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The numerical simulation of flows past flapping foils at moderate Reynolds numbers presents two challenges to computational 
fluid dynamics: turbulent flows and moving boundaries. The direct forcing immersed boundary (IB) method has been devel-
oped to simulate laminar flows. However, its performance in simulating turbulent flows and transitional flows with moving 
boundaries has not been fully evaluated. In the present work, we use the IB method to simulate fully developed turbulent 
channel flows and transitional flows past a stationary/plunging SD7003 airfoil. To suppress the non-physical force oscillations 
in the plunging case, we use the smoothed discrete delta function for interpolation in the IB method. The results of the present 
work demonstrate that the IB method can be used to simulate turbulent flows and transitional flows with moving boundaries. 

transitional flows, moving boundary, immersed boundary method, smoothed discrete delta function 
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1  Introduction 

The fluid dynamics of transitional flows past flapping air-
foils at Reynolds number 104 to 105 receives attention re-
cently with the development in small-sized air vehicles, i.e. 
micro air vehicles (MAV). The flight regime in this range of 
Reynolds number is characterized by transition in combina-
tion with laminar separation bubble (LSB). According to 
Radespiel et al. [1], this transition process is divided into 
three stages. At the first stage, the primary instability 
mechanism is of the Tollmien-Schlichting (TS) type. The 
unstable waves generated by the free stream turbulence or 
acoustic wave grow exponentially while traveling down-
stream. At the second stage, the Kelvin-Helmholtz instabil-
ity may take place. This stage is characterized by nonlinear 
interactions in which the distortions become so large that 
saturation occurs and secondary instabilities grow. Finally, 

the ordered laminar flows break down to turbulence with a 
rapid increase in the spatial and temporal modes. Addition-
ally, it should be noted that this transition process is 
strongly influenced by the free stream turbulence level [2].  

The size of the laminar separation bubble decreases and 
the transition occurs early with the increase in the turbu-
lence level. OL [3] performed a series of experiments on the 
stationary SD7003 airfoil using three different facilities: a 
low turbulence wind tunnel, a water tunnel and a tow tank. 
Radespiel et al. [1] conducted experiments on flows past an 
SD7003 airfoil with and without plunging motion. OL [4] 
experimentally studied the vortical structures of flow past 
an SD7003 airfoil with high frequency pitching and plung-
ing. In their experiments, a parameter space of Re and re-
duced frequency was briefly explored. Recently, Hain et al. 
[5] studied the dynamics of laminar separation bubbles by 
using the high-resolution time-resolved particle image 
velocimetry (TR-PIV) system. 

As to the numerical studies, although the direct numeri-
cal simulation is a good choice for basic research on this 
transition phenomenon, it is inapplicable to aerodynamic 
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design due to the speed of current computers. In industrial 
applications, the Reynolds averaged Navier-Stokes equa-
tions (RANS) simulation is widely used. Windte et al. [6] 
used the RANS to simulate the flows around a stationary 
SD7003 airfoil. Lian and Shyy [7] used the RANS method 
coupled with a transition model to tackle flexible airfoil 
simulation. However, the results from RANS simulation are 
dependent on the turbulence model and the transition mod-
els. And the transition process is often artificially triggered 
by a pointwise input of turbulent energy. Large-eddy simu-
lation (LES) can capture the unsteadiness of the flows and 
its results depend less on the subgrid-scale (SGS) model. 
LES is a good choice for the flapping airfoil simulations in 
which the unsteady aerodynamics are important. Yuan et al. 
[8] used a quasi-three-dimensional (only four grids are dis-
tributed in the spanwise direction) LES to capture the tran-
sition process, without any transition model, for the flows 
around a stationary SD7003 airfoil. They also tested the 
effects of the SGS models, including the classical Sma-
gorinsky SGS model, the selective mixed-scale model [9] 
and an implicit SGS model. His results showed that no ap-
preciable difference was found between the results from the 
Smagorinsky SGS model and those from the selective 
mixed-scale model. 

Another challenge in the simulation is the moving 
boundary. The IB method exhibits its advantages to handle 
the complex geometries and moving boundaries. We refer 
readers to Peskin [10] and Mittal and Iaccarino's papers [11] 
for the comprehensive reviews on the IB method. Among 
the variants of IB methods, the direct forcing method is ex-
clusively designed to handle rigid boundaries. However, it 
is found in Uhlmann [12,13] that this method introduces 
non-physical oscillations to the temporal variations of the 
hydrodynamic force. Yang et al. [14] found that the non- 
physical oscillations are mainly dependent on the discrete 
delta functions that are used in the interpolation. Some 
smoothed discrete delta functions were constructed from the 
regular discrete delta functions by using a smoothing tech-
nique. By using these smoothed discrete Delta functions, the 
non-physical oscillations can be effectively reduced. The IB 
method using smoothed discrete delta functions has been 
successfully applied to laminar flows with stationary and 
moving boundaries. But its performance in turbulent flows 
and transitional flows is unknown. 

The objective of the present work is to validate the abil-
ity of the IB method using the smoothed discrete delta func-
tion in simulating transitional flows past moving airfoils 
including the effect of the IB treatment in the prediction of 
transition and the smoothing effect of the smoothed discrete 
delta function at a relatively high Reynolds number. 

2  Numerical method 

The direct forcing IB method combined with DNS and LES 
is used in the present work. The central idea of the IB 

method is to represent the effect of immersed bodies on 
flows by a virtual volume force. In the present study, the 
governing equations are the filtered Navier-Stokes equa-
tions (with a volume force in the momentum equation): 
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where x1, x2 and x3 (or x, y, and z) are corresponding to 
streamwise, cross-wise and spanwise directions respectively, 
Re is the Reynolds number and f is the volume force. 

1( ),u u  2 ( )u v  and 3 ( )u w  are the filtered velocity compo-

nents in the x, y and z directions, respectively. Here qij is 
defined as 
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which represents the subgrid-scale stress tensor. The trace 
of the subgrid-scale stress tensor is lumped together with 
the pressure. 

In the present work, an eddy-viscosity model is used to 
model qij. The model is 

 2 ,ij t ijq v S= −  (5) 

where 
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 is the strain rate tensor. In this 

model, Cs is the Smagorinsky constant, which has to be de-
termined. In the present work, we simply use Cs=0.1. As 
proposed by Moin and Kim [15], Δ  is multiplied by the 
Van Driest exponential damping function to account for the 
reduction in length scales when a solid wall is approached. 
The Van Driest damping function fD is defined as 

 D 1 exp( / ),f y A+ += − −  (7) 

with A+=25. Here y denotes the minimum distance between 
the Eulerian grid points and the body surface, which is rep-
resented by the Lagrangian markers. In general, y is nor-
malized as y+=yuτ/ν. Since it is difficult to calculate the fric-
tion force in the present IB method, the wall-normal dis-
tance y is approximately normalized as 

 / ,y y Fτ ρ ν+ =  (8) 

where Fτ is the Lagrange force in the wall-tangent direction. 
In the present method, the boundary of the immersed 

body is represented by a series of Lagrangian markers, 
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while the flow is solved on a set of fixed Cartesian grids. A 
discrete delta function is used to transfer the quantities be-
tween Eulerian and Lagrangian locations. For the simulation 
of flows past stationary airfoils, a 2-point hat function 

 2
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is used without any modification. For the simulations of 
flows past plunging foil and fully developed turbulent 
channel flows, one smoothed discrete delta function in 
Yang et al. [14] is used. This smoothed discrete delta func-
tion is then used in the interpolation to reduce force oscilla-
tions for the plunging airfoil simulations. The regular dis-
crete delta function is [16] 
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The smoothing technique can be expressed as 
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where φ denotes the regular discrete delta function and φ* is 
the smoothed one. The formulations for φ3

* is shown as  
follows: 
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The implementation of the direct forcing IB method in the 
present work is similar to that in [13]. It can be summarized 
as the following four steps: 

(1) Compute the explicit velocity estimation u  without 
volume forces: 

 1/2 1/2( , ) ( , ) ( , ).n n n
i i iu t u t trhs x t+ += + Δx x  (13) 

(2) Calculate the volume forces using the direct forcing 
method at the Lagrangian locations: 
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where Vi is the velocity of the immersed boundary and it is 

zero when the boundary is stationary. iU  is a velocity at 

the Largrangian markers that is interpolated from its Eule-
rian counterpart iu  by 
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Here the upper-case letters denote the quantities evaluated 
at the Lagrangian locations. 

(3) Spread the forces at the Lagragian markers to the 
surrounding Eulerian locations through the discrete delta 
functions by using the following equation 
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where ΔVl is the volume of the lth Lagrangian grid. 
(4) Solve the Navier-Stokes equations on the Cartesian 

grid with the volume forces. 
The spatial discretization scheme is based on a second 

order finite volume formulation on a staggered mesh. The 
governing equations are advanced in time using the frac-
tional step method. The third order Runge-Kutta scheme is 
used for the terms that are treated explicitly and the 
Crank-Nicholson scheme is used for the terms that are 
treated implicitly. 

3  Results and discussion 

3.1  Fully developed turbulent channel flows 

A direct numerical simulation of the fully developed turbu-
lent channel flows is performed using the direct forcing IB 
method. The Reynolds number based on the friction veloc-
ity and the half channel width is 180. The computation do-

main is 
4

4 2 ,
3

h h hπ × π ×  where h is the half channel width. 

The total grid number is 128×166×128 in the streamwise, 
wall-normal and spanwise direction, respectively. The 
meshes in the streamwise and spanwise directions are uni-
form, while the meshes in the wall normal direction are 
non-uniform with the grid clustering near the solid walls. 
The mesh is coincident with the upper wall so that the 
no-slip boundary condition can be imposed on the upper 
wall exactly. However, near the lower wall the grid is artifi-
cially distributed that the grid does not coincide with the 
wall for all velocity components. The IB method is used on 
the lower wall to satisfy the no-slip boundary conditions. In 
this setup, the utilization of the IB method is more likely to 
affect the prediction of the velocity profile in the lower half 
of the channel while the influence on the velocity profile in 
the upper half is relatively small. 
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The upper plot in Figure 1 compares the mean velocity 
profile of the lower half channel with the one in the upper 
half channel. They are in good agreement and only some 
minor differences are found at y+<5. It is observed from the 
lower plot in Figure 1 that the rool-mean-square (r.m.s.). 
velocity fluctuations in the lower half channel are in good 
agreement with the ones of the upper half channel. Thus, in 
terms of the first-order and second-order turbulent statistics, 
the direct forcing IB method with the 4-point function φ3

* in 
simulating fully developed turbulent channel flow is vali-
dated. 

3.2  Transitional flows past an airfoil 

In this section, the results of transitional flows past a sta-
tionary/plunging SD7003 airfoil are presented. The Rey-
nolds number based on the chord length C and the inflow 
velocity U∞  is 60000. The angle of attack α is 4° for both 

the stationary case and the plunging case. 
The dimensions of the computational domain are 10C, 

 
Figure 1  Time and spanwise averaged mean velocity profiles and r.m.s. 
velocity fluctuations for fully developed turbulent channel flows at Re=180 
with the lower wall that is not coincident with the grids. Upper plot: mean 
velocity profile. Lower plot: r.m.s. velocity fluctuations. 

6C, and 0.5C in the streamwise (x1), wall normal (x2) and 
spanwise (x3) directions, respectively. 

The boundary conditions are given as follows: at the inlet, 
a uniform flow with the speed U0 is specified; at the outlet, 
a convection velocity boundary condition is applied; at the 
crosswise boundaries, the shear-free boundary condition is 
specified on the velocity. A periodic boundary condition is 
specified in the spanwise direction. The mesh size is uni-
form near the airfoil and the mesh is stretched to a larger 
size in the far field. For the stationary case, the total grid 
number is 913×278×32 with the minimal mesh size being 
0.0025C. For the plunging case, the total grid number is 
561×252×32 with the minimal mesh size being 0.005C. 
Figure 2 plots the Cartesian grid used for the stationary case. 
Only at the first time step, random forces with amplitude 
10−8 are applied on the airfoil surface in the spanwise direc-
tion in order to develop the transitional flows quickly. Note 
that the transition can occur without applying these random 
forces. 

In the IB method, the hydrodynamic stress on the surface 
can not be calculated directly since the Cartesian grid does 
not coincide with the immersed boundary in general. As 
shown in Figure 3, the velocity and the pressure at point B 
are averaged from the surrounding fluid points. The friction 
force at the Lagrangian point A is then constructed by using 
one side difference. The pressure at Lagrangian point A is  

 

Figure 2  Cartesian grid for the simulation of flows past a stationary 
airfoil. 

 

Figure 3  A schematic display of the pressure and friction calculation at 
the Lagrangian points. 
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equal to the pressure at point B by using the boundary con-
dition of pressure wall/ | 0.p n∂ ∂ =  

The temporal variations of the drag and the lift are 
evaluated as the summation of the volume force as in eq. 
(14) in the streamwise and crosswise directions, respec-
tively. For the problems with moving boundaries, the iner-
tial force of the “pseudo fluid” enclosed by the immersed 
boundary needs to be subtracted. Please refer to paper [12] 
for the details of the hydrodynamic force calculation. 

3.2.1  Flows past a stationary airfoil 

In the near wall region especially near the leading edge, the 
grid is too coarse to resolve the thin laminar boundary layer, 
so we can not expect to accurately capture the friction and 
the pressure around the leading edge. The upper plot of 
Figure 4 shows the time-averaged pressure coefficient on 
the surface of airfoils. Near the leading edge, the boundary 
layer separates from the surface caused by a strong adverse 
pressure gradient. After the separation, a pressure plateau 
appears which corresponds to the laminar separation bubble. 
The pressure plateau terminates at the transition point where 

 

Figure 4  Spanwise- and time-averaged pressure coefficient and friction 
coefficient on the airfoil surface at Re=60000 and α=4°. Upper plot: pres-
sure coefficient. Lower plot: friction coefficient. 

the transition of the shear layer causes a rapid increase in 
the surface pressure. After a complete transition to turbu-
lence, the flows show reattachment due to the large turbu-
lence momentum transport towards the airfoil surface. 

The time-averaged friction coefficient is shown in the 
lower plot of Figure 4. The friction coefficient is negative 
between x/c=0.16 and 0.71 which is related to the laminar 
separation bubble. And the points x/c=0.16 and x/c=0.71 are 
the separation point and reattachment point, respectively. 
After the reattachment, the friction coefficient shows an 
increase due to the turbulent flows. The separation point, 
transition point and reattachment point of the present simu-
lations compared with the ones from numerical simulations 
and experiments in other references are shown Table 1. The 
separation point and reattachment point are determined 
from the distribution of friction coefficient as shown in the 
lower plot in Figure 4. As to the transition, there are various 
ways to determine its location, such as intermittency meth-
ods [17] and fluctuation growth methods [18]. In the present 
study, the commonly used Reynolds-stress threshold 
method is adopted. In this method, the transition point is 
defined as the beginning of the turbulent wedge that spreads 
from the shear layer of the LSB. Usually the point is taken 
where the normalized Reynolds shear stress is −0.001 and 
its amplitude demonstrates a clearly visible rise as is the 
case in other studies [19,1]. In the present study, the thresh-
old of Reynolds stress is taken as −0.005 rather than −0.001. 
By using this threshold, the transition point is 0.45. If the 
threshold is taken as −0.001, the transition point is 0.3. But 
at x/c=0.3, the amplitude of the Reynolds stress does not 
show a clear increase, so we take x/c=0.45 as the transition 
point in the present study. The transition point and reat-
tachment point obtained are consistent with those in the 
literature [19,1]. However, the separation appears to occur 
earlier compared the numerical results in the literature. The 
possible reason for the earlier separation is the lack of mesh 
resolution near the leading edge in the present study. 

The Reynolds shear stress distribution and the time-ave-          
raged streamlines on the suction surface of the airfoil are 
shown in Figure 5. As shown in the plot, the Reynolds 
stress is near zero in the first half of the LSB. After the 
transition point x/c=0.45, the amplitude of Reynolds stress 
shows a visible increase along the shear layer. The maxi-
mum location of the amplitude of the Reynolds stress is just 
on the top of the rear part of the LSB. These phenomena 
show good agreement with Radespiel et al.’s experiment [1], 
although the separation bubble is larger and longer than that 

Table 1  The separating point, transition point and reattaching point for 
flows past a stationary SD7003 airfoil at Re=60000 and α=4° 

 xs/c xt/c xr/c 

Present results 0.16 0.45 0.71 

LES 3D by Yuan et al. [19] 0.25 0.49 0.60 

Exp. by Radespiel et al. [1]  0.55 0.64 
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Figure 5  The iso-contours of turbulent shear stress u v′ ′  and time-ave-                              
raged streamlines for the flows past a stationary SD7003 airfoil at Re= 
60000 and α=4°. 

in the experiment. The relatively large size of the LSB is 
probably caused by two reasons. The first is the zero level 
of the free stream turbulence. The second reason is the early 
separation of the laminar boundary layer. 

Figure 6 plots the instantaneous iso-surface of spanwise 
vorticity. The plots show that in the first half of the chord 
length, the flow structure is two-dimensional. Nearly in the 
middle of the airfoil, the two-dimensional structure is dis-
torted and abruptly the two-dimensional structures break 
down to small three-dimensional structures. With the inter-
action of the vortex with the surface of the airfoil, even 
small structures are generated. The flows reattach on the 
airfoil surface. It should be noted that the transition point is 
not given a priori. The development of three-dimensional 
turbulent structures is triggered solely by the numerical 
noises. 

The method has demonstrated its use in simulating tran-
sitional flows with stationary boundaries in particular the 
capture of the three-dimensional flow. The results for the 
plunging airfoil simulations will be presented in the next 
section. 

3.2.2  Flows past a plunging airfoil 

In this subsection, we present the numerical results of the 
flows past a plunging airfoil. The plunging motion of the 
airfoil is prescribed as 

 ( ) cos(2 ),y t A ft= π  (17) 

where the amplitude is A=0.05C and the reduced frequency 
k, defined as / ,k fC U∞= π  is 3.93. The amplitude and the 

reduced frequency used in this study are the same as those 
in the experiment [4]. 

 

Figure 6  Instantaneous iso-surface of the spanwise vorticity (ωz=−40) for 
the flows past a stationary SD7003 airfoil at Re=60000 and α=4°. 

The iso-contours of the phase- and spanwise-averaged 
spanwise vorticity at four different phases are shown in 
Figure 7. The figure shows that two vortices with opposite 
signs are shedding from the trailing edge within one cycle. 
The positive one is generated when the airfoil plunges down 
from the position with zero displacement (downstroke, 
α=1/4), while the negative one is from the upstroke (φ=3/4). 
In the wake, an inverse Karmann vortex street has formed. 

Moreover, the vortex shed during the downstroke has a 
higher intensity than the one shed during the upstroke. By 
measuring the displacement of one vortex motion in one  

 

Figure 7  Phase- and spanwise-averaged spanwise vorticity contours for 
flows past a plunging SD7003 airfoil at Re=60000 and k=3.93. 
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cycle, it can be seen that the vortex moves downstream 
nearly at the free-stream velocity. All of these observations 
are in good agreement with the experiment in [4]. 

Figure 8 shows the iso-contours of the phase and span-
wise averaged turbulent kinetic energy at four different 
phases. These two pictures show that the locations of high 
turbulent kinetic energy in the wake are coincident with the 
cores of the spanwise vortices. Besides that in the wake, the 
turbulent kinetic energy is mainly distributed near the sur-
face of the airfoil, especially on the upper surface of the 
airfoil. The turbulence on the surface is probably generated 
within the shear layer separated from the wall which is the 

 

Figure 8  Phase- and spanwise-averaged turbulent kinetic energy con-
tours for flows past a plunging SD7003 airfoil at Re=60000 and k=3.93. 

 
Figure 9  Instantaneous iso-surface of the spanwise vorticity for flows 
past a plunging SD7003 airfoil at Re=60000 and k=3.93. Red iso-surface: 
ωz=40; yellow iso-surface: ωz=−40. 

same as the stationary case. The sources for the turbulent 
fluctuations in the wake are complicated. Some turbulent 
fluctuations are from the upstream, and the others may be 
generated by the stirring effect of plunging motion at the 
trailing edge. 

Figure 9 shows an instantaneous three-dimensional iso- 
surface of the spanwise vorticity. On the suction surface, the 
flow structure is two-dimensional near the leading edge, 

 

Figure 10  Periodic-variations of the drag coefficient and the lift coeffi-
cient for flows past a plunging SD7003 airfoil at Re=60000 and k=3.93. 
Upper plot: drag coefficient; lower plot: lift coefficient. 
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then it is distorted, and finally it breaks down to small 
three-dimensional structures. The evolution of the flow 
structure on the suction surface is similar to that in the sta-
tionary case, but the breakdown to three-dimensional struc-
tures happens earlier in the plunging case. On the pressure 
surface, spanwise vortices exist which are absent in the sta-
tionary case. 

Figure 10 compares periodic-variations of the drag coef-
ficient and lift coefficient obtained from the regular 3-point 
function φ3 and the ones obtained from the smoothed 
3-point function φ3

* for the plunging airfoil simulations. For 
the results from φ3, especially on the drag coefficient, small 
wiggles exist on the hydrodynamic forces for this plunging 
case, while for the results from φ3

*, the non- physical oscil-
lations are effectively suppressed and smooth peri-
odic-variations are obtained. 

4  Conclusions 

The IB method has exhibited its advantage in simulating 
laminar flows with complex or moving boundaries. To test 
its validity in turbulent flows, we first simulate a fully de-
veloped turbulent channel flow using DNS combined with 
the IB method. The results obtained are in good agreement 
with those of DNS using a body-fitted grid. Furthermore, 
we simulate the transitional flows around the stationary and 
plunging airfoils at Re=60000 using LES combined with the 
IB method. The results are consistent with those from ex-
periments. For the stationary case, the IB method makes 
good predictions of the location of transition and reattach-
ment. For the plunging case, the vortex structures are also in 
good agreement with experimental results. In both the sta-
tionary and plunging cases, the three-dimensional flow 
structures are well captured. By using a smoothing tech-
nique, the non-physical oscillations in hydrodynamic forces 
are successfully suppressed and the smooth temporal varia-
tions are obtained. The capability of the present method in 
simulating turbulent and transitional flows is demonstrated 
through the above numerical simulations. 

The present work suggests that LES with the direct forc-
ing IB method could be used to simulate the flows around 
the flapping airfoils at moderate Reynolds numbers. To ob-
tain more accurate predictions requires more refined grids. 
In the present IB method, the refinement has to be done in 
all the three directions and the grids in the far field are un-
necessarily refined. This causes a large increase in the total 
grid number. One possible solution to this issue is to use the 
local refinement in regions where the immersed boundaries 
are located. The other possible solution is to appropriately 
model the shear layer separation, turbulent transition and 
reattachment. As the first step in future work, we will de-
velop the wall-layer models for the present LES with the  

direct forcing IB method.  
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