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In this paper, we established a strain-gradient damage model based on microcrack analysis for brittle
materials. In order to construct a damage-evolution law including the strain-gradient effect, we proposed
a resistance curve for microcrack growth before damage localization. By introducing this resistance curve
into the strain-gradient constitutive law established in the first part of this work (Li, 2011), we obtained
an energy potential that is capable to describe the evolution of damage during the loading. This damage
model was furthermore implemented into a finite element code. By using this numerical tool, we carried
out detailed numerical simulations on different specimens in order to assess the fracture process in brit-
tle materials. The numerical results were compared with previous experimental results. From these stud-
ies, we can conclude that the strain gradient plays an important role in predicting fractures due to
singular or non-singular stress concentrations and in assessing the size effect observed in experimental
studies. Moreover, the self-regularization characteristic of the present damage model makes the numer-
ical simulations insensitive to finite-element meshing. We believe that it can be utilized in fracture pre-
dictions for brittle or quasi-brittle materials in engineering applications.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The fracture prediction of structures made of brittle materials is
an important issue in engineering designs. In real structures, the
failures are often initiated from a few geometrical weaknesses near
which stress concentrations are formed. The stress concentrations
are of many types and different levels. The failure prediction for all
these stress concentrations is an essential research topic for scien-
tists and engineers. However, it seems that fractures can be accu-
rately predicted only for few types of stress states as so far. For
brittle materials, failure criteria for two simple situations are com-
monly accepted:

1. Under uniform uniaxial tension, fracture occurs when the max-
imum tensile stress reaches the ultimate stress of the material:
r P rc ð1:1Þ
2. For solids including a macrocrack, the crack grows when the
Griffith criterion is fulfilled:
G P Gc ð1:2Þ
ll rights reserved.
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where G and Gc are respectively the energy release rate and its
critical fracture value.

In the cases when the stress distribution is not uniform but does
not present a crack singularity, these criteria are no longer suffi-
cient to describe accurate fracture conditions. Many factors such
like stress gradient, multi-axial stress state or structure size may
influence the material strength (Bazant, 1976). With the aim of
extending these criteria to more general cases, numerous fracture
and damage models were proposed in the literature.

When the stress concentration presents a singularity weaker
than the crack one, such a singularity can be found in the cases
of sharp notches, interface cracking or cracks in ductile materials,
criteria based on finite fracture mechanics were developed and
reported in the literature. In simple words, these criteria are kinds
of combinations of (1.1) and (1.2). (McClintock, 1958; Irwin, 1968;
Ritchie et al., 1973; Seweryn and Lukaszewicz, 2002; Leguillon,
2002, etc.). Another class of fracture criteria was issued from the
so-called cohesive models (Barenblatt, 1959; Dugdale, 1960). The
cohesive models were successfully applied to fracture prediction
of brittle or quasi-brittle materials (Xu and Needleman, 1994;
Camacho and Ortiz, 1996; Foulk et al., 2000; Mohammed and
Liechti, 2000, etc.). In all these criteria and models, one can
distinguish a length scale parameter, such as the critical distance
from the crack tip in finite fracture mechanics or the maximum
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separation distance in cohesive models. The introduction of a
length parameter allows for a more correct description of fracture
and size effect. In general, these length scale parameters are not
independent and can be related to rc and Gc. Li and Zhang (2006)
have adapted a large number of these criteria to predict fractures
caused by a non-singular stress concentration. It was shown that
all of them predict too conservative critical loads compared to
the experimental results.

The finite fracture concept was also adapted in damage analy-
ses. A wide variety of damage models have been proposed on the
basis of continuum damage mechanics (Lemaitre and Chaboche,
1990) by introducing a length parameter. Pijaudier-Cabot and Ba-
zant (1987) developed a practical nonlocal model in a continuum
damage setting. The development of nonlinear gradient models
has taken place predominately in plasticity (Aifantis, 1984; Lasry
and Belytschko, 1988; de Borst and Muhlhaus, 1992; Nix and
Gao, 1998; Gao et al., 1999; Fleck and Hutchinson, 1993, etc). These
gradient theories have afterwards been transferred to damage
mechanics (Peerlings et al., 1996; Frémond and Nedjar, 1996,
etc.). The cohesive concept was extended to a so-called ‘‘Virtual
Internal Bond’’ model by Gao and Klein (1998), that transforms
the surface cohesive model into a volume cohesive model (Nguyen
et al., 2004; Thiagarajan et al., 2004; Zhang and Ge, 2006, etc.).
Francfort and Marigo (1998) developed a so-called damage gradi-
ent model in which the damage zone converges to a crack as the
length parameter tends to zero (Bourdin et al., 2000). Li (2008)
developed a cohesive model with strain gradient effect.

Introduction of length scale parameters into fracture mechanics
or damage models present several evident advantages. First,
fractures can be predicted for some cases of stress concentrations
different from that near a crack tip. Second, size effect can be dealt
with, especially for the cases when the scale of observation
approaches that of the microstructure of the material. Third,
mesh-dependent phenomenon in numerical simulations can be
attenuated by the regularization effect of this approach. However,
it has to be noted that in most of these models, the length param-
eters were only adopted for numerical convenience. Their physical
meanings in constitutive equations and their microscopic origins
incite always debates and discussions.

In the first part of this work (Li, 2011), we have established a
strain-gradient constitutive law for linear-elastic materials con-
taining microcracks by using a special homogenization procedure.
In this constitutive law, the length parameter that modulates the
strain gradient effect is defined with a clear physical meaning: it
is directly related to the average length of the microcracks. Even
though the obtained strain energy density is in similar form to
those proposed in the literature, it benefits from its physical clarity
with all the parameters measurable by means of experimentations.

In the present work, this strain-gradient constitutive law is
transformed to a damage model. To this end, we first proposed a
resistance curve for microcrack growth before damage localization.
By introducing this resistance curve into the strain gradient consti-
tutive law established in the first part of this work, we obtained an
energy potential that is capable to provide a complete stress–strain
relationship with evolution of damage. Then this damage model
was implemented into a finite element code. Using this numerical
tool, we carried out detailed numerical simulations on different
specimens in order to study the influence of strain gradient.
Comparisons with previous experimental results show that strain
gradient plays an important role in predicting fracture due to
singular or non-singular stress concentrations. The size effect of
fracture observed in experimental studies can also be assessed.
Moreover, the present damage model presents a regularization
effect in numerical simulations. Even though the present strain
gradient damage model was established on the basis of simple
physical concepts, the obtained results are quite encouraging.
The outline of the paper is as follows. In Section 2, we establish
the strain-gradient damage evolution law. In Section 3, we describe
the implementation of the model into a finite element code; In
Section 4, detailed numerical simulations on different specimens
made of brittle materials are presented and commented. Compar-
isons with previous experimental results were carried out in order
to validate the present model. Finally, in Section 5, we present
some concluding remarks in relation to the present strain-gradient
damage model.
2. Damage modeling

In this section, we will consider the microcrack propagation
within a Representative Volume Element (RVE) in order to
establish an evolution law of damage including the strain-gradient
effect. The starting point is the strain energy function (4.22) estab-
lished in the first part of this work (Li, 2011), namely:

U ¼ 1
2
ð1� pqÞC0

ijpqeijepq þ
p�a2

12
C0

ijpqdkreij;kepq;r

� �
ð2:1Þ

where U stands for the strain energy density of a two-dimensional
body containing many microcracks; q is the microcrack density;

�a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
n¼1 aðnÞð Þ2

q
is the mean square root of the semi-crack

lengths, by denoting V0 the average volume containing one micro-

crack, we have q ¼
PN

n¼1
aðnÞ

2

V ¼
�a2

V0 ; C0 is the elastic stiffness tensor
of the virgin material without microcracks and e is the strain tensor.

From this expression, we can remark that when the microcracks
grow, i.e., when �a increases, on the one hand, the stiffness associ-
ated with strain decreases since the crack density q increases; on
the other hand, the stiffness associated with strain gradient in-
creases. Consequently, strain gradient will influence the constitu-
tive behavior as well as the evolution of damage.

Now let us consider the variation of the strain energy density
with respect to the increment of strain, strain gradient and average
microcrack length:

DU ¼ ð1� pqÞC0
ijpqDeijepq þ

p�a2

12
C0

ijpqdkrDeij;kepq;r

� C0
ijpqeijepq �

V0

12
C0

ijpqdkreij;kepq;r

 !
p�a

V0 D�a ð2:2Þ

Since the increment of the average microcrack length is irreversible,
the third term in the right-hand side of (2.2) corresponds to the en-
ergy dissipation increment due to the crack growth. The generalized
thermodynamic force associated with D�a is, according to Lemaitre
and Chaboche (1990):

G ¼ � @U
@�a
¼ C0

ijpqeijepq �
V0

12
C0

ijpqdkreij;kepq;r

 !
p�a

V0 ð2:3Þ

G represents here the dissipative energy ratio due a to unit incre-
ment of �a in a unit volume. It can be considered as the energy re-
lease rate in a more general sense. According to the Griffith
criterion, there is crack propagation when G attains its critical value
Gcð�aÞ. Therefore the following inequality must hold:

G 6 Gcð�aÞ ð2:4Þ

Here we assume that the critical energy release rate varies as func-
tion of �a. This assumption is supported by numerous experimental
observations (Frost, 1959; Kitagawa and Takahashi, 1976; Lankford,
1985 among others). These authors reported that small cracks grow
more quickly than large cracks in fatigue tests under the same
loading level measured by energy release rate. As a consequence,
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we can reasonably assume that the critical energy release rate pre-
sents a resistance feature in the following form:

Gcð�aÞ ¼ G0�ak �a 2 ½�a0; �ac� ð2:5Þ

where G0 and k are real constants that will be determined later;
�a0 > 0 represents the initial average half crack length; �ac > �a0 is
the maximal value of �a0 beyond which (2.5) is no longer valid due
to, for example, the coalescence of the microcracks.

From (2.3)–(2.5), we can write:

gð�a; eij; eij;kÞ � � p
G0V0 C0

ijpqeijepq �
V0

12
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 !" # 1
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ð2:6Þ

Eq. (2.6) represents a crack-evolution surface. In the case when
g < 0, there is no crack growth. g = 0 corresponds to the case of crack
propagation. The case of g > 0 is physically unattainable.

From (2.6), we calculate the increment of the average crack
length for g = 0:

D�a ¼ 1
k� 1

p
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12
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 !" # 1
k�1�1

� 2p
G0V0 C0

ijpqDeijepq �
V0

12
C0

ijpqdkrDeij;kepq;r

 !
ð2:7Þ

By introducing (2.7) into (2.2) for g = 0, we obtain:

DU ¼ ð1� DÞC0
ijpqDeijepq þ D

V0

12
C0

ijpqdkrDeij;kepq;r ð2:8Þ

with
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According to (2.8), we obtain immediately the following constitu-
tive relations:

rij ¼ ð1� DÞC0
ijpqepq

1rijk ¼ D
V0

12
C0

ijpqepq;k

ð2:10Þ

Comparing (2.10) with Equation 4.22 in the first part of this work,
we can remark that D = pq, therefore D represents clearly the dam-
age level in the material under crack-growth regime.

In order to determine the parameters G0 and k, let us consider a
uniaxial tensile test on a bar with uniform section, in which strain
gradient is nil. In addition, we assume that the initial microcracks
are very small such that the crack growth criterion (2.6) always
holds during a monotonically increasing load. Therefore the tensile
loading test is essentially predominated by a crack-growth regime.
Consequently, we can write from (2.9) and (2.10):

r ¼ ð1� DÞE0e

D ¼ kþ 1
k� 1

p
V0

p
G0V0 E0e2
� � 2

k�1 ð2:11Þ

This expression represents a complete strain-stress diagram including
an increasing regime and a decreasing regime. The stress attaints the
maximal value rc when the tangent stiffness is nil: @r=@ejr¼rc

¼ 0.
This condition gives a strain quantity ec associated with rc:

ec ¼

ffiffiffiffiffiffiffiffiffiffiffi
G0V0

pE0

s
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p
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Substituting (2.12) into (2.11), we obtain the relationship between
rc and ec:

rc ¼
4E0ec

kþ 3
ð2:13Þ

The ultimate stress rc and the associated strain ec can be deter-
mined by uniaxial tensile tests.

From (2.12) and (2.13), we deduce immediately:

p
G0V0 ¼

1
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c
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ð2:14Þ

Thus the parameter G0 is determined. By introducing (2.14) into
(2.11) and (2.9), we obtain respectively the evolution law of damage
for uniaxial tensile loading:

D ¼ k� 1
kþ 3

e2

e2
c

� � 2
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ð2:15Þ

and for more general stress states:
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It is clear that this strain-gradient damage model implies several
important hypotheses. These hypotheses limit the application do-
mains and at the same time, indicate the directions of future works.
For the moment, some modifications are needed in order to make
the present damage model applicable to engineering calculations.

Remark 1. The damage evolution is assumed to be isotropic, i.e.
the distributions of length, orientation and position of the micro-
cracks are considered as uniform and independent. It results in a
self-similar expansion of all microcracks whatever the local stress
state. In reality, there exist certain privileged directions for crack
growth under non-hydrostatic loading. Therefore the evolution of
damage due to crack growth must be anisotropic. From this point
of view, a parallel microcrack pattern (Kachanov, 1993) may be
physically more realistic. Further works are necessary to include
the anisotropic aspect in the model.
Remark 2. The present model is valid only for crack opening cases.
Some important aspects such like crack growth under pressure or
with crack-lip friction will not be considered in this work.
Remark 3. Critical damage for localization
Eq. (2.11) describes a complete stress-strain diagram for a uni-

form tensile test as illustrated in Fig. 1. It includes an ascending
(hardening) part, represented by a continuous line in Fig. 1, fol-
lowed by a descending (softening) part, represented by a discon-
tinuous line. In the present model, the crack coalescence and
localization within a RVE are not considered. If the isotropic dam-
age evolution hypothesis can be acceptable in the ascending re-
gime of the constitutive law, however, it is no longer realistic in
the post-peak regime when damage localization occurs.

In practice, threshold stress is realized at a critical damage Dc

corresponding to relatively small crack density for brittle or qua-
si-brittle materials. Lemaitre (1992) suggested Dc = 0.2 � 0.5 in
most of metals. Experimental observations on transparent A1ON
(gamma-aluminum oxynitride) suggested that the material failed
at around 11% crack density under uniaxial pressure (Paliwal
et al., 2006). For tensile loading, the critical damage at localization
is much smaller in brittle materials. Bai et al. (2001) pointed out
that the critical damage for localization increases as the heteroge-
neity of the material increases. Typical values of Dc vary from
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Dc = 0.005 to 0.25 according to the heterogeneity of the material.
All these studies suggested existence of a critical damage Dc for
localization beyond which dD/dt ?1 and catastrophic failure
occurs.

The critical damage can be determined from analytical model-
ing or experimental observations. In uniaxial tensile test of a brittle
material, the stress drops significantly after it reaches the ultimate
value. Therefore, the damage accumulated at ultimate stress can be
considered as the critical damage for the present model. The corre-
sponding critical strain at fracture being ec, the critical damage for
localization writes, according to (2.15):

Dc ¼
k� 1
kþ 3

< 1; 8k > 1 ð2:17Þ

In order to represent this brittleness, we write the uniaxial tensile
constitutive model as follows:

r ¼ ð1� DÞE0e

D ¼
Dc

e2

e2
c

� � 2
k�1 e 6 ec

1 e > ec

8><
>:

8>>>><
>>>>:

ð2:18Þ

The stress–stain diagram and damage growth curve described by
(2.18) are illustrated in Fig. 1. Thus only the ascending part of the
proposed constitutive law is adopted. The coalescence of micro-
cracks is represented by a brisk fall of the stress-strain curve and
by a brisk rising of damage-strain curve, meaning the complete fail-
ure of the considered element in the material.

In this proposed constitutive law, the parameter k describes the
nonlinearity of the material before failure. Fig. 2 shows the stress–
strain diagrams for several values of k > 1. Here again, only the
ascending parts of curves, presented by continuous lines, are
adopted. From Fig. 2, we observe that when k ? 1, the material
presents a nearly linear behavior before failure. For large values
of k, the nonlinearity appears due to a progressive development
of damage.

By similar analysis, we obtain following constitutive equations
for general stress states. According to (2.8), we can write:

DU ¼ ð1� D1ÞC0
ijpqDeijepq þ D2

V0

12
C0

ijpqdkrDeij;kepq;r ð2:19Þ
The damage variables D1 and D2 are defined as follows:

D ¼ Dc
1

E0e2
c

C0
ijpqeijepq � V0

12
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E0e2
c

C0
ijpqdkreij;kepq;r

� � 2
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D1 ¼ D2 ¼ D if D 6 DcD1 ¼ 1 D2 ¼ 0 if D > Dc

8<
: ð2:20Þ

The stress tensors are therefore:

rij ¼ ð1� D1ÞC0
ijpqepq

1rijk ¼ D2
V0

12 C0
ijpqdkrepq;r

ð2:21Þ

When D > Dc, both D1 and D2 change their values such that both the
strain energy increment and the stress vanish in a completely dam-
aged element.

For brittle and quasi-brittle materials, the values of the critical
damage are in general small. As a consequence, even though the
critical damage concept is physically reasonable, a parameter jump
from (D1 = Dc,D2 = Dc) to (D1 = 1,D2 = 0) leads to convergence diffi-
culties and requires supplementary effort in numerical implemen-
tation of the proposed damage evolution law. Moreover, the
damage calculated under this hypothesis presents a discontinuous
and dispersal aspect in a damaged band.

Remark 4. By denoting W1 ¼
C0

ijpqeijepq

E0e2
c

and W2 ¼ V0
12

C0
ijpqdkreij;kepq;r

E0e2
c

, the

evolution law of damage (Eq. (2.16)) writes:
D ¼ DcðW1 �W2Þ
2

k�1: ð2:22Þ

We can notice that the presence of strain gradient reduces the
damage level. In general, the parameter V0 is a small value such
that W1 > W2 can be guaranteed. However, in some cases, espe-
cially in the case of singular stress concentrations, W1 6W2 may
occur and this makes D meaningless. This anomaly is caused by
the truncation made in the macroscopic load expansions (Eq.
(4.2) in Part I of this work, Li, 2011). We can expect to remedy this
anomaly by incorporating higher-order gradients in homogeniza-
tion procedure, which will considerably increase the mathematical
and numerical difficulties. In the present work, we admit a thresh-
old value for W2 in order to avoid this problem, namely

W2 ¼minðW2;aW1Þ; 0 6 a 6 1 ð2:23Þ

It is clear that a = 1 is the minimal constraint to ensure D P 0, and
a = 0 means that strain gradient is totally neglected in the evalua-
tion of damage.
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Gathering all the discussions above-realized, we write the final
form of the constitutive law adopted in numerical simulations:

DU ¼ ð1� D1ÞC0
ijpqDeijepq þ D2

V0

12 C0
ijpqdkrDeij;kepq;r

D1 ¼ D2 ¼ D if D 6 Dc

D1 ¼ 1 D2 ¼ 0 if D > Dc

D ¼ DcðW1 �W2Þ
2
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12

1
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c
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0 < a 6 1
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ð2:24Þ
Fig. 3. 9-Node isoparametric element.
3. Finite element modeling

The strain-gradient damage model (2.24) was implemented
into a finite element code with the purpose of evaluating the influ-
ence of strain gradient on fracture behavior of brittle materials. The
generalized principle of stationary potential energy for this prob-
lem can easily be written for an arbitrary kinematically admissible
virtual displacement field du, as follows (Mindlin, 1965):

d
Z

X
UdV ¼

Z
X

f � dudV þ
Z
@X

0tduþ 1t@ndu
	 


dS ð3:1Þ

where f is the body force; 0t and 1t are the generalized surface trac-
tion vectors associated with the generalized surface kinematic vec-
tors u and @nu, respectively; @n represents the normal derivatives on
oX, @n = n �r with n being the unit outward normal to oX and r
being the gradient operator. The variation of the strain energy den-
sity is given by (2.24).

Eq. (3.1) allows for the deduction of the rigidity matrix for finite
element coding. In a classical finite element formulation, the vari-
ation of the strain energy density within an element Xe can be ex-
pressed as function of a nodal unknown vector qe, which can
include nodal displacements and eventually their first and second
derivations according to the selected element type, through a rigid-
ity matrix Ke:Z

Xe
dUdV ¼ dqT

e Keqe ð3:2Þ

The variation of the strain energy density is given by (2.23) and the
matrix takes the following form:

Ke ¼
Z

Xe
ð1� D1ÞBT CBþ D2

V0

12
BT

1CB1 þ BT
2CB2

� �" #
dV ð3:3Þ

where B, B1 and B2 are defined by:

e
@e
@x

@e
@y

� �T

¼ B B1 B2f gT qe ð3:4Þ

After assemblage, the equilibrium Eq. (3.1) for the discrete system
becomes:

Kq ¼ F ð3:5Þ

where K, q and F are respectively the global rigidity matrix, nodal
displacements and generalized forces.

For brittle materials characterized by abrupt failure, the
Newton–Raphson method based on the linearization of (3.5) meets
difficulties in resolving this non-linear problem. In this work, we
have chosen the alternate substitution method piloted by a
well-chosen auxiliary variable (arc-length algorithm). This method
consists in calculating alternately the displacement field with fixed
damage field by resolving (3.5), becoming therefore linear, and
then the damage field from (2.24) with the obtained displacement
field. Iterations are performed until the convergence in each load-
ing step. The alternate substitution method was used in previous
works and satisfactory results can often be obtained for brittle
materials (Bourdin et al., 2000). The variable used for piloting the
loading is the increment of the total damage between two itera-
tions m and m + 1:

DDtotal ¼
Z

X
Dðmþ1ÞdV �

Z
X

DðmÞdV ð3:6Þ

The increment of the total damage must satisfy the following con-
straint equation:

jDDtotal � DDcj 6 s ð3:7Þ

where DDc is an expected value of DDtotal and s > 0 is the tolerance
controlling the fineness of the solution.

In numerical simulations, the remote load is applied by impos-
ing displacements at the structure boundaries. Let �u be the loading
parameter. For each loading step n, the load is incrementally
applied according to �uðnÞ ¼ �uðn�1Þ þ D�u. Given uðn�1Þ

i ; eðn�1Þ
ij ;rðn�1Þ

ij ;

Dðn�1Þ which are respectively the displacement, strain, stress and
damage fields obtained in the preceding loading step (n � 1), the
following algorithm is adopted to calculate the corresponding
fields for loading step n, namely:

1. Set m = 1; Let uðmÞi ¼ uðn�1Þ
i ; eðmÞij ¼ eðn�1Þ

ij ; rðmÞij ¼ rðn�1Þ
ij ; DðmÞ ¼

Dðn�1Þ; Choose an appropriate load increment D�u;
2. Calculate uðmþ1Þ

i ; eðmþ1Þ
ij ;rðmþ1Þ

ij with D(m) by solving the linear
problem (3.5);

3. Calculate eðmþ1Þ
ij;k then D(m+1) with the obtained strain field eðmþ1Þ

ij ;
4. Calculate DDtotal, if DDtotal > DDc + s, reduce the load by replac-

ing by �bD�u; b > 0; set uðn�1Þ
i ¼ uðmþ1Þ

i ; eðn�1Þ
ij ¼ eðmþ1Þ

ij ;

rðn�1Þ
ij ¼ rðmþ1Þ

ij ; Dðn�1Þ ¼ Dðmþ1Þ; go to 1;
5. Test of convergence. If norm(u(m+1) � u(m)) P e,e being the

error tolerance, go to 2 by setting m = m + 1;
6. If norm ju(m+1) � u(m)j < e, set uðnÞi ¼ uðmþ1Þ

i ; eðnÞij ¼ eðmþ1Þ
ij ; rðnÞij ¼

rðmþ1Þ
ij ; DðnÞ ¼ Dðmþ1Þ; if DDtotal < DDc � s, increase the incremen-

tal load by replacing D�u by cD�u; c > 1; end of iterations for
loading step n;

One of the major precautions in finite element modeling is to
reduce the errors due to numerical calculations of strain gradient.
The calculations of strain gradient should be carried out with a
maximal accuracy. In this work, we have tried different finite ele-
ments to optimize numerical modeling. We found that the 9-node
triangular isoparametric element (Fig. 3) is efficient and can pro-
vide satisfactory numerical results. This is quite a simple and eco-
nomical element with a small number of degrees of freedom. For
simplicity, no derivatives of displacements are prescribed on dis-
placement-imposed boundaries. Moreover, the natural boundary
conditions were applied on force-imposed boundaries (the nodal
high-order generalized forces are zeros on the boundaries).
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4. Numerical examples and experimental verification

In this section, we will carry out a series of numerical calcula-
tions in order to assess the influence of the strain gradient on the
evolution of damage by using the present strain-gradient damage
model. The present model will also be confronted with the exper-
imental data. The material used in both the numerical and experi-
mental investigations is PMMA (polymethylmethacrylate), a
polymer showing brittle characteristics at room temperature. The
mechanical properties of the material are: Young’s modulus
E = 3000 MPa, Poisson’s ratio m = 0.3, the ultimate stress
rc = 72 MPa. Other parameters used in the calculations are:
k = 1.2 and a = 0.95. With k = 1.2 and according to (2.13) and
(2.17), we deduce ec = 0.0252 and Dc = 0.0476. This critical damage
corresponds to a microcrack density q 	 0.015. All these parame-
ters can be identified by simple mechanical tests. The identification
of these parameters will be described in Section 4.3.

In the present model, the influence of strain gradient on the
evolution of damage is essentially modulated by the parameter
V0, remembering that the physical meaning of V0 is the average
volume containing one nucleated microcrack. In the following,
the role of this parameter will be examined in detail.

The fracture behaviors of PMMA in microscopic and macro-
scopic scales were exhaustively investigated in earlier experimen-
tal works. Based on an experimental investigation of dynamic
fracture, Ravi-Chandar and Knauss (1984a,b,c,d) suggested that
essentially, propagation of a macroscopic crack occurs by the
nucleation, growth and coalescence of microracks in PMMA and
similar polymers. Leeuwerik (1962) observed bowl shaped cavities
with a diameter of about 0.3 lm at the cracked surfaces. All these
authors speculated that these voids (flaws) are naturally randomly
distributed throughout the material and are the origin for the
microcracks. When the stress attains a critical level, a part of these
flaws, especially those situated at weaker part of the material, de-
velop into microcracks. The number of the nucleated microcracks
may depend on the microstructure of the material and the local
stress concentration. Ravi-Chandar and Yang (1997) estimated that
the average spacing between nuclei varies from about 5 to 50 lm
in front of the tip of a dynamically growing macrocrack. These
analyses provide us important information in estimation of the
parameter V0 used in our damage model.

If we consider the micro-cavities as the unique heterogeneities
in PMMA, the strain gradient damage model above-constructed
can directly be applied in fracture prediction. It is clear that for lab-
oratory specimens (with a length scale of about one hundred mil-
limeters), the initial size of the flaws (about 0.3 lm) are too small
to be taken into account in the present strain-gradient constitutive
law. However, they can no longer be neglected when they develop
into larger microcracks. For this reason, we can neglect the initial
size of these flaws and consider only the crack growth regime.
Therefore, the constitutive model described in (2.24) can directly
Fig. 4. Geometry, boundary conditions and m
be used in numerical calculations. The parameter V0 represents
therefore the average spacing of nucleated microcracks.

In the following, we select three typical specimens in numerical
simulations, namely a three-point bending beam, a central-cracked
panel and a central-holed panel.

4.1. Three-point bending beam

We first perform computations on a three-point bending beam
by using the present damage model. The geometry and boundary
conditions of a meshed half-beam are shown in Fig. 4. The speci-
men is 4 mm long, 0.5 mm high and it is assumed to deform in
plane stress conditions with unit thickness b = 1. The mesh is finer
near the central part of the beam where the fracture occurs. The
minimal size of the elements in this meshing is 0.014 mm. Bet-
ter-quality meshes with smaller element size were also realized
in calculations. Since there is no stress singularity in this specimen,
the numerical results are not very sensitive to the size of elements.
Therefore we present only the numerical results obtained with this
mesh.

The global response (applied force vs. maximal flexure) of the
beam is illustrated in Fig. 5. It is characterized by a snapback
behavior. From this plot, the maximal load at fracture can be
determined.

4.1.1. Influence of strain gradient on critical load at fracture
The influence of strain gradient on fracture load can be consid-

ered by taking different values of V0. Table 1 lists the simulation
results on critical loads at fracture for different V0 values. It is clear
that V0 = 0 corresponds to the case when strain gradient is
neglected. The numerical result on the load at fracture in this case
is Fc = 3.1 N, which is close to the prediction of the maximal stress
criterion on the basis of the beam calculation Fc ¼ 2bh2rc

3L ¼ 3 N.
From Table 1, we can observe that the load at fracture increases
as V0 increases. This result shows that the introduction of strain
gradient into the evolution law of damage leads to an increase of
strength of structures.

4.1.2. Influence of strain gradient on damaged zone
Fig. 6 illustrates the damaged zones obtained from the numer-

ical simulations for different values of V0. From Fig. 6, we clearly
observe that strain gradient plays an important role in the evolu-
tion of damage in the considered specimen. Roughly speaking,
the damaged zone becomes larger when strain gradient is intro-
duced into the evaluation law of damage. In the case of V0 = 0,
the damaged zone forms a narrow band at the middle section of
the beam and contains only one row of elements. In this case,
the width of this band, therefore the dissipated energy, depends
strongly on the meshing of the numerical model. When strain gra-
dient is taken into account, the damaged zone, especially the dam-
aged zone before the formation of a macrocrack, becomes larger.
esh of a half three-point bending beam.
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Table 1
Critical forces at fracture for different V0 values.

V0 = 0 mm2 V0 = 0.01 mm2 V0 = 0.03 mm2 V0 = 0.1 mm2

Fc(N) 3.1 3.15 3.99 5.22
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The dissipated energy is more important and therefore, the load at
fracture of the specimen increases. This result can clearly be ex-
plained by Eq. (2.16): The evolution of damage depends not only
on the part of energy due to strain, but also on that due to strain
gradient. The difference between these two parts of energy governs
the failure of the material. In fact, both strain and strain gradient
are large at the middle section of the beam. However, the differ-
ence between their corresponding energies may be small for large
values of V0. As a consequence, the damage may develop in the
neighborhood of the middle section, as illustrated in Fig. 6d.
Fig. 6. Damage zones of three-point be
4.1.3. Size effect
The size effect on fracture can be considered with the present

damage model. By fixing the parameter V0 = 0.01 mm2, we carried
out numerical simulations on the three-point beam specimens
with different dimension scales. By conserving the geometrical
form of the beam, the dimensions chosen in calculations are
L � h = 0.2 � 0.025; 0.4 � 0.05; 1 � 0.125; 2 � 0.25; 4 � 0.5 and
10 � 1.25 mm2, respectively. The normalized critical loads at frac-
ture Fc/bL obtained from the simulations are shown in Fig. 7.

By applying the conventional maximal stress criterion, we can
calculate the critical load at fracture by using the beam theory.
The normalized critical load at fracture F0/bL = 2h2rc/3L2 =
0.75 MPa is a constant value for all the considered dimension
scales. This result is also plotted in Fig. 7 for comparison. It is clear
that this conventional criterion cannot represent the size effect of
the fracture behavior.

The capacity of the present damage model in describing the size
effect on fracture can clearly be observed from Fig. 7. For large

specimens h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=12

q� �
, the normalized critical loads predicted

by the present damage model agree with that obtained according
to the conventional maximal stress criterion. However, the critical
load at fracture increases significantly when the beam size is com-

parable to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=12

q
. Thus smaller specimens show higher strength

compared to larger ones.
It is interesting to point out that these numerical results agree

with some previous studies published in the literature. Bazant
and Guo (2002) have carried out asymptotic analyses on several
plasticity constitutive laws including strain-gradient (Fleck and
Hutchinson, 1993; Gao and Huang, 2001; Acharya and Bassani,
2000, etc.) by considering the fracture behaviors for materials at
macroscopic and microscopic scales. These analyses enabled them
to propose a connection formula for strengths at intermediary
scales. Comparison with several numerical simulations using strain
gradient models shows that their formula provides physically rea-
sonable results.
nding beam for different V0 values.
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Fig. 8. Geometry, boundary conditions and meshing of a cracked-panel.

Table 2
Critical nominal stresses at fracture p/rc.

V0 (mm2) Mesh 1 Mesh 2 Mesh 3

0 0.068 0.089 0.093
0.001 0.152 0.164 0.172
0.005 0.224 0.235 0.237
0.01 0.261 0.266 0.27
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Applied to the three-point bending beams, this formula writes:

Fc

bL
¼ F0

bL
1þ L0

L

� �2s
r

" #r
2

ð4:1Þ

where s is a parameter determined by the asymptotic analysis,
s = 0.5 according to Bazant and Guo (2002); r and L0 are parameters
which can be determined by numerical or experimental studies.
After calibrating the numerical results above-obtained, we adopt
the following values for these parameters: L0 = 2.208 mm and
r = 0.5. This relationship is also added into Fig. 7. We can observe
a very satisfactory agreement between the present strain-gradient
damage model and the formula proposed by Bazant and Guo.

4.2. Cracked panel

The second example is a two-dimensional plate with a central
crack subjected to uniaxial tension. The specimen is a rectangular
tensile panel (4 � 8 mm2) with a crack placed in the center, sym-
metrical both with x1 and x2 axes. Due to the symmetry, only
one-quarter of the specimen was meshed. Fig. 8 shows one of the
meshed specimens with the boundary conditions. In the following,
we will examine the capacities of the present damage model on
regularization and crack-growth prediction.

4.2.1. Mesh sensitivity and regularization effect
For conventional damage models, the mesh-dependence of the

evolution of damage is a recurrent problem especially when singu-
lar stress concentrations have to be dealt with. Regularization
methods are often used to rectify the numerical results. Peerlings
et al. (1996) proposed to introduce the strain gradient into damage
models and obtained satisfactory regularization effect. As the pres-
ent damage model is established on the basis of strain gradient
theory, it will be logical that the present model possesses automat-
ically a regularization effect in numerical simulations.

In order to assess the mesh sensitivity and regularization effect
of the present model, we realized three different meshes for the
cracked panel with half crack length a = 1 mm. The smallest sizes
of elements near the crack tip are respectively 0.01, 0.02 and
0.03 mm for each of the three meshes. The critical nominal stresses
at fracture were calculated respectively for V0 = 0, 0.001, 0.005 and
0.01 mm2. The obtained results are listed in Table 2.

According to Table 2, the numerical results on fracture loads de-
pend strongly on the parameter V0. The critical stress at fracture in-
creases as V0 increases. According to the conventional fracture
mechanics, the strain energy density presents a singularity of r�1

in the vicinity of the crack tip. Consequently, according to the
evolution law of damage (Eq. (2.16)), the crack will propagate un-
der any tensile load if strain gradient is not taken into account. In
numerical simulations, the remote loads at fracture are situated at
a very low level for V0 = 0. Moreover, we can observe that in this
case, the critical load depends also on the structure meshing. In
fact, a coarser meshing leads to a higher critical load at fracture.
This mesh-dependence is attenuated with introduction of strain
gradient. When the value of V0 is sufficiently large and the mesh
is sufficiently fine, the differences of the critical loads at fracture
obtained with different meshes become unnoticeable. Conse-
quently, we can confirm that the present strain gradient damage
model possesses a regularization property in numerical modeling.
The mesh sensitivity is low if the mesh is fine enough compared
with the length scale

ffiffiffiffiffiffi
V0

p
.

4.2.2. Crack growth prediction
In order to examine the capacity of present damage model in

predicting the propagation of a macrocrack, we carried out calcula-
tions on the critical remote loads at fracture with different crack
lengths, namely a = 0.4, 0.7, 1, 1.3 and 1.6 mm, respectively. The
influence of strain gradient was introduced by using different val-
ues of V0, namely V0 = 0.001, 0.005 and 0.01 mm2, respectively. The
mesh 1 above-mentioned (the finest mesh) was used in these cal-
culations. The obtained critical remote stresses p were converted to
critical stress intensity factors KIC by using the following formula:
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Fig. 10. Damage zones near the crack tip for different V0 values.
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KIC ¼ f
a

W

� � ffiffiffiffiffiffi
pa
p

p ð4:2Þ

where 2W is the panel’s width; f(a/W) is a geometrical factor
depending on the ratio a/W. The values of f can be found in numer-
ous handbooks of stress intensity factors (for example, Sih, 1973).
The results of these calculations are illustrated in Fig. 9.

The critical stress intensity factor criterion in fracture mechan-
ics implies that for a sufficiently large crack, KIC is a material
constant independent of crack length. From Fig. 9, we can see that
the present damage model is equivalent to the KIC criterion. The
numerical results on the critical stress intensity factors KIC are only
function of V0 and nearly independent of the crack length. There-
fore, by choosing suitable value for V0, the crack propagation can
correctly be assessed by using the present strain-gradient damage
model.

For the PMMA used in these simulations, the critical stress
intensity factor ranges from 30 to 45 MPa mm0.5 (Li and Zhang,
2006; Seweryn and Lukaszewicz, 2002). This supports that the
present damage model is able to provide correct crack growth pre-
dictions by taking V0 = 0.001 � 0.005 mm2. The average spacing of
the nucleated microcracks ahead the macrocrack tip is therefore
about

ffiffiffiffiffiffi
V0

p
¼ 30 � 70 lm. This estimation is in agreement with

the experimental observations of Ravi-Chandar and Yang (1997)
above-mentioned (5–50 lm).

4.2.3. Damaged zones
In Fig. 10, we illustrate the damaged zones near the crack tip

obtained by numerical simulations with a = 1mm and mesh
1 (smallest element size is 0.01 mm). From this figure, we can
remark that similar to the case of the 3-point beam, the calculated
damage zones near the crack tip are quite different for different V0

values used. The fractured surfaces are quite smooth for small
parameters V0 and become rougher with increasing V0. As the esti-
mation of V0 is about 0.001 � 0.005 mm2 in PMMA, the fracture
surfaces of crack propagation should be quite smooth according
to the numerical simulations. This result is in concordance with
experimental observations. In fact, smooth fracture surfaces are
usually obtained with crack growth tests in PMMA.

Next, we carried out simulations with a fixed length scale
parameter and varying mesh sizes for a cracked plate. When using
the material parameters for PMMA, very fine finite element mesh-
ing is required to demonstrate the mesh-independence aspect of
the proposed model. Hereafter we just choose a small structure
for this purpose in order to save calculation times. The dimension
of the simulated structure is a 0.2 � 0.8 mm2 plate containing a
central crack of length 2a = 0.1 mm. The length scale parameter
is V0 = 0.002 mm2. The smallest element sizes near the crack tip
for three different simulations are respectively 0.002, 0.004 and
0.008 mm, i.e., much smaller than the chosen length scale param-
eter

ffiffiffiffiffiffi
V0

p
¼ 0:0447 mm. In Fig. 11, we illustrate the damage zones

near the crack tip with the different meshes. From these figures, we
can remark that even though the damaged elements present a dis-
persal aspect in different manners for different meshes, the thick-
ness of the damaged band remains nearly constant. Consequently,
the energy dissipation is quite mesh-independent. These results
show once again the regularization effect of proposed damage
model.
4.3. Experimental verification with central-holed panels

Hereafter we will compare the numerical results on fracture
prediction with the experimental data previously obtained. The
material used in the experimentation is the PMMA, identical to
that used in Sections 4.1 and 4.2.

Apart from the conventional mechanical properties (E,m,rc), the
parameter k can also be estimated by stress-strain diagram issued
from uniaxial tensile tests. A typical stress-strain curve recorded
during a uniaxial tensile test is shown in Fig. 12. The uni-
dimensional damage model (2.18) was correlated with the test
data to obtain k = 1.2. Fig. 12 shows the comparison between
Eq. (2.18) and the test data.

Li and Zhang (2006) carried out uniaxial tension tests on dog-
bone shaped PMMA plates with a central hole. The section of the
specimens is 10 � 30 mm2. Central holes were drilled with differ-
ent diameters, namely, d = 0.6, 1.2, 2 and 3 mm. Specimens without
holes were also prepared for comparison. These specimens were
subjected to uniaxial tension with a loading rate 5 mm/minute
until failure. The geometry of the specimens is shown in Fig. 13a.
The remote nominal stresses at fracture were recorded and plotted
as function of the hole size, see Fig. 13b.



Fig. 11. Damaged zones near the crack tip for different mesh sizes.
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From Fig. 13, we observe that the strength of the central-holed
specimens depends strongly on the hole size. First, the critical frac-
ture load increases as the hole size decreases. Second, it tends to
the critical material strength rc as the hole size tends to zero and
to rc/3 as the hole size is large enough. The size dependence of
the fracture is obvious despite of the scattering of the test data.

The stress distribution in these specimens can be approximated
by that in an infinite plate with a circular hole under uniform uni-
axial tensile loading (we have carried out numerical calculations to
confirm this assumption). In an infinite holed plate, the maximum
tensile stress occurs at the hole boundary and equals three times of
the remote tensile stress r1 whatever the hole size (Timoshenko
and Goodier, 1970). Since there is no singular stress concentration
in these specimens, we can use the commonly accepted maximal
stress criterion to predict their failure. According to this criterion,
the specimens should be broken at r1 	 rc/3 whatever the hole
size. It is clear that this prediction is not correct compared with
the experimental results. Li and Zhang (2006) have adapted a large
number of the conventional fracture criteria, such as criteria based
on finite linear fracture mechanics or cohesive force models, to
predict the failure of the specimens. However, it was shown that
all of them predict too conservative critical loads at fracture.

In the following, we apply the established strain-gradient
damage model to predict the fracture of the tested specimens. To
this end we construct a finite element model representing the
experimentation. Due to the symmetries, only a quarter of the
specimen is meshed. The remote loads are applied on the top of
the plate by prescribing displacements in the axial direction. The
displacement-traction diagrams were calculated by gradually
applying the prescribed displacements. In order to assess the influ-
ence of strain gradient on fracture response of the specimens,
different V0 values are used in numerical simulations. Fig. 14
illustrates the critical loads at fracture predicted by the present
model for different hole sizes and with different V0 values. The
experimental results are also plotted for comparison. From
Fig. 14, we can observe a very important influence of strain gradi-
ent on prediction of fracture loads. Generally speaking, neglecting
the strain gradient effect (V0 = 0) leads to a nearly constant critical
load r1 	 rc/3 that is too conservative. On the contrary, a too large
V0 overestimates the critical loads at fracture. For the PMMA used
in the present study, a value of V0 	 0.05 mm2 gives a suitable fit to
experimental data.

In Fig. 15, we illustrate the damaged zones near the hole border
obtained from the numerical simulations. Once again, we can
remark that the damage zones near the hole are quite different
for different V0 values used. For V0 = 0.05 mm2, the numerical
simulations provide quite rough broken surfaces. The results on
damage zone simulations are in agreement with the experimental
observations.

4.4. Is V0 an intrinsic property of material?

A question that may incite debates is if the characteristic length
parameter

ffiffiffiffiffiffi
V0

p
is an intrinsic material property. Our numerical re-

sults seem to give rather a negative response. If V0 is an intrinsic
constant of material and if it is capable to capture the influence
of the strain gradient, a unique appropriate value of V0 should be
sufficient for the fracture prediction of all the stress states. How-
ever, first, we have not found damage models that can predict frac-
ture for arbitrary stress concentrations in the literature so far and
second, our numerical simulations show that for different struc-
tures considered, we have to adopt different values of V0 to obtain
correct fracture prediction. That suggests that V0 may depend on
the local stress concentration.

In the present damage model, V0 represents the average volume
containing a nucleated microcrack. Since all the microcracks do not



0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3
d(mm)

V0=0.1

V0=0.05

V0=0.02

V0=0.01

V0=0

test data

cσσ ∞

Fig. 14. Comparison between predicted strength and experimental data.
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lie on a same plane and the coalescence of these microcracks will
break the zone between them, therefore, the fracture surfaces thus
created will not be perfectly smooth. The roughness depends on
the values of V0: a large V0 will lead to rougher fracture surfaces
and vice versa.

In Fig. 16, we show the fracture surfaces obtained from some
tensile tests on PMMA specimens realized by the authors. It can
be observed that the broken surfaces issued from a sharp notch
are quite smooth. On the contrary, the fracture surfaces of a spec-
imen under uniform uni-axial tension present a striking contrast to
the former case by its remarkable roughness. The broken surfaces
issued from a small circular hole present an intermediary rough-
ness between the two preceding situations.

These experimental observations lead us to notice that the sur-
face roughness, therefore the dissipated energy during the fracture
process, depends not only on material properties, but also on local
stress concentration. Therefore, the parameter V0 is probably not
just a material constant. It may vary according to the local stress
concentration. In fact, the microcrack nucleation should be concen-
trated in a zone of high stress level such as the neighborhood of a
sharp notch. This leads to a small value of V0. On the contrary,
when the stress concentration level is low, the microcrack
nucleation will spread over a large zone with small density, thus
V0 should be a large value.



Fig. 16. Fracture surfaces of some PMMA specimens, (a) fracture surfaces issued from a sharp notch tip; (b) fracture surface of a specimen under uniform uniaxial tensile
loading; (c) fracture surface issued from a central holed specimen under uniaxial loading.
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All these roughness aspects can be simulated by introducing an
appropriate dosage of strain gradient into the present damage
model. This may explain why different V0 values are needed for dif-
ferent structures in order to obtain correct fracture prediction.

It is clear that the dependency of V0 on stress concentration was
not studied in the present work. We have not found convincing dis-
cussions on this issue in the literature yet. It may constitute a sub-
ject for future investigations.

5. Concluding remarks

In this paper, we established a strain-gradient damage model on
the basis of microcrack-growth analysis for brittle materials.
Guided by experimental observations, we first proposed a resis-
tance curve for microcrack growth. By introducing this resistance
curve into the strain-gradient constitutive law established in the
first part of this work, we obtained an energy potential that is capa-
ble to provide a complete evolution law of damage. For uniaxial
uniform tension, the ascending branch of the stress-strain diagram
represents the slow process of microcrack growth. Catastrophic
failure occurs once the threshold damage for localization is
reached. In more general stress states, the same fracture behavior
holds, but is strongly modulated by strain gradient.

Afterwards this damage model was implemented into a finite
element code. By using this numerical tool, detailed numerous
simulations were carried out for different specimens made of
PMMA material. Comparisons with previous experimental results
were realized in order to validate the present model. From these
numerical simulations, we can formulate the following concluding
remarks:

1. The strain gradient plays an important role in the prediction of
fracture in brittle materials. Apart from the parameters usually
used in conventional damage models, such as the ultimate stress
or critical release energy rate, we furthermore introduced a
length scale l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=12

q
with a clear physical origin as V0

represents the average volume containing one nucleated micro-
crack. As a consequence, the evolution of damage is strongly
influenced by strain gradient. This property enables us to
predict fractures in the cases when the strain gradient effect can-
not be neglected. The fracture predictions obtained from numer-
ical simulations agree well with previous experimental data.

2. The present damage model is able to assess the size effect of
fracture observed in experimental studies. When the specimen

dimension is much larger than the size scale l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=12

q
, the

present damage model provides the same critical load at
fracture as conventional local stress criteria do. The fracture
strength increases as the specimen dimension decreases. The
transition of fractures from microscopic scale to macroscopic
scale can correctly be predicted. The size effect tendency thus
obtained agrees with the asymptotic analysis of Bazant and
Guo (2002).

3. The present damage model possesses a regularization capacity
in numerical simulations. Introduction of strain gradient into
evolution laws of damage makes the numerical calculations
insensitive to meshing if the meshes are fine enough. This fea-
ture enables us to deal with both the crack initiation and crack
propagation with satisfactory accuracy.

Even though the present strain gradient damage model was
established on the basis of rather simple physical concepts, the ob-
tained results are quite encouraging. The numerical calculations
show that by adopting appropriate values of V0, we can simulate
fractures due to different stress concentrations. It is clear that
the dependency of V0 on stress concentration level was not studied
in this work. Establishment of a unified damage model for an arbi-
trary stress concentration is an ambitious task for the scientific and
engineering community. We believe that more elaborate models
can be developed in the continuity of the present work in order
to describe more complicated fracture processes with wider do-
main of applications. More theoretical, numerical and experimen-
tal studies are needed for this purpose.
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