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Three-Dimensional Linear Instability Analysis of Thermocapillary Return Flow
on a Porous Plane *

ZHAO Si-Cheng(赵思诚)1, LIU Qiu-Sheng(刘秋生)1**, NGUYEN-THI Henri2, BILLIA Bernard2

1Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
2IM2NP, UMR CNRS 6137, Université d’Aix-Marseille III, 13397 Marseille Cedex 20, France

(Received 25 September 2009)

A three-dimensional linear instability analysis of thermocapillary convection in a fluid-porous double layer system,
imposed by a horizontal temperature gradient, is performed. The basic motion of fluid is the surface-tension-
driven return flow, and the movement of fluid in the porous layer is governed by Darcy’s law. The slippery effect
of velocity at the fluid-porous interface has been taken into account, and the influence of this velocity slippage on
the instability characteristic of the system is emphasized. The new behavior of the thermocapillary convection
instability has been found and discussed through the figures of the spectrum.

PACS: 47. 20.Dr, 47. 55.Dm, 47. 56.+r DOI: 10.1088/0256-307X/27/2/024707

For most kinds of Newtonian fluid, its surface ten-
sion is usually a monotonous decreasing function of
temperature. Since the pioneering work of Pearson[1]

on a pure liquid layer with a free, undeformed surface,
and heated from the opposite boundary, we know that
the surface tension gradient caused by temperature
perturbation could lead to convective instabilities. If
a temperature gradient parallel to the surface of a fluid
layer is imposed into such a kind of system, thermo-
capillary flow can take place in the basic state. Smith
and Davis[2,3] first studied this kind of flow and its in-
stability problem in a single-liquid-layer system. They
considered the bottom boundary as a non-slippery,
adiabatic wall. The basic flows, such as a Couette flow
with a vertical linear distribution of horizontal veloc-
ity, and a return flow with zero mass flux through any
vertical plane were investigated. For the convection
of instability, they found propagating hydrothermal
waves and stationary longitudinal rolls. In the sys-
tem of two-layered immiscible fluids, the thermocap-
illary flow and instabilities have been analyzed in our
previous works.[4,5] The Rayleigh-Bénard instability[7]

in the double layer system, which is composed of a
fluid layer overlying a porous layer saturated with the
same liquid, and which is heated, was firstly studied by
Chen and Chen[6] in 1988. After them, Straughan[8]

made a linear analysis of the Marangoni convection in
a similar system but a free upper surface. The veloci-
ties of the basic state are zero in all of their works. In
2005, Chang[9,10] first introduced the plane Couette
flow and the plane Poiseuille flow as the basic motion
in this kind of system. Because the upper boundary
needs to be a rigid plane, the convective instability in
his works can only be driven by gravity.

In this Letter, we impose a horizontal temperature
gradient into the system of a fluid layer overlying a

porous medium, and simplify the system into a single
fluid layer due to the consideration of no instability
convection in the porous layer. The return flow is
chosen as the basic motion and the three-dimensional
linear instability is analyzed.
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Fig. 1. The geometrical configuration.

Figure 1 is the schema of the system. Cartesian co-
ordinates are used with the origin at the fluid-porous
interface and the 𝑧 axis is perpendicular to the inter-
face and vertically upward. Three axes, i.e., 𝑥, 𝑦 and
𝑧, organize a right-handed coordinate system. The
upper surface is free without any deformation. On
the rigid bottom wall there is zero heat flux. The sur-
face tension at the upper surface is considered to be a
linear function of temperature:

𝜎 = 𝜎0 +
𝜕𝜎

𝜕𝑇
(𝑇 − 𝑇0). (1)

The subscript 0 denotes the ambient values. For
convenience, we define 𝛾 = −𝜕𝜎/𝜕𝑇 and 𝑏̄ = −𝜕𝑇/𝜕𝑥.

We define the dimensional variables with subscript
𝑙 representing those in the fluid layer, and the sub-
script 𝑚 for those in the porous layer. Therefore, with-
out gravity, for the two layers, the continuity equa-
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tions are
∇ · 𝑣𝑙 = 0, (2)

∇ · 𝑣𝑚 = 0. (3)

The momentum equations are the Navier–Stokes
equation[11] and Darcy’s law,[12] respectively,

𝜌0

(︁𝜕𝑣𝑙

𝜕𝑡
+ 𝑣𝑙 · ∇𝑣𝑙

)︁
= −∇𝑝𝑙 + 𝜇𝑙∇2𝑣𝑙, (4)

𝜌0
𝜑

𝜕𝑣𝑚

𝜕𝑡
= −∇𝑝𝑚 − 𝜇𝑙

𝐾
𝑣𝑚. (5)

The energy equations are

(𝜌0𝑐0)
𝜕𝑇𝑙

𝜕𝑡
+ (𝜌0𝑐0)𝑣𝑙 · ∇𝑇𝑙 = 𝑘𝑙∇2𝑇𝑙, (6)

(𝜌𝑐)𝑚
𝜕𝑇𝑚

𝜕𝑡
+ (𝜌0𝑐0)𝑣𝑚 · ∇𝑇𝑚 = 𝑘𝑚∇2𝑇𝑚, (7)

wherein 𝑣 is the velocity vector in the flow field, 𝜌 the
density of the fluid, 𝑐 the specific heat of the fluid at
constant pressure, 𝜇𝑙 the dynamic viscosity, 𝜈𝑙 = 𝜇𝑙/𝜌
is the kinetic viscosity, 𝑘𝑙,𝑚 is the thermal conductiv-
ity, and 𝜅𝑙,𝑚 = 𝑘𝑙,𝑚/(𝜌0𝑐0) is the thermal diffusiv-
ity. For any dimensional physical property, one has
( )𝑚 = ( )𝑙𝜑 + ( )𝑠(1 − 𝜑), and 𝜑 is the porosity, the
subscript 𝑠 is for a solid matrix in the porous layer.[14]

The velocities in basic state are considered as
𝑣𝑙,𝑚 = (𝑢𝑙,𝑚, 0, 0), wherein 𝑢𝑙,𝑚 are single-value func-
tions of the vertical coordinate 𝑧. The correspond-
ing boundary conditions are, at the top free surface
𝑧 = 𝐻𝑙:

𝜇𝑙
𝑑𝑢𝑙

𝑑𝑧
= 𝛾𝑏̄. (8)

At the fluid-porous interface 𝑧 = 0, it is the Beaver–
Joseph condition[13] with dimensionless experiential
parameter 𝛼:

𝑑𝑢𝑙

𝑑𝑧
=

𝛼√
𝐾

(𝑢𝑙 − 𝑢𝑚), (9)

where 𝐾 is the permeability of the porous layer. Thus,
the dimensional velocities of the basic state are as fol-
lows:

𝑢𝑙(𝑧) =
1

2𝜇𝑙

𝜕𝑝𝑙
𝜕𝑥

𝑧2 −
(︁ 𝛾

𝜇𝑙

𝜕𝑇𝑙

𝜕𝑥
+

𝐻𝑙

𝜇𝑙

𝜕𝑝𝑙
𝜕𝑥

)︁
𝑧 − 𝐾

𝜇𝑙

𝜕𝑝𝑚
𝜕𝑥

−
√
𝐾

𝛽

(︁ 𝛾

𝜇𝑙

𝜕𝑇𝑙

𝜕𝑥
+

𝐻𝑙

𝜇𝑙

𝜕𝑝𝑙
𝜕𝑥

)︁
, (10)

𝑢𝑚(𝑧) = −𝐾

𝜇𝑙

𝜕𝑝𝑚
𝜕𝑥

. (11)

Through a comparison between Eqs. (10) and (11), we
know the fluid velocity in the porous layer is much
less than that in the fluid layer. Therefore, the flow in
the porous layer can be neglected. A similar simpli-
fication has been employed in the works of Pascal[15]

and Sadiq,[16] and is also used in the present study
in both the basic state and perturbation state. To

obtain the dimensionless form of equations, we find
separate scales for the two layers respectively. For the
fluid layer, we choose the characteristic length to be
𝐻𝑙, time to be 𝐻2

𝑙 /𝜅𝑙, velocity to be 𝜈𝑙/𝐻𝑙, pressure
to be 𝜌0𝜈

2
𝑙 𝐻

2
𝑙 , and temperature to be 𝑏̄𝐻𝑙. For the

porous layer, we choose 𝐻𝑚, 𝐻2
𝑚𝜅𝑚, 𝜈𝑙/𝐻𝑚, 𝜌0𝜈

2
𝑙 𝐻

2
𝑚

and 𝑏̄𝐻𝑚. In the dimensionless form, variables with-
out subscript are for those in fluid layer, while those
in the porous layer are the same as the dimensional
form. Hence, the dimensionless form of the basic state
is

𝑢(𝑧) =
1

2

𝜕𝑝

𝜕𝑥
𝑧2 +

(︁𝑀𝑎

𝑃𝑟
− 𝜕𝑝

𝜕𝑥

)︁
𝑧+𝛽

(︁𝑀𝑎

𝑃𝑟
− 𝜕𝑝

𝜕𝑥

)︁
, (12)

𝑢𝑚(𝑧𝑚) = 0. (13)

The corresponding temperature is

𝑇 (𝑧) =𝑃𝑟
[︁
− 1

24

𝜕𝑝

𝜕𝑥
𝑧4 − 1

6

(︁𝑀𝑎

𝑃𝑟
− 𝜕𝑝

𝜕𝑥

)︁
𝑧3

− 𝛽

2

(︁𝑀𝑎

𝑃𝑟
− 𝜕𝑝

𝜕𝑥

)︁
𝑧2 −

(︁1

8
+

𝛽

2

)︁𝜕𝑝

𝜕𝑥

+
(︁1

6
+

𝛽

2

)︁𝑀𝑎

𝑃𝑟

]︁
, (14)

𝑇𝑚(𝑧𝑚) = −ℎ𝑃𝑟
(︁1

8
+

𝛽

2

)︁𝜕𝑝

𝜕𝑥
+ ℎ𝑀𝑎

(︁1

6
+

𝛽

2

)︁
. (15)

The dimensionless parameters are defined as follows:

𝑀𝑎 =
𝛾𝑏̄𝐻2

𝑙

𝜇𝑙𝜅𝑙
, 𝑃 𝑟 =

𝜈𝑙
𝜅𝑙

, 𝛿 =

√
𝐾

𝐻𝑚
, ℎ =

𝐻𝑙

𝐻𝑚
, 𝛽 =

𝛿

𝛼ℎ
.

For linear instability analysis, we introduce pertur-
bations of velocities, pressure and temperature: 𝑣 =
𝑣 + 𝑣′, 𝑝 = 𝑝 + 𝑝′, 𝑇 = 𝑇 + 𝑇 ′, into Eqs. (2)–(7),
where the variables with an overline represent the ba-
sic state. According to the normal mode technique,
we can find the solutions in the form

(𝑢′, 𝑣′, 𝑤′, 𝑇 ′) = (𝑈(𝑧), 𝑉 (𝑧),𝑊 (𝑧),Θ(𝑧))

· exp[𝜆𝑡 + 𝑖(𝑎𝑥 + 𝑏𝑦)],

𝑇 ′
𝑚 = Θ𝑚(𝑧𝑚) exp[𝜆𝑚𝑡𝑚 + 𝑖(𝑎𝑚𝑥𝑚 + 𝑏𝑚𝑦𝑚)].

The amplitudes 𝑈(𝑧), 𝑉 (𝑧),𝑊 (𝑧),Θ(𝑧),Θ𝑚(𝑧𝑚) de-
scribe the variation with respect to 𝑧; 𝑎, 𝑎𝑚 and 𝑏, 𝑏𝑚
are the dimensionless wavenumbers in the 𝑥- and 𝑦-
directions, respectively, and {𝑎, 𝑏} = ℎ{𝑎𝑚, 𝑏𝑚}, while
𝜆 = 𝑋ℎ2𝜆𝑚 are the growth rate factors in the fluid
and porous layer. Then the linearized small distur-
bance equations in normal-mode form are

1

𝑃𝑟
𝜆𝑈 = [𝐷2−(𝑎2+𝑏2)]𝑈−𝑖𝑎𝑢̄𝑈− 𝑑𝑢̄

𝑑𝑧
𝑊−𝑖𝑎𝑃, (16)

1

𝑃𝑟
𝜆𝑉 = [𝐷2 − (𝑎2 + 𝑏2)]𝑉 − 𝑖𝑎𝑢̄𝑉 − 𝑖𝑏𝑃, (17)

1

𝑃𝑟
𝜆𝑊 = [𝐷2 − (𝑎2 + 𝑏2)]𝑊 − 𝑖𝑎𝑢̄𝑊 −𝐷𝑃, (18)

0 = 𝑖𝑎𝑈 + 𝑖𝑏𝑉 + 𝐷𝑊, (19)

024707-2
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1

𝑃𝑟
𝜆Θ = −𝜕𝑇

𝜕𝑥
𝑈−𝜕𝑇

𝜕𝑧
𝑊,+

1

𝑃𝑟
[𝐷2−(𝑎2+𝑏2)]Θ−𝑖𝑎𝑢̄Θ,

(20)
𝐺𝑚𝜆𝑚Θ𝑚 = [𝐷2

𝑚 − (𝑎2𝑚 + 𝑏2𝑚)]Θ𝑚. (21)

Boundary conditions in normal modes are as follows:
for 𝑧𝑚 = −1,

𝐷𝑚Θ𝑚 = 0; (22)

for 𝑧 = 0,

𝑊 = 0, 𝐷𝑈 =
1

𝛽
𝑈, 𝐷𝑉 =

1

𝛽
𝑉,

ℎΘ = Θ𝑚, 𝐷Θ = 𝑋𝐷𝑚Θ𝑚; (23)

for 𝑧 = 1,

𝑊 = 0, 𝐷Θ + 𝐵𝑖Θ = 0,

𝐷𝑈 = −𝑖𝑎
𝑀𝑎

𝑃𝑟
Θ, 𝐷𝑉 = −𝑖𝑏

𝑀𝑎

𝑃𝑟
Θ, (24)

where 𝐷 = 𝑑/𝑑𝑧, 𝐷𝑚 = 𝑑/𝑑𝑧𝑚 and alphabetic sub-
scripts denote partial differentiations. In order to
study the three-dimensional perturbation, we define
𝑘 =

√
𝑎2 + 𝑏2, and 𝜃 = arccos (𝑎/𝑘) = arcsin (𝑏/𝑘).

The direction of the perturbation wave can be denoted
by 𝜃. For the following discussion, we need to define
the phase speed 𝑐 = −𝜆/𝑖𝑘.[17] Every 𝑐 corresponds to
a 𝜆.

The linear systems described above are discretized
using the spectral method (Chebyshev-tau) and then
are resolved as the general eigenvalue problem.[18] This
method has been verified by our previous works.[19]

The complex time growth rates 𝜆, 𝜆𝑚 are computed
in complex double precision. The computational so-
lutions have also been verified in comparison with the
work of Smith et al.[2]

From Fig. 2(a), we can see that, unlike the re-
sults of Chen and Chen,[6] all the marginal stability
curves (neutral curves) are of a single mode with only

one least value (𝑀𝑎𝑐) each. Obviously, it is impos-
sible for the mode transition to take place. As the
growth of 𝛽, the stability curves descend, i.e., the crit-
ical Marangoni number diminishes. This means that
the larger the 𝛽 is, the more conveniently the system
destabilizes. Because 𝛽 can be seen as a parameter of
viscous restriction to the motion in the fluid layer from
the fluid-porous interface, the less 𝛽 is, the stronger
this restriction will be, and the more easily the system
remains stable.

In Fig. 2(b) we give the relation curves of oscil-
latory frequencies versus wavenumbers. We can find
that the oscillatory frequencies to every wavenumber
consist of two opposite values, i.e., the time growth
rates along each neutral curve in Fig. 2(a) are conju-
gate. This kind of instability is in the form of hy-
drothermal waves, which were first pointed out by
Smith et al.[2] The convectional vortex will be in the
form of a traveling wave in either the positive or neg-
ative direction of the 𝑦-axis, or a standing wave su-
perposed by these two ‘mirror’ waves. As the change
of 𝛽, the oscillatory frequency will not vary evidently.
This means that the slippage at the fluid-porous in-
terface has almost no influence on the phase speed of
the convectional vortex.

The neutral curves and their corresponding oscilla-
tory frequencies of the perturbations in the 𝑥-direction
are shown in Figs. 3(a) and 3(b). Similar to the re-
sults in Fig. 2(a), all the marginal curves are a single
mode, and 𝑀𝑎𝑐 diminishes as 𝛽 grows. However, un-
like Fig. 2(b), the oscillatory frequencies are single val-
ued, and remain negative. According to the definition
of the phase speed 𝑐 above, we can know that the per-
turbation wave travels in the positive 𝑥-direction, the
same as the surface motion in the basic state. Hence,
we believe that it is the basic motion of fluid that
drives the traveling direction of perturbation.

(a)

(b)

M
a

0

200

400

600
β=0.0
β=0.1
β=0.2
β=0.3
β=0.4

β=0.0
β=0.1
β=0.2

β=0.3
β=0.4

Wavenumber

λ
i

0 1 2 3 4 5 6
-300

-200

-100

0

100

200

300

Fig. 2. Neutral stability curves and
corresponding oscillatory frequencies
with different 𝛽 for 𝑎 = 0.
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Fig. 3. Neutral stability curves and
the corresponding oscillatory frequen-
cies with different 𝛽 for 𝑏 = 0.
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In the three-dimensional problem, the 𝑀𝑎𝑐 and
𝜆𝑖𝑐 versus 𝜃 are shown respectively in Figs. 4(a) and
4(b). In Fig. 4(a), each curve has a minimum, and
its corresponding 𝜃, named 𝜃𝑐, represents the most
possible direction of the propagation when the insta-
bility takes place. We call it “the most dangerous
direction”. The variation of 𝛽 will not influence 𝜃𝑐 ev-
idently. In Fig. 4(b), for 𝜃 < 90∘, all the 𝜆𝑖𝑐 are single
valued. Only at 𝜃 = 90∘ does 𝜆𝑖𝑐 have two values, one
of which is the inverse of the other. The 𝜆𝑖𝑐 varies
monotonously from negative to positive during the
growth of 𝜃 from 0∘ to 90∘. The value of 𝜃𝑐 correspond-
ing to zero 𝜆𝑖𝑐 is in the region (24∘, 30∘). According to
the results in Fig. 4(a), the three-dimensional convec-
tion of instability never has the standing wave mode.

From Fig. 4(a), we can find that no matter
whether the perturbation is two-dimensional or three-
dimensional, the system will be easier to destabilize
with the increase of 𝛽. The slippage at the interface
will not evidently affect the most dangerous direction.
From Fig. 4(b), we can see that 𝜆𝑖𝑐 is a monotonic
increasing function of 𝜃, but its growing speed will
diminish as the increase of 𝛽. In other words, the
slippage at the fluid-porous interface will decelerate
the phase speed of the perturbation wave.

(a)
(b)

c
i

cr cr
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4

5

(1)

(1)

(2)

(2)

Fig. 5. The spectrum of eigenvalues at 𝑘 = 2, 𝑀𝑎 = 220
and 𝛽 = 0 with the variation of 𝜃 from 0∘ to 90∘. (b) The
magnification of the square region in (a). The symbol O
on every curve represents the values at 𝜃 = 90∘.

The trajectory of spectral points (𝑐𝑟, 𝑐𝑖) during the
variation of 𝜃 for fixing 𝑘 = 2, 𝑀𝑎 = 220 and 𝛽 = 0
is shown in Fig. 5. From the definition of 𝑐, we know
that 𝑐𝑖 corresponds to the real part of 𝜆. Therefore,
the point with the largest 𝑐𝑖 can influence the char-
acteristic of instability. In Fig. 5, only the two points
named No 1 and No 2 have this kind of possibility.
When 𝜃 is less than 90∘, only No 2 has the largest
𝑐𝑖, so the perturbation wave can travel with only one
possible phase speed 𝑐𝑟, which turns to negative from
positive. At this time, the No 1 spectral point has the
second largest 𝑐𝑖, so its character is “overlapped” by
No 1. When 𝜃 arrives at 90∘, both No 1 and No 2 can
reach the same value of 𝑐𝑖, and their 𝑐𝑟 are inverse to
each other. Hence, both of them can be “expressed”,
and this is the reason why the hydrothermal wave can
take place. For the case where 𝛽 ̸= 0, the spectrum

of eigenvalues is similar to Fig. 5. The variation of 𝛽
will not have an evident effect on the process of mode
transition during the growth of 𝜃. Those results are
left out in this Letter.

In addition, in Fig. 5, 𝑀𝑎 = 220 has already sur-
passed its critical value 𝑀𝑎𝑐 for 𝑘 = 2. In principle,
in the case of 𝑀𝑎 > 𝑀𝑎𝑐, the nonlinear effect should
be taken account, but it has exceeded the extension
in this study. However, the variation of 𝑀𝑎 will not
change the relative positions of these spectral points
in spectral figures obviously, for in our system it has
already been linearized. If we show the spectrum of
the case 𝑀𝑎 = 𝑀𝑎𝑐, the trajectory of spectral points
will be similar to those in Fig. 5. Only the value of
𝑐𝑖 of each spectral point becomes less, No 1 and No
2 terminate on the horizontal line 𝑐𝑖 = 0. Therefore,
we believe that the results in Fig. 5 have the proper
physical significance.

In summary, since the motion of the basic state is
the return flow, the neutral curve of stability is of a
single mode, the slippage at the fluid-porous interface
will only obviously influence the critical Marangoni
number which determines the instability of the sys-
tem, but will not evidently change the phase speed of
the perturbation wave or the most dangerous direc-
tion. For any fixed 𝜃 less than 90∘, the perturbation
has the form of a traveling wave, with only one possi-
ble phase speed. This has the result that the convec-
tional vortex is driven by the basic motion. Only when
the perturbation is perpendicular to the direction of
basic flow do both the opposite phase speeds become
possible at the same time, and the hydrothermal wave
can take place.
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