter Re–β region for different
Stefan numbers and different thicknesses of the ice layer are plotted in figure 6. It is
clearly seen from figure 6(a) that with decreasing the Stefan number from St = 0.0625
to St = 0.0025, the absolute instability region becomes larger and occurs at much
smaller Reynolds number and larger inclined angle. From figure 6(b), it is obvious
that with increasing the thickness of the ice layer, the absolute instability region also
increases from H0 = 5 to H0 = 10. However, for large thickness of the ice layer such
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Figure 6. AI/CI boundary curves in the parameter Re–β region for (a) different Stefan
numbers with H0 = 10 and (b) different thicknesses of the ice layer with St = 0.0625. ζ = 0.
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Figure 7. Spatio-temporal growth rates ωv
0i as a function of the ray velocity V for (a) the

surface wave instability and (b) the shear instability. St = 0.0625, ζ = 0, H0 = 10, β = 0.002,
Re = 6000.

as H0 = 20 and H0 = 40, the AI/CI boundary curves change little and the absolute
instability region becomes a little smaller only.

Note that for the surface wave mode, the critical Reynolds number is approximately
very well equal to Rec = 5/4 cotβ , which is the critical value for the isothermal
situation. Thus, the critical boundary curve for the surface wave instability (for clarity,
not plotted in figure 3) is below those for the ice mode in the Re–β parameter region.
Similarly, we have checked that the surface wave instability spreads convectively
downstream with a speed higher by 3 orders and a spatio-temporal growth rate larger
by 2 orders than the ice mode, as seen from figures 5 and 7(a). It is also obvious from
figure 7(b) that the shear instability is convectively unstable and spreads downstream
with a slower speed than the surface wave instability, but with a much larger spatio-
temporal growth rate. It is also found that with the variation of the Stefan number
and the thickness of the ice layer, the curves of spatio-temporal growth rates have
no change, which shows that the ice-induced instability has little effect on the surface
wave instability and the shear instability of the film flows. Because of the convectively
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unstable characteristics of the surface wave instability and the shear instability, the
AI/CI boundary curves shown in this section for the ice mode are just the AI/CI
boundary curves for the whole system.

4. Conclusions
In this paper, a linear absolute and convective instability analysis of ice growth

under a falling water film is performed for the ice mode through the computation
of the normal modes of the full linearized stability equations with the Chebyshev
collocation method. It is found that there exist downstream and upstream branches
for the Reynolds number Re = 7500, which is above the two critical Reynolds
numbers with the inclined angle β = 0.002. When increasing the Reynolds number
to Re = 9000, the two branches move closer and connect with each other, then
absolute instability occurs. By plotting the AI/CI boundary curve and critical curves
in the Re–β parameter region, the flow system is divided into stable, convectively
unstable and absolutely unstable regions. Furthermore, the downstream and upstream
critical curves divide the convectively unstable region into three parts, where the flow
maybe convectively both downstream and upstream unstable (part I) or may be only
convectively unstable in only one direction (downstream for part II and upstream for
part III). From these plotted curves, it is found that the (absolute) instability does
not appear either below a minimum Reynolds number or above a maximum inclined
angle.
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