水体渗流对滑坡体稳定性的影响研究

环境力学重点实验室 中国科学院力学研究所 gqliu@imech.ac.cn

本研究是与李家春院士,孙建平博士, 樊红光硕士生合作完成。

1

一、引 言

- 二、水渗流引起的边坡渗流场变化
- 三、裂隙网络渗流的渗透张量
- 四、边坡稳定性分析模型
- 五、渗流对滑坡体稳定性的影响
- 六、结论

1. 滑坡是最常见的一种地质灾害

地质体失稳造成的山体 (边坡)垮塌(崩塌) 下滑力 > 抗滑力

突发性强,因素复杂

2. 人类活动加剧了滑坡地质灾害

- n 自然因素 降雨、地震等
- n 人为因素 边坡开挖、坡顶加载等
- n 大型水利枢纽建设 水位变幅很大

大规模的基础设施建设 🗡 复杂恶劣的地质环境

重庆万州安乐寺滑坡体全貌

湖北秭归千将坪滑坡

3. 水渗流在滑坡灾害中起着至关重要的作用

无水不成滑坡

据统计90%以上的滑坡与水渗流相关

- 水的来源
 - 自然降雨
 - 水位变化

水的作用

改变地质体的自重 产生孔隙压力 软化土体强度

今年四月,三峡库区凉水井滑坡变形加剧,威胁到航道安 全,曾一度夜间封航,温家宝总理、国务院高度关注。

随着每年的库水涨落,三峡库区的地质灾害会更加严重。

4. 认知不够一传统方法遇到挑战

以往的研究一经验统计规律

香港地区降雨与滑坡关系 (Lumb, 1975) 全球范围滑坡启动临界降雨强度与 降雨持续时间(Guzzettiet al,2008)

重点关注水渗流对滑坡体稳定性的影响

- 1. 饱和-非饱和渗流模型
 - p Darcy定律:饱和状态下水在多孔介质中的渗流规律 水在多孔介质中的渗流速度与水力坡度成正比

$$V = -\frac{K}{\mu}\frac{\partial p}{\partial x} = -K'\frac{\partial(p/\rho g)}{\partial x}$$

- p Richard方程: 非饱和一饱和渗流
 - 水分在非饱和区的渗流仍满足Darcy定律,非饱和介质的渗透系数是含水量或压力水头的函数。

$$C(h)\frac{\partial H}{\partial t} = \frac{\partial}{\partial x} \left[K_x(h)\frac{\partial H}{\partial x}\right] + \frac{\partial}{\partial y} \left[K_y(h)\frac{\partial H}{\partial y}\right] + \frac{\partial}{\partial z} \left[K_z(h)\frac{\partial H}{\partial z}\right]$$

 $C(h) = d\theta / d$ 为比水容重, 为体积含水量; K(h) 为渗透系数, 在非饱和区 是孔隙压力的函数; h为孔隙压力水头, 在非饱和区为负值, 在饱和区为 正值; H=h+z为总水头。

2. 降雨引起的边坡渗流模型

采用饱和①非饱和耦合渗流模式 C

$$\frac{\partial}{\partial x} [k_x(h) \frac{\partial H}{\partial x}] + \frac{\partial}{\partial y} [k_z(h) \frac{\partial H}{\partial z}] = C(h) \frac{\partial H}{\partial t}$$

$$\begin{split} K_{r}(S_{e}) &= S_{e}^{1/2} [1 - (1 - S_{e}^{1/m})^{m}]^{2} \\ S_{e} &= \frac{\theta - \theta_{r}}{\theta_{s} - \theta_{r}} \\ \theta(h) &= \begin{cases} \theta_{r} + \frac{\theta_{s} - \theta_{r}}{[1 + |\alpha h|^{n}]^{m}}, \quad h < 0 \\ \theta_{s}, \quad h \ge 0 \end{cases} \quad i = p, \qquad t \le t_{p} \\ i = K[1 + (\theta_{s} - \theta_{i})S/I], \quad t > t_{p} \\ i = K[1 + (\theta_{s} - \theta_{i})S/I], \quad t > t_{p} \end{cases} \end{split}$$

13

 $t \leq t_p$

模型验证

Sciences in China, Ser. E, 2005, 48, 107-120.

自由水面数值解与试验结果比较

数值结果与半解析解的比较

均质边坡降雨入渗模拟结果

均质边坡渗流场

X=100m截面处孔隙水压力

带裂隙边坡的降雨入渗模拟结果

不同裂隙深度引起的渗流场变化

不同裂隙深度含水量→的比较

- case

·□— caseî ·▲— caseî

·∆— case4

0.52

0.48

0.44

不同降雨强度引起的渗流场变化

不同雨强的含水量→的比较

不同降雨历时引起的渗流场变化

3.库水位变化引起的渗流场

Dupuit假设: 地下水面坡度一般很小

假定等势线**垂直,水流水平流**动,忽略渗流的垂直分量

式中: h为浸润线到水平不透水层的距离; K 为渗透系数; 动土体有效孔隙度;

水位变化引起的浸润线变化近似解

从Boussinesq方程出发

$$\frac{\partial h}{\partial t} = \frac{K}{n_e} \frac{\partial}{\partial x} (h \frac{\partial h}{\partial x})$$

边**界**与初始条件

$$h[X(t),t] = H_1(t) \quad X(t) = H_1(t)\cot(\beta) \quad t \ge 0$$

 $h(\infty, t) = h_i \qquad t \ge 0$

 $h(x,0) = h_i \qquad \infty > x \ge H_1(0)\cot(\beta)$

库水位下降示意图(动边界问题)

将动边界问题转化位定边界问题:

z = x - X(t)坐标变换: $\frac{\partial h}{\partial t} = \frac{K}{n_a} \frac{\partial}{\partial z} (h \frac{\partial h}{\partial z}) - v(t) \frac{\partial h}{\partial z}$ $v(t) = -\frac{dX(t)}{dt} = V \cot(\beta)$ 这里: 转变为定边界问题,但多出一个对流项。 $t \ge 0$ $h(0,t) = h_i - Vt$ $t \ge 0$ $h(\infty,t)=h_i$

线性化方程,并假设:

$$u(z,t) = h_i - h(z,t)$$

方程转化为:

$$\frac{\partial u}{\partial t} = \frac{Kh_m}{n_e} \frac{\partial^2 u}{\partial z^2} - V \cot \beta \frac{\partial u}{\partial z}$$

初边值条件:

$$u(0,t) = Vt \qquad t \ge 0$$
$$u(\infty,t) = 0 \qquad t \ge 0$$
$$u(z,0) = 0 \qquad \infty > z \ge 0$$

Laplace 变换:

$$U(z, p) = L[u(z, t)] = \int_0^\infty u(z, t) e^{-pt} dt$$

方程及边界条件:

$$pU = \frac{Kh_m}{n_e} \frac{d^2U}{dx^2} - V \cot \beta \frac{dU}{dx}$$
$$U|_{x=0} = \frac{V}{p^2}$$
$$U|_{x=\infty} = 0$$

方程的解:
$$U(z,p) = \frac{V}{p^2} \exp(z \frac{V \cot \beta - \sqrt{V^2 \cot^2 \beta + 4 \frac{Kh_m}{n_e} p}}{2 \frac{Kh_m}{n_e}})$$

22

反变换:
$$u(z,t) = V \int_{0}^{t} \frac{(-p+t)z \exp(\frac{-V^{2}p^{2}n_{e} \cot^{2}\beta - n_{e}z^{2} + 2Vpn_{e}z \cot\beta}{4Kh_{m}p})}{2\sqrt{\frac{\pi n_{e}p^{3}}{Kh_{m}}}} dp$$

 $h(z,t) = h_{i} - V \int_{0}^{t} \frac{(-p+t)z \exp(\frac{-V^{2}p^{2}n_{e} \cot^{2}\beta - n_{e}z^{2} + 2Vpn_{e}z \cot\beta}{4Kh_{m}p})}{2\sqrt{\frac{\pi n_{e}p^{3}}{Kh_{m}}}} dp$
等 $V \cot \beta \rightarrow 0$

$$h(z,t) = h_i - Vt \left[(1 + 2\lambda^2) erfc(\lambda) - \frac{2}{\sqrt{\pi}} \lambda e^{-\lambda^2} \right]$$

$$\lambda = \frac{z}{2} \sqrt{\frac{n_e}{Kh_m t}} \qquad erfc(\lambda) = \frac{2}{\sqrt{\pi}} \int_{\lambda}^{\infty} e^{-x^2} dx$$

假定:
$$M(\lambda) = (1+2\lambda^2)erfc(\lambda) - \frac{2}{\sqrt{\pi}}\lambda e^{-\lambda^2}$$

多项式近似:

$$M(\lambda) = \begin{cases} 0.1091\lambda^4 - 0.7501\lambda^3 + 1.9283\lambda^2 - 2.2319\lambda + 1 & 0 \le \lambda < 2\\ 0 & \lambda \ge 2 \end{cases}$$

最后有:

$$h(z,t) = h_i - VtM(\lambda) \Longrightarrow$$
 浸润线简化解析 表达式

解析解与数值计算比较

J. Hydrol. Eng. ASCE. doi:10.1061 HE. 1943 -5584. 0000372.

25

裂隙网络渗流

裂隙线素模型:

裂隙迹长,倾角,张开度,中心点

位置,裂隙密度

裂隙几何分布形式及分布参数

刻陷	$\Box \bigstar \Box mm \Box$		张开□□mm□		倾□		
	对数□态		对数□态		态		$1/m^{2}$
组.	□值	标□□	□值	标□□	□值	标□□	
1	40	13	0.14	0.046	60	30	4190
2	40	13	0.14	0.046	90	30	4120

三、裂隙网络渗流的渗透张量

随机裂隙网络的Mento-Carlo模拟

二维裂隙网络图实例

三、裂隙网络渗流的渗透张量

Flow

裂隙网络渗流数值计算方法

1.裂隙段之间单裂隙模型

2. 节点流量平衡

3.边界条件

三、裂隙网络渗流的渗透张量

等效渗透张量的模拟计算

n 渗透张量 1.渗透速度

2.各向异性

n REV

 1.体积必须远小于研究对象
 2.必须是足够大,以保证区域内的 裂隙网络的统计规律
 3.渗透张量不再随变化的最小体积

等效渗透张量及其有效性的检验

子窗口布置图 (边长从0.32m递减到0.16m,每次递减0.02m)

等效渗透张量及其有效性的检验

θ (°)	Kα	$\frac{1}{\sqrt{k_J}}$
0	0.864	1.076
15	1.162	0.928
30	1.557	0.801
45	1.942	0.718
60	2.215	0.672
75	2.302	0.659
90	2.180	0.677
105	1.882	0.729
120	1.487	0.820
135	1.102	0.953
150	0.829	1.098
165	0.742	1.161
180	0.864	1.076
195	1.162	0.928
210	1.557	0.801
225	1.942	0.718
240	2.215	0.672
255	2.302	0.659
270	2.180	0.677
285	1.882	0.729
300	1.487	0.820
315	1.102	0.953
330	0.829	1.098
345	0.742	1.161
360	0.864	1.076

方向渗透系数的计算结果(scale=0.32m)计算结果的渗透椭圆

 K_{max} =2.3026(10⁻⁴m/s), K_{min} =0.7414(10⁻⁴m/s), 主渗透方向为 θ =-16.27°

四、边坡稳定性分析模型

1. 极限平衡法

极限平衡法是建立在摩尔-库伦强度准则基础上的,当土体非饱和时,摩尔-库伦强度准则表达式为:

 $\tau_f = c' + (\sigma - u_a) \tan \varphi' + (u_a - u_w) \tan \varphi^b$

当土体饱和时,摩尔-库伦强度准则表达式为

$$\tau_f = c' + (\sigma - u_w) \tan \varphi'$$

 τ_f 为破坏面上的剪应力;
 σ 为破坏面上总应力;

 $c' \mathbf{n} \varphi'$ 分别为土的有效粘聚力和有效内摩擦角;

 $u_a \mathbf{n} u_w$ 分别是孔隙气压力和孔隙水压力;

 φ^b 是与基质吸力 $(u_a - u_w)$ 有关的内摩擦角;

当土体饱和时, 令 $c = c' + (u_a - u_w) \tan \varphi^b$ 二者统一为一个公式₃₂

四、边坡稳定性分析模型

1. 极限平衡法

极限平衡法的基本特点是,只考虑静力平衡条件和土的摩尔-库伦破坏准则,将滑动土体分成若干土条,每个土条和整个滑动 土体都要满足力的平衡和力矩平衡条件。

 W_i 为土条自重;

 N_i T_i 分别为土条底部压力和剪力;

 E_i E_i 分别为土条两侧水平作用力;

33

$$c_e = \frac{c}{F_s}, tg\varphi_e = \frac{tg\varphi}{F_s}$$

$$T_i = \frac{1}{F_s} (c'_i l_i + (u_a - u_w) l_i \tan \varphi_i^b + N_i \tan \varphi_i')$$

整体力矩平衡

$$F_{s} = \frac{\sum \frac{1}{\cos \alpha_{i} + \sin \alpha_{i} \tan \varphi_{i}' / F_{s}} [(c_{i}' - u_{w} \tan \varphi_{i}^{b})b_{i} + \Delta W_{i} \tan \varphi_{i}']}{\sum \Delta W_{i} \sin \alpha_{i}}$$

四、边坡稳定性分析模型

Low(1998)提供的两个算例

算例1:均质坡体

安全系数: 2.079 (2.078)

均匀坡体剖面图(单位: m)

(黑点为土条重心位置,虚线) 为土条侧面作用点连线)

算例2:含软弱层坡体 安全系数:1.010 (1.010)

含软弱层坡体剖面图(单位: m)

四、边坡稳定性分析模型

任意形状滑动面

滑动面曲线用n个点离散, 这n个**点坐**标**表示**为:

 $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

 $x_i = x_{i-1} + (x_n - x_1)/(n-1)$ i = 2, n-1这些节点应该在边坡左右边界范围内 $x_{\min} \le x_i \le x_{\max}$ i = 1, n y_1 和 y_n 与边**坡表面** s(x) 有关, 因此 $y_i = s(x_i)$ i = 1 i = n最终滑动面可以表达为n个单元的数组 $S = [x_1, y_2, y_3, ..., y_{n-1}, x_n]^T$

寻找最危险滑动面的问题即为寻找安全 系数最小的那个面,因此其目标函数为

 $\min F(S)$

基于样条函数的边坡最危险滑动面的确定方法

p采用遗传算法进行优化计算

p用样条函数连接节点

p通过滑动面倾角限制节点范围

$$\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_i \leq \cdots \leq \alpha_{n-1}$$

J. Geotech. and Geoenvir. Eng.-ASCE. 134(2), 252-256.

四、边坡稳定性分析模型

基于样条函数的边坡最危险滑动面的确定方法

	Method	Range of safety factor	
	BFGS	1.423	
(-) Vana (1099)	DFP	1.453	
(a) 1 amagami and Oeta (1988)	Powell	1.402	
	Simplex	1.405	
(b) Cross (1005)	Pattern search	1.400	
(0) Greco (1990)	Monte Carlo	1.401	
(c) Malkawi et al (2001)	Monte Carlo	1.330	
(d) This Study	Genetic algorithm	1.395(line and spline)	

四、边坡稳定性分析模型

基于样条函数的边坡最危险滑动面的确定方法

	Method	Range of safety factor	
	Original DFP	1.011-1.035	
Chap and Shap (1099)	Modified DFP	1.009-1.025	
Chen and Shao (1988)	Steepest descent	1.025	
	Simplex	1.025	
Grace (1006)	Pattern search	0.973-1.033	
GIECO (1990)	Monte Carlo	0.973-0.974	
Malkawi et al (2001)	Monte Carlo	0.933	
This Study	Cenetic algorithm	0.971(spline,best)	
This Study	Ocheue argoritiiti	0.967(line,best)	

■ ∞ 渗流与稳定性分析耦合

模型 q考虑降雨入渗引起的自重变化和孔隙压力变化

含水率变化引起的自重变化

$$\Delta W_i = \int_0^{h_i} b_i \gamma(\theta) dh \qquad \qquad \gamma(\theta) = \gamma_d + \theta \gamma_w$$

孔隙压力场变化

直接计算降雨入渗引起的渗流场变化

四、边坡稳定性分析模型

q考虑含水率变化对抗剪强度的影响

粘性土含水量与c,φ值关系(罗小龙,2002)

四、边坡稳定性分析模型

1. 基本参数变化对边坡稳定性的影响 q含水率变化对边坡稳定性影响的敏感性分析 假定土体干容重 $\gamma_d = 17kN/m^3$ 初始含水量 $w_i = 20$ 饱和含水量 $w_s = 30$

五、渗流对滑坡体稳定性的影响

H 为10m、20m, β 为20°,30°,40°,50°

计算所用简单边坡剖面图

43

q抗剪强度参数影响

抗剪强度参数 $c' \ (\circ, \varphi')$ 随土体含水率增加而减小; φ' 值对滑坡体稳定性影响最大;c' 值影响较小;

q降雨入渗引起的变化

24h降雨,降雨强度10⁻⁶ m/s 自重变化和孔隙压力变化导致安全 系数降低0.353; 只考虑孔压变化安全系数降低0.306; 降雨入渗引起的孔隙压力增大,是 导致滑坡失稳的最主要因素;

降雨入渗引起的安全系数变化

q初始含水状态的影响

初始含水状态对滑坡稳定性影响很大; 前期降雨容易造成滑坡失稳; 长历时降雨也容易造成滑坡失稳; 地下水位对滑坡稳定性影响显著

初始状态的影响

2. 库水位变化对边坡稳定性的影响

库水缓慢上升安全系数变化

不同下降速度安全系数变化

库水下降时边坡稳定分析图解法

通过解析解 得到的边坡稳 定性分析图。 该图表可以反 映库水下降速 度,土体渗透 性能的影响

)

3. 滑坡体稳定性实例分析

(1) 重庆万州农机技校滑坡体雨季稳定性分析

农机技校滑坡体3—3地质剖面

Sciences in China, Ser.,G 2009, 52(1): 108-114.

奉节气象站1982年雨季日降雨量

51

均质土时雨季孔隙水压力分布变化情况 (a) a-a断面; (b) c-c断面

(2) 万州花园滑坡

三峡水库运行条件下,重庆万州区花园滑坡体稳定性变化

三峡□库运□□□简□图 1998□黄□□□□□□□□□□图

三峡水库运行条件下,重庆万州区花园滑坡体稳定性变化

降雨和库水联合作用下滑坡体安全系数变化情况

(3) 重庆万州汪家院子滑坡

岩土体参数:

根据工程类比确定滑坡体的主要力学参数: $\gamma = 20N/m^3$ c=15KPa $\varphi = 16^{\circ}$ 饱和渗透系数取 $k_{sat} = 1.0m/d$ 考虑基质吸力对抗剪强度影响,取 $\varphi^{b} = 13^{\circ}$

裂隙网络

裂隙	迹长(mm) 对数正态		张开度(mm) 对数正态		倾角 正态		密度
组	均值	标准差	均值	标准差	均值	标准差	$(1/m^2)$
1	40	13	0.14	0.046	60	30	4190
2	40	13	0.14	0.046	90	30	4190

等效渗透系数

裂隙网络等效为连续孔隙介质对应的主渗透系数为:

Kmax= $2.3026 (10^{-4} \text{m/s})$, Kmin= $0.7414 (10^{-4} \text{m/s})$,

主渗透方向为0=-16.27。

换单位得: Kmax=20(m/d), Kmin=6.4(m/d)

三峡库水位变化引起的的滑坡体安全系数变化

- (1)建立饱和一非饱和渗流模型,分析了降雨入渗导致的边坡渗流场 变化特征,水渗流显著增大了比肢体边坡内的空隙水压力;
- (2)**得到了**库水位变化导致的边坡内侵润线近似解,可以方便地估算 边坡渗流场;
- (3)提出了一种快速、有效搜索危险滑动面的方法,基于极限平衡法 建立了滑坡体稳定性分析模型;
- (4) 充分考虑渗流引起的含水率、空隙压力变化,以及土体软化,建 立了渗流与稳定性分析耦合模型
- (5) 得到了降雨及库水位变化引起渗流场和介质参数变化导致的边坡 稳定性变化特征和规律;

(6)应用于分析三峡库区实际滑坡的稳定性变化趋势。

谢谢!