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Abstract. The indention simulation of the crystal Ni is carried out by molecular dynamics technique (MD) to 
study the mechanical behavior at nanometer scales, the indenter tips with sphere shape is used. Some defects 
such as dislocations, point defects are observed. It is found that defects (dislocations, amorphous) nucleated is 
from local region near the pin tip or the sample surface. The temperature distribution of local region is 
analyzed and it can explain our MD simulation result. 
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1. INTRODUCTION 

Investigation of deformation mechanism on nanometer materials  is a hot topic. Some experimental methods have 
been developed to measure their mechanical properties by means of an atomic force microscope AFM-based 
nanoindentation technique [1-3]. Li et al. performed nanoindentation tests on silver nanowires [1], Cu2O nanocubes 
[2] and ZnS nanobelts [3].  

The merit of AFM-based lithography techniques is that AFM can exert a very small vertical force on the 
workpiece surface, which leads to a depth of cut of several nanometers, and a wealth of information of deformation 
is obtained. Unfortunately, the cutting mechanism at the atomic scale is not well understood, and the experimental 
picture cannot display the atomic process involved in dislocation nucleation and micro defects evolution.   

The MD approach has been applied to study various dynamic deformation processes on the atomic scale, e.g. 
indentation, adhesion, friction, surface defect and cutting [4-5]. Kim et al. [6] studied the influence of crystal 
oritation on the ploughing force of pin tool, and revealed relation between an extensive dislocation and ploughing 
direction of pin tool. Yan et al. [4] simulated the effect of tool geometry on the deformation process of the workpiece. 
The potential energy variation of atoms in different deformed regions of workpiece such as plastically deformed 
region, elastically deformed region and the mixed deformation region is different. 

In this paper, a MD simulation under the canonical ensemble (NVT) is applied to study the defects nucleation and 
evolution of monocrystal Ni during the indentation process. Special attention is paid to the effect of temperature 
distribution on dislocation nucleation. The plan of the paper is as follows: in the next section the details of the 
simulation method will be described; in section 3 the simulation results and discussion are presented and finally the 
conclusion will be drawn in section 4.  
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2. COMPUTATION AND MODELLING  

2.1 Initial Model 

In the current simulation, a workpiece and a pin tool are assumed to consist of a monocrystalline Ni and a rigid 
diamond indenter, respectively, as shown in figure 1. The dimensions of the Ni workpiece are constructed 
sufficiently large to eliminate boundary effects. According to the simulation of Fang et al. [7], the size of a 
workpiece which is 26 a0 × 26 a0 × 36 a0 along x, y and z directions is enough, a0 is the crystal constant. The 
diamond tool is a sphere shape with 20 a0 in diameter. The workpiece is made up of about 98000 Ni atoms and the 
tool is made of about 16000 carbon atoms. The periodic boundary condition and free boundary condition are 
performed along the x and y directions, respectively. On the top surface of workpiece the diamond tool is applied 
along the negative z direction, and three layers of atoms at the bottom side are fixed. 
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FIGURE 1. Schematic of nanometer Ni indentation model 

2.2. Interatomic Potentials and Simulation Method 

The  simulation was carried out at 300 K using an embedded atom potential for Ni[8], and the interaction between 
Ni atoms and the diamond pin tool atoms is modelled by the repulsive potential V(r) [9] given by ,  ,    

where A and n are material parameters. In this work, A was chosen as and n as 3.  

n
P ArrE −=)(

4)(10 AngstromnN
Initial velocities of atoms are specified based on the Maxwellian distribution corresponding to a given 

temperature, T0 = 300 K, and the magnitudes may be adjusted so as to keep constant temperature in the system [10]. 
The time integration of motion is performed by the fifth Gear’s predictor–corrector method [11], time step dt = 1.0 
fs., 

3. RESULTS AND DISCUSSION  

The simulation system consists of a Ni workpiece and a diamond tool. The experiment shows that the Ni hardness 
is about 3~4 GPa and of diamond is 78.96 GPa [6]; one can assume that the diamond tip does not deform in the 
process of indentation.  After 4000 MD steps relaxation with the environment temperature 300 K, a stable structure 
of workpiece is obtained. And the pin tool begins to plough into workpiece along the negative Z direction [00-1] with 
velocity 0.176 Angstrom/ps. Fig.2 presents the curves of stresses versus indentation depth. After a rapid rise in the 
stress zzσ  untill tip reaches at 0.704 nm in depth, workpiece is in the stage of elastic deformation, stress is  
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FIGURE 2. Compressive stress versus depth of indentation 

 
about 2.6 GPa. With indentation depth incresing, the plastic deformation is observed, the compressive stresses 

increase slowly with fluctuations. It may be caused by the thermal vibration of atoms surrounding the tool due to 
temperature, or caused by some defects nucleated and evolution. During the loading process, the variation of stress of 
width direction is small, and it is not significant in the research active of AFM indentation.  

Fig.3a-e show the atomic configurations, the defects firstly is observed in the region near the tool, see Fig.3a, 
where both the pressure and temperature are higher than that of other region. As the pin tool reaches at 0.704 nm, 
some defects are observed on the boundary, see Fig.3b and c. A common neighbor technology is adopted [12] to 
analyze , the atoms with perfect lattice structure are moved from Fig.3a, b, d and e, left atoms in these figures are the 
defects atoms, or surface atoms. Fig.3c is an atomic configuration of yz cross section, some point defects are 
observed, and small steps occurs in the surface, and some dislocation nucleated from surface, see sites with circle 
lines. Many experiments verified that dislocations and steps are often formed from surface [13-14]. By comparing 
the ideal crystal structure, the surface  atoms  lose  some of  their neighboring atoms, therefore it is site for defects to 
nucleated. Koh and Lee[15] proposed that the presence of the high stresses in the surface of nanometer materials are 
attributed to the availability of open bonds, surface atoms is at higher electronic state as compared to atoms situated 
within the interior bulk and possess a higher electronic cohesive energy, this may result in surface defects nucleated 
because of formation of asymmetric bounding of surface atoms with neighboring atoms. 

 

 
 (a) 0.352nm  （b）0.704nm  （c）0.704 nm （d）1.058nm （e）1.760nm 

FIGURE 3. Defact evolution at different depths of indentation 
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FIGURE 4. Temperature versus depth of indentation 

 
From the atomic configuration Fig.3d and 3e, some defects are identified as point defects, amorphous and partial 

dislocations, and several slip planes are observed clearly. Fig.3a-3e display that defects multiply and connect from 
the local region to over all the region of workpiece finally leading to materials distroied  Fig.4 displays the curve of 
temperature versus md steps, near the tool tip the local temperature reaches over 1000 K after the depth of 
indentation reaching 0.6 nm. Combining Fig.3 with 4, it may be understood that temperature may be a vital for 
defects nucleated, such as amorphous and dislocations, to be nucleated in relatively higher temperature region. Rice 
and Beltz [16], Meyers and Chawla [17] pointed out that the effects of thermal activation are very significant in 
lowering the load for dislocation nucleation, the tendency of the process of dislocation nucleation can be described 
by Arrhenius' equation [17].  Recently, Zhu et al. [18] develop an atomistic modelling framework to address the 
probabilistic nature of surface dislocation nucleation. Their results show that the nucleation of surface dislocation is 
sensitive to temperature, the applied load of dislocation nucleated is reduced with temperature increment. 

4. CONCLUSIONS 

MD simulations are carried out in order to understand the atomic scale mechanism of pin tool indentation on a 
nanometer Ni. Some interesting conclusions are drawn as follows.  

(1) By applying both EAM and repulsive pair potentials, the MD simulation of AFM indentation is carried out. 
The defects nucleated is observed near the tip firstly.  

(2) The temperature of the loca region  near the tip is higher than that of system, and it has an important 
contribution on defects nucleation and evolution.  
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