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ABSTRACT The eigenvalue problems of the buckling loads and natural frequencies of a braced
beam on an elastic foundation are investigated. The exact solutions for the eigenvalues are pre-
sented. The eigenvalues vary with the different parameters and are especially sensitive to the
brace location. As the beam of a continuous system has infinite eigenvalues and these eigenvalues
are influenced differently by a brace, the eigenvalues show rich variation patterns. Because these
eigenvalues physically correspond to the structure buckling loads and natural frequencies, the
study on the eigenvalues variation patterns can offer a design guidance of using a lateral brace
of translation spring to strengthen the structure.
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I. INTRODUCTION
In composite structures, the axial stress of a bending layer results in a stress in the direction

normal to the interface due to the curvature effect, which is described by the famous Laplace-Young
formula[1]. In modeling aspect, the elastic foundation model is explicitly or implicitly introduced to
describe the transverse interactions between layers[1–8]. The elastic foundation model simplifies the
transverse interactions by assuming that the stress (normal to interface) at a point is proportional
to its corresponding displacement. Otherwise, a rather complex formulation is needed[9]. With this
transverse interaction, or say, the elastic foundation, the composite such as film/substrate structure
can buckle with a large wave number[1–6], which is also variably called wrinkling, undulation, convolution
and ripple. Recently the large wave number wrinkling of thin film/substrate composite structures has
been utilized to manufacture high-performance flexural electronics[10] and to measure the thickness
and Young’s modulus of ultra-thin (nanometer scale) films[11]. On the other hand, as an important
element in structural design, a lateral brace of translational spring with its variations of stiffness and
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location has significant impact on the buckling loads, buckling shapes[12,13] and eigenfrequencies[14,15]

of the structure. During the investigation of the buckling of cylindrical shells[16–18], it was found that
the characteristics of this type of structure can be well simulated by a column supported laterally by
a spring.

Mathematically speaking, finding the buckling loads and eigenfrequencies of a system is an eigenvalue
problem. The dependence of the eigenvalues upon the system parameters is often of interest in structural
dynamics and design, which is frequently illustrated by a family of loci[19,20]. When two loci approach
each other, they often cross (curve crossing) or abruptly diverge (curve veering)[20]. As for a beam
on an elastic foundation with no brace, because the system buckles with the lowest buckling load,
the curve crossings of the buckling loads physically correspond to the transition/change of buckling
shapes[21]. The curving veering phenomenon of eigenvalues exists in a variety of structural mechanics,
such as vibration of beams[14,15,19], rotors[22], plates[23,24] and shells[25]; buckling of columns[26] and
plates[27]. However, in the early 1970s, whether the occurrence of eigenvalue loci veering is a true
physical phenomenon or a subtle manifestation due to mathematical approximation/discretization was
intensively argued by Leissa[23]. Perkins and Mote[20] showed that the veering indeed occurs in the exact
solution for a rotating, guided, circular string; and at the same time, they also pointed out that some of
the discretizing methods may destroy or create self-adjointness, which can affect the veering/crossing
of the approximation solutions. The curve veering of eigenvalues in dynamics is often associated with
the mode localization[19], or say, the confinement of vibration energy[28], which physically means that
one portion of structure will experience much larger deflection (stress). Both the eigenvalue loci veering
and mode localization are catastrophic because small changes of the system parameters cause large
variations of eigenvalues and mode shapes, respectively[19]. Furthermore, when the two buckling loads
come closer to each other an instability in the postbuckling region called mode-jumping, which is also
catastrophic, will occur with less axial compression because of smaller difference between two buckling
loads[29].

The eigenvalues of a braced beam on an elastic foundation show rich variation patterns. Here the
eigenvalues are solved exactly without any discretization process. The eigenvalues are shown to be
sensitive to some system parameters. Besides the curve crossings, the eigenvalue loci are also found
to veer away from each other as the brace moves from one end to the other. However, we also show
that the curve crossing or curve veering of the eigenvalue loci can be avoided with small variation of
parameters. Some of the eigenvalue loci variation patterns and trends are observed and summarized,
which may serve as a helpful guidance to the structural design.

II. EQUATIONS OF EQUILIBRIUM AND BUCKLING LOADS
Figure 1 is a schematic diagram of a hinged-hinged beam resting on an elastic foundation; the beam

is braced laterally with a translational spring with the stiffness of ks. The brace locates at x = a and
k is the elastic foundation modulus. E and I are the Young’s modulus and area moment of inertia of
the beam, respectively. L is the beam length. p is the axial load; here positive p indicates compression
and negative p is tension. w is the beam deflection, which is divided into two parts as follows:

w =

{
w1 (0 ≤ x < a)
w2 (a ≤ x ≤ L)

(1)

Fig. 1. Schematic diagram of a braced beam resting on an elastic foundation.
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The governing equations for these two parts are

EI
d4w1

dx4
+ p

d2w1

dx2
+ kw1 = 0 (0 ≤ x < a)

EI
d4w2

dx4
+ p

d2w2

dx2
+ kw2 = 0 (a ≤ x ≤ L)

(2)

The boundary conditions are the following:

w1(0) = 0,
d2w1

dx2
(0) = 0, w2(L) = 0,

d2w2

dx2
(L) = 0 (3)

The matching/transition conditions at x = a are as follows[14]:

w1(a) = w2(a),
dw1

dx
(a) =

dw2

dx
(a),

d2w1

dx2
(a) =

d2w2

dx2
(a),

d3w1

dx3
(a) =

d3w2

dx3
(a) +

ks

EI
w1(a) (4)

The effect of the bracing spring is now incorporated in the above matching conditions. An alternative
is to include the bracing spring into the governing equation as follows:

EI
d4w

dx4
+ p

d2w

dx2
+ kw + kswδ(x − a) = 0 (5)

δ here is the Dirac delta function. It is extremely difficult if not impossible to give an analytical solution
to Eq.(5). However, by breaking w into two parts as done in Eq.(2), the solutions are readily given as
follows:

wi(x) = Ai cos(γ1x) + Bi sin(γ1x) + Ci cos(γ2x) + Di sin(γ2x) (i = 1, 2) (6)

Ai, Bi, Ci and Di are the constants to be determined. γ1 and γ2 are defined as

γ1 =

√
α−

√
α2 − β2, γ2 =

√
α +

√
α2 − β2

(
α =

p

2EI
, β =

√
k

EI

)
(7)

Now there are eight unknowns Ai, Bi, Ci, Di (i = 1, 2). Equations (3) and (4) give eight boundary and
transition conditions in total. To have nontrivial solutions for Eq.(6), the determinant of the 8 × 8
matrix resulting from Eqs.(3) and (4) needs to be zero. The eigenvalues of buckling loads are thus solved
by setting the determinant to be zero. Here we need to point out that the solution of Eq.(6) assumes
α2−β2 > 0. If α2−β2 ≤ 0, the solution form will be very different from Eq.(6). However, if α2−β2 ≤ 0
is assumed, there are no solutions for buckling loads in the real domain.

III. EQUATIONS OF MOTION AND EIGENFREQUENCIES
The equation of motion which does not include damping effect is given as follows:

Mẅ1 + EI
d4w1

dx4
+ p

d2w1

dx2
+ kw1 = 0 (0 ≤ x < a)

Mẅ2 + EI
d4w2

dx4
+ p

d2w2

dx2
+ kw2 = 0 (a ≤ x ≤ L)

(8)

Here M is the beam mass per unit length; (̇)̇ = d2/dt2(t is time). Unlike p in Eq.(5) which is the
buckling load to be determined from the eigenvalue problem, in Eq.(8) p is a given axial load. Assuming
wi(x, t) = φ(t)vi(x) (i = 1, 2) and by separation of variables, we have the following governing equation:

EI
d4v1

dx4
+ p

d2v1

dx2
+ (k −MΩ2)v1 = 0 (0 ≤ x < a)

EI
d4v2

dx4
+ p

d2v2

dx2
+ (k −MΩ2)v2 = 0 (a ≤ x ≤ L)

(9)

Here Ω2 = −φ̈(t)/φ(t) and Ω is the eigenfrequency to be determined. Again, we encounter the problem
of determining the solution form: k−MΩ2 < 0, k−MΩ2 = 0 and k−MΩ2 > 0 will give three different
solution forms for Eq.(9). k −MΩ2 < 0, i.e., Ω >

√
k/M is the cut-on frequency[30,31]; Ω =

√
k/M
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is the cut-off frequency[30]; Ω <
√

k/M is the case of the frequency below the cut-off frequency, which
is also referred to as the divergence instability[14]. Reference [31] presents a proof that only the cut-
on frequency can exist for a finite length beam resting on an elastic foundation. Because the cut-on
frequency is the only frequency for the eigenfrequency for the system, the solution forms of Eq.(9) are
given as follows:

vi(x) = Ai cosh(λ1x) + Bi sinh(λ1x) + Ci cos(λ2x) + Di sin(λ2x) (i = 1, 2) (10)

Here Ai, Bi, Ci and Di (i = 1, 2) are the eight constants to be determined. λ1 and λ2 are defined as

λ1 =

√
α−

√
α2 − β∗2, λ2 =

√
α +

√
α2 − β∗2

(
α =

p

2EI
, β∗ =

√
MΩ2 − k

EI

)
(11)

Once again, the eight boundary and transition conditions given by Eqs.(3) and (4) form an eigenvalue
problem for Ω. The eigenvalue problems of the buckling and eigenfrequencies are different due to the
different solution forms of Eqs.(6) and (10).

IV. RESULTS AND DISCUSSIONS
Before examining the effect of the bracing spring, some of the buckling characteristics of the beam

on an elastic foundation without a brace need to be outlined. The buckling loads of a hinged-hinged
beam on an elastic foundation with no brace is given by Timoshenko and Gere[21] as follows:

pm =
π2EI

L2

(
m2 +

kL4

m2π2EI

)
(12)

Here m is an integer. pm is the buckling load of the mth buckling shape of sin(mπx/L) for a hinged-
hinged beam on an elastic foundation[21]. The plot of beam length L versus pm is shown in Fig.2; here
the beam bending stiffness EI and elastic foundation modulus k are both set as 1[21]. As shown in
Fig.2, the curves of p1 and p2 intersect at L = 4.45. After the intersection, the lowest buckling load
changes from p1 to p2; the buckling shape also changes correspondingly from sin(πx/L) to sin(2πx/L).
At L = 7.7, the lowest buckling load then changes from p2 to p3. At L = 10.86, the lowest buckling load
changes from p3 to p4. At L = 14.04, the lowest buckling load changes from p4 to p5 and so on. Those
transition/intersection points are all marked with triangles in Fig.2. When the lowest buckling load
curve changes, the buckling shape also shifts correspondingly as well as the wave number. However,
there is no coupling between the buckling shapes of sin(mπx/L) during the transitions of the lowest

Fig. 2. Buckling loads associated with different buckling
shapes of sin(mπx/L) for an unbraced beam on an elas-
tic foundation. The transition points are marked with
triangles.

Fig. 3. The three lowest buckling loads of the braced
beam compared with those of the unbraced one as a
function of the beam length L. The brace is placed at
the beam center of a = 0.5L and its spring stiffness is
ks = 5. The transition points of the braced beam are
marked with circles and two transition points of the
unbraced beam are marked with triangles.
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buckling load curves. Although the beam buckles with a fixed wave number mπ at different L (except
those transition points), those beams with the buckling loads close to the transition points will have
greater danger of experiencing the mode-jumping instability in the post-buckling region[29]. When the
axial load reaches a critical value in the post-buckling region, the beam can no longer keep its previous
buckling shape and the beam has a sudden change of its deflection shape and wave number[29], which
can cause significant damage to the structure. So for this kind of structure, the structure buckling loads
should be designed to be away from those transition points.

Figure 3 shows the case that a bracing spring is located at the beam center of a = 0.5L, which
is also the node of sin(2πx/L) (i.e., sin(2πa/L) = sin(π) = 0). The bracing spring stiffness is ks =5.
Three lowest buckling loads are computed and compared with those of the unbraced ones. Clearly from
Fig.3, the lowest buckling load increases significantly for short beams. For example, at L = 2, the lowest
buckling load of the braced beam is 4.87 compared with 2.873 of the unbraced beam. Also for the braced
beam, the transition occurs at a smaller length of L = 2.94 (the transition points for the braced beam
are marked with circles) compared with L = 4.45 of the unbraced beam (marked with a triangle). After
the intersection at L = 2.94, the lowest buckling load of the braced beam overlaps with the p2 curve
of the unbraced beam. It is worth noticing that between the two transition points of L = 4.45 and
L = 7.7 for the unbraced beam (marked with triangles), the lowest buckling loads of the braced and
unbraced beams are (almost) the same. With the increase of beam length, the difference between the
lowest buckling loads of the braced and unbraced beams becomes smaller, which physically means that
the bracing spring has little impact on the lowest system buckling load for a very long beam. Unlike
the unbraced beam of no coupling between the buckling shapes of sin(mπx/L), the buckling shape of
the braced beam is a coupled one. The buckling shape at L = 2, ks = 5 and p = 4.87 is shown in Fig.4.
In Fig.4, the buckling shape is asymmetric. This asymmetry can be thought of as the result from the
coupling of sin(mπx/L). sin(mπx/L) is the mode shape of the unbraced beam, which is symmetric
when m is odd and antisymmetric when m is even. The prensence of the brace in essence couples these
symmetric and antisymmetric mode shapes and leads to an asymmetric one. Figure 5 shows the case
that a brace is also located at a = 0.5L but with a much larger stiffness of ks = 50. With this large
bracing spring stiffness, starting from L = 2, the lowest buckling load of the braced beam overlaps
the p2 curve of the unbraced beam. Therefore, for small L (e.g. L < 4), the lowest buckling load is
significantly increased. Again, the same scenario as that in Fig.3 occurs: in the range of 4.45 ≤ L ≤ 7.7,
the lowest buckling loads of the braced and unbraced beams are the same. It is noticed that the curve
crossing is postponed until L = 8.932 (marked with a circle) and more interestingly, the three lowest
buckling loads of the braced beam intersect (almost) exactly at the same one point; their next curve
crossing occurs at L = 15.475. Once again, we observe that there is no significant difference between
the lowest buckling of the braced beam and that of the unbraced one when the beam length is large
(e.g. L > 15).

Fig. 4. The buckling shape of the braced beam with
ks = 5, a = 0.5L and L = 2.

Fig. 5. The three lowest buckling loads of the braced
beam compared with those of the unbraced one as a
function of the beam length L. The brace is placed at
the beam center and its spring stiffness is ks = 50.
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Fig. 6. The three lowest buckling loads of the braced
beam compared with those of the unbraced one as a
function of the beam length L. The brace is placed at
a = 0.45L and its spring stiffness is ks = 5.

Fig. 7. The three lowest buckling loads of the braced
beam compared with those of the unbraced one as a
function of the beam length L. The brace is placed at
a = 0.45L and its spring stiffness is ks = 50.

Figures 6 and 7 show the cases when the brace shifts a little from the center to a = 0.45L. ks is still
taken as 5 and 50. Compared with the cases of the brace located at the center shown in Figs.3 and 4,
some similar trends are also observed in Figs.5 and 6: (1) the brace improves the lowest buckling load
of the short beam; (2) some portions of the lowest buckling loads of the braced and unbraced beams
overlap; (3) the impact of the brace on the lowest buckling load reduces with the increase of the beam
length. The biggest difference between Figs.6 and 7 (cases of brace off the center) and Figs.3 and 5
(cases of brace at the center) is that the three lowest buckling loads in Figs.6 and 7 are well separated
from each other and no curve crossing occurs. This well separated buckling loads will be helpful to delay
or even eliminate a post-buckling instability called mode jumping which is directly associated with the
‘closeness’ of two neighboring buckling loads[29]. If the brace is further shifted to a = L/3 and ks is kept
as ks = 50, the three lowest buckling loads are shown in Fig.8. The beam buckles at the mixed modes
shape until L = 6.75 and again, the lowest buckling load of short beam increases significantly compared
with that of the unbraced one. From L = 6.75 to L = 11.58, the lowest buckling load with the braced
beam overlaps the p3 curve (with the buckling shape of sin(3πx/L)) of the unbraced one. And from
L = 11.58 the lowest buckling load of the braced case separates from p3 and becomes a mixed mode
buckling again. At L = 16.4, the lowest buckling load of the braced case merges with the p5 curves.
From that point, the lowest buckling of braced case converges to that of no brace case.

Fig. 8. The three lowest buckling loads of the braced
beam compared with those of the unbraced one as a
function of the beam length L. The brace is placed at
a = L/3 and its spring stiffness is ks = 50.

Fig. 9. The three lowest buckling loads of the braced
beam with L = 4 and ks = 5 as a function of the brace
location a. The buckling loads of the unbraced beam are
plotted as dashed straight lines. VA stands for veering
away.



· 516 · ACTA MECHANICA SOLIDA SINICA 2011

Fig. 10. The three lowest buckling loads of the braced beam with L = 6 and ks = 5 as a function of the brace location a.
The four lowest buckling loads of the unbraced beam are plotted as dashed straight lines.

Now let us look from another different angle at the effect of the brace on the beam structure buckling
loads, which may show us some other trends/rules. In Fig.9, the beam length is fixed as L = 4, the
brace spring stiffness is ks = 5 and the brace moves from one end to the the other. Figure 9 shows
that the three lowest buckling loads of the braced structure change as the brace moves from a = 0 to
a = L. For comparison, the three lowest buckling loads of the unbraced beam are also plotted together
as dashed straight lines, which are calculated from Eq.(12) as p1 = 2.238, p2 = 2.872 and p3 = 5.7318
(p1 < p2 < p3). In Fig.9, it is noticed that when the brace is at the center, the lowest buckling equals
the p2 value. This is also reflected in Fig.3, where at L = 4 the lowest buckling load of the braced beam
overlaps the p2 curve. When the brace is located at the center, the first and the third lowest buckling
loads reach their maximum; the second lowest buckling load reaches its minimum. The reason is that
x = L/2 is the peak of both sin(πx/L) and sin(3πx/L), which can contributes most to improve their
corresponding buckling load; however, x = L/2 is the node of sin(2πx/L), which correspondingly does
the least help to improve its buckling load. This impact of the brace location reminds us the very similar
effect of the location of quantum dots on the local bending of a thin film[8]. It is also noticed that in Fig.9
at a = L/3 and a = 2L/3, the second and third lowest buckling loads approach and diverge abruptly,
which is the ‘veer away (VA)’ case of eigenvalues[20]. Now we change the beam length as L = 6 and ks

is still fixed as ks = 5 to see how the three lowest buckling loads of the braced behave. Again, the four
lowest buckling loads of the unbraced beam calculated from Eq.(12) are plotted for comparison reason:
p2 = 2.0, p3 = 2.87, p1 = 3.92 and p4 = 4.61. Now the sequence is p2 < p3 < p1 < p4 in Fig.10. Unlike
those in Fig.9, the three lowest buckling loads of the braced beam in Fig.10 are now well separated.
When the brace is at the center, the lowest buckling equals the p2 value of 2.0, which is also reflected
in Fig.3 where the lowest buckling load curve of the braced beam overlaps the p2 curve at L = 6. The
reason for the first lowest buckling in Fig.10 to reach its minimum at the center is that x = L/2 is
the node of sin(2πx/L) and the brace does not do any help to improve the buckling load. This, again,
verifies the fact that the brace at some point does not contribute anything to increase the structure
lowest buckling load.

Figures 11 and 12 examine the impact of the brace on the structure eigenfrequencies. In both figures
the beam length L is set as 2; the axial load p is set as 1 (much smaller than the buckling load); the
brace stiffness ks varies from ks = 0 to ks = 50. In Fig.11, the brace is located at 0.5L, 0.475L and
0.45L, respectively. Clearly, for the eigenfrequencies of the second mode, there are no or much less
changes than those of first and third modes. Because x = 0.5L is the node of the second mode shape
of sin(2πx/L), the brace stiffening effect at this exact location is zero. In Fig.12, the brace is located
at L/3, 0.33L and 0.3L. Clearly it is shown that there are no or much less eigenfrequency changes for
the third mode shape of sin(3πx/L) than those of first and second mode shapes. The reason, again, is
the same: x = L/3 is the node of sin(3πx/L).
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Fig. 11. The first three natural frequencies of the braced
beam with a = 0.5L, 0.475L and 0.45L as a function
the brace stiffness ks.

Fig. 12. The first three natural frequencies of the braced
beam with a = L/3, 0.33L and 0.3L as a function the
brace stiffness ks.

V. CONCLUSION
The eigenvalues (buckling loads and eigenfrequencies) of the braced beam on an elastic foundation

are solved exactly with the variations of different system parameters. The eigenvalues are sensitive to
the spring stiffness and location of the brace. The brace location plays a more important role, which
changes not only the eigenvalue magnitude but also its variation pattern (curve crossing and veering).
For a hinged-hinged braced beam, when the brace locates around/at the nodes of sin(mπx/L) (which
is the buckling shape or the mode shape of an unbraced beam), the brace has little or no contribution
to the system eigenvalues; when the brace locates around/at the peaks/valleys of sin(mπx/L), the
brace contributes most to increase the system eigenvalues. With the increase of the beam length, the
influence of the brace is reduced and the lowest buckling load of the braced beam converges to that of
the unbraced beam.
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